Cellular and Molecular Life Sciences

, Volume 71, Issue 2, pp 311–329 | Cite as

The tumor suppressor annexin A10 is a novel component of nuclear paraspeckles

  • Nina Quiskamp
  • Michaela Poeter
  • Carsten Alexander Raabe
  • Ulli Martin Hohenester
  • Simone König
  • Volker Gerke
  • Ursula RescherEmail author
Research Article


Annexin A10 is the latest identified member of the annexin family of Ca2+- and phospholipid-binding proteins. In previous studies, downregulation of annexin A10 was correlated with dedifferentiation, invasion, and tumor progression, pointing to a possible tumor suppressor role. However, the biochemical characteristics and functions of annexin A10 remain unknown. We show that annexin A10 displays biochemical characteristics atypical for an annexin, indicating a Ca2+- and membrane-binding-independent function. Annexin A10 co-localizes with the mRNA-binding proteins SFPQ and PSPC1 at paraspeckles, an only recently discovered nuclear body, and decreases paraspeckle numbers when overexpressed in HeLa cells. In addition, annexin A10 relocates to dark perinucleolar caps upon transcriptional inhibition of RNA polymerase II. We mapped the cap-binding function of annexin A10 to the proximal part of the core domain, which is missing in the short isoform of annexin A10, and show its independence from the remaining functional type II Ca2+-binding site. In contrast to this, paraspeckle recruitment required additional core regions and was negatively affected by the mutation of the last type II Ca2+-binding site. Additionally, we show that overexpression of annexin A10 in HeLa cells increases their sensitivity to apoptosis and reduces colony formation. The identification of unique nuclear and biochemical characteristics of annexin A10 points towards its membrane-independent role in paraspeckle-associated mRNA regulation or processing.


Paraspeckles Nucleolar caps Annexin A10 Apoptosis 



We thank Annette Janning for technical assistance. Rabbit polyclonal anti-annexin A10 antibody was generously provided by Reginald Morgan (Department of Biochemistry and Molecular Biology, University of Oviedo, Spain). This work was supported by grants from the Interdisciplinary Clinical Research Centre of the University of Münster (IZKF, RE2/017/10) and the German Research Foundation (DFG, RE2611/2-1, SFB 629/A1) to V.G. and U.R.

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

18_2013_1375_MOESM1_ESM.doc (24 kb)
Supplementary material 1 (DOC 24 kb)
18_2013_1375_MOESM2_ESM.avi (1.4 mb)
Supplementary material 2 (AVI 1420 kb)
18_2013_1375_MOESM3_ESM.tif (11.8 mb)
Supplementary material 3 (TIFF 12087 kb)
18_2013_1375_MOESM4_ESM.tif (1.1 mb)
Supplementary material 4 (TIFF 1151 kb)
18_2013_1375_MOESM5_ESM.tif (6.9 mb)
Supplementary material 5 (TIFF 7018 kb)
18_2013_1375_MOESM6_ESM.tif (11.4 mb)
Supplementary material 6 (TIFF 11688 kb)


  1. 1.
    Barwise JL, Walker JH (1996) Subcellular localization of annexin V in human foreskin fibroblasts: nuclear localization depends on growth state. FEBS Lett 394:213–216PubMedCrossRefGoogle Scholar
  2. 2.
    Chen LL, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35:467–478PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Chen LL, Carmichael GG (2008) Gene regulation by SINES and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle 7:3294–3301PubMedCrossRefGoogle Scholar
  4. 4.
    Clapham DE (2007) Calcium signaling. Cell 131:1047–1058PubMedCrossRefGoogle Scholar
  5. 5.
    Clark J, Lu YJ, Sidhar SK, Parker C, Gill S, Smedley D, Hamoudi R, Linehan WM, Shipley J, Cooper CS (1997) Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 15:2233–2239PubMedCrossRefGoogle Scholar
  6. 6.
    Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Dye BT, Patton JG (2001) An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles. Exp Cell Res 263:131–144PubMedCrossRefGoogle Scholar
  8. 8.
    Eberhard DA, Karns LR, VandenBerg SR, Creutz CE (2001) Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11 binding. J Cell Sci 114:3155–3166PubMedGoogle Scholar
  9. 9.
    Farnaes L, Ditzel HJ (2003) Dissecting the cellular functions of annexin XI using recombinant human annexin XI-specific autoantibodies cloned by phage display. J Biol Chem 278:33120–33126PubMedCrossRefGoogle Scholar
  10. 10.
    Filipenko NR, Waisman DM (2001) The C terminus of annexin II mediates binding to F-actin. J Biol Chem 276:5310–5315PubMedCrossRefGoogle Scholar
  11. 11.
    Fox AH, Bond CS, Lamond AI (2005) P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol Biol Cell 16:5304–5315PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Fox AH, Lam YW, Leung AK, Lyon CE, Andersen J, Mann M, Lamond AI (2002) Paraspeckles: a novel nuclear domain. Curr Biol 12:13–25PubMedCrossRefGoogle Scholar
  13. 13.
    Fox AH, Lamond AI (2010) Paraspeckles. Cold Spring Harb Perspect Biol 2:a000687PubMedGoogle Scholar
  14. 14.
    Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461PubMedCrossRefGoogle Scholar
  15. 15.
    Goebeler V, Ruhe D, Gerke V, Rescher U (2006) Annexin A8 displays unique phospholipid and F-actin binding properties. FEBS Lett 580:2430–2434PubMedCrossRefGoogle Scholar
  16. 16.
    Goebeler V, Ruhe D, Gerke V, Rescher U (2003) Atypical properties displayed by annexin A9, a novel member of the annexin family of Ca2+ and lipid binding proteins. FEBS Lett 546:359–364PubMedCrossRefGoogle Scholar
  17. 17.
    Han EK, Tahir SK, Cherian SP, Collins N, Ng SC (2000) Modulation of paclitaxel resistance by annexin IV in human cancer cell lines. Br J Cancer 83:83–88PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Harder T, Kellner R, Parton RG, Gruenberg J (1997) Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol Biol Cell 8:533–545PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Hayes MJ, Merrifield CJ, Shao D, Ayala-Sanmartin J, Schorey CD, Levine TP, Proust J, Curran J, Bailly M, Moss SE (2004) Annexin 2 binding to phosphatidylinositol 4,5-bisphosphate on endocytic vesicles is regulated by the stress response pathway. J Biol Chem 279:14157–14164PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Hayes MJ, Rescher U, Gerke V, Moss SE (2004) Annexin-actin interactions. Traffic 5:571–576PubMedCrossRefGoogle Scholar
  21. 21.
    Hirata A, Hirata F (2002) DNA chain unwinding and annealing reactions of lipocortin (annexin) I heterotetramer: regulation by Ca2+ and Mg2+. Biochem Biophys Res Commun 291:205–209PubMedCrossRefGoogle Scholar
  22. 22.
    Hirata A, Hirata F (1999) Lipocortin (Annexin) I heterotetramer binds to purine RNA and pyrimidine DNA. Biochem Biophys Res Commun 265:200–204PubMedCrossRefGoogle Scholar
  23. 23.
    Jones PG, Moore GJ, Waisman DM (1992) A nonapeptide to the putative F-actin binding site of annexin-II tetramer inhibits its calcium-dependent activation of actin filament bundling. J Biol Chem 267:13993–13997PubMedGoogle Scholar
  24. 24.
    Jost M, Thiel C, Weber K, Gerke V (1992) Mapping of three unique Ca2+-binding sites in human annexin II. Eur J Biochem 207:923–930PubMedCrossRefGoogle Scholar
  25. 25.
    Jost M, Weber K, Gerke V (1994) Annexin II contains two types of Ca2+-binding sites. Biochem J 298(Pt 3):553–559PubMedGoogle Scholar
  26. 26.
    Kim J, Kim MA, Jee CD, Jung EJ, Kim WH (2009) Reduced expression and homozygous deletion of annexin A10 in gastric carcinoma. Int J Cancer 125:1842–1850PubMedCrossRefGoogle Scholar
  27. 27.
    Kim JK, Kim PJ, Jung KH, Noh JH, Eun JW, Bae HJ, Xie HJ, Shan JM, Ping WY, Park WS, Lee JY, Nam SW (2010) Decreased expression of annexin A10 in gastric cancer and its overexpression in tumor cell growth suppression. Oncol Rep 24:607–612PubMedGoogle Scholar
  28. 28.
    Lindell TJ, Weinberg F, Morris PW, Roeder RG, Rutter WJ (1970) Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science 170:447–449PubMedCrossRefGoogle Scholar
  29. 29.
    Liu J, Rothermund CA, Ayala-Sanmartin J, Vishwanatha JK (2003) Nuclear annexin II negatively regulates growth of LNCaP cells and substitution of ser 11 and 25 to glu prevents nucleo-cytoplasmic shuttling of annexin II. BMC Biochem 4:10–25PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Liu SH, Lin CY, Peng SY, Jeng YM, Pan HW, Lai PL, Liu CL, Hsu HC (2002) Down-regulation of annexin A10 in hepatocellular carcinoma is associated with vascular invasion, early recurrence, and poor prognosis in synergy with p53 mutation. Am J Pathol 160:1831–1837PubMedCrossRefGoogle Scholar
  31. 31.
    Lopez-Pedrera C, Villalba JM, Siendones E, Barbarroja N, Gomez-Diaz C, Rodriguez-Ariza A, Buendia P, Torres A, Velasco F (2006) Proteomic analysis of acute myeloid leukemia: identification of potential early biomarkers and therapeutic targets. Proteomics 6(Suppl 1):S293–S299PubMedCrossRefGoogle Scholar
  32. 32.
    Lu SH, Chen YL, Shun CT, Lai JN, Peng SY, Lai PL, Hsu HC (2011) Expression and prognostic significance of gastric-specific annexin A10 in diffuse- and intestinal-type gastric carcinoma. J Gastroenterol Hepatol 26:90–97PubMedCrossRefGoogle Scholar
  33. 33.
    Meng LX, Li Q, Xue YJ, Guo RD, Zhang YQ, Song XY (2007) Identification of gastric cancer-related genes by multiple high throughput analysis and data mining. Zhonghua Wei Chang Wai Ke Za Zhi 10:169–172PubMedGoogle Scholar
  34. 34.
    Mickleburgh I, Burtle B, Hollas H, Campbell G, Chrzanowska-Lightowlers Z, Vedeler A, Hesketh J (2005) Annexin A2 binds to the localization signal in the 3′ untranslated region of c-myc mRNA. FEBS J 272:413–421PubMedCrossRefGoogle Scholar
  35. 35.
    Morgan RO, Jenkins NA, Gilbert DJ, Copeland NG, Balsara BR, Testa JR, Fernandez MP (1999) Novel human and mouse annexin A10 are linked to the genome duplications during early chordate evolution. Genomics 60:40–49PubMedCrossRefGoogle Scholar
  36. 36.
    Munksgaard PP, Mansilla F, Brems Eskildsen AS, Fristrup N, Birkenkamp-Demtroder K, Ulhoi BP, Borre M, Agerbaek M, Hermann GG, Orntoft TF, Dyrskjot L (2011) Low ANXA10 expression is associated with disease aggressiveness in bladder cancer. Br J Cancer 105:1379–1387PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T (2012) Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J 31:4020–4034PubMedCrossRefGoogle Scholar
  38. 38.
    Nakagawa S, Hirose T (2012) Paraspeckle nuclear bodies-useful uselessness? Cell Mol Life Sci 69:3027–3036PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Nelson MR, Creutz CE (1995) Comparison of the expression of native and mutant bovine annexin IV in Escherichia coli using four different expression systems. Protein Expr Purif 6:132–140PubMedCrossRefGoogle Scholar
  40. 40.
    Notari M, Neviani P, Santhanam R, Blaser BW, Chang JS, Galietta A, Willis AE, Roy DC, Caligiuri MA, Marcucci G, Perrotti D (2006) A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation. Blood 107:2507–2516PubMedCrossRefGoogle Scholar
  41. 41.
    Oliver FJ, de la Rubia G, Rolli V, Ruiz–Ruiz MC, de Murcia G, Murcia JM (1998) Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem 273:33533–33539PubMedCrossRefGoogle Scholar
  42. 42.
    Passon DM, Lee M, Rackham O, Stanley WA, Sadowska A, Filipovska A, Fox AH, Bond CS (2012) Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc Natl Acad Sci USA 109:4846–4850PubMedCrossRefGoogle Scholar
  43. 43.
    Patsos G, Germann A, Gebert J, Dihlmann S (2010) Restoration of absent in melanoma 2 (AIM2) induces G2/M cell cycle arrest and promotes invasion of colorectal cancer cells. Int J Cancer 126:1838–1849PubMedGoogle Scholar
  44. 44.
    Peng SY, Ou YH, Chen WJ, Li HY, Liu SH, Pan HW, Lai PL, Jeng YM, Chen DC, Hsu HC (2005) Aberrant expressions of annexin A10 short isoform, osteopontin and alpha-fetoprotein at chromosome 4q cooperatively contribute to progression and poor prognosis of hepatocellular carcinoma. Int J Oncol 26:1053–1061PubMedGoogle Scholar
  45. 45.
    Pordzik S, Petrovici K, Schmid C, Kroell T, Schweiger C, Kohne CH, Schmetzer H (2011) Expression and prognostic value of FAS receptor/FAS ligand and TrailR1/TrailR2 in acute myeloid leukemia. Hematology 16:341–350PubMedCrossRefGoogle Scholar
  46. 46.
    Prasanth KV, Prasanth SG, Xuan Z, Hearn S, Freier SM, Bennett CF, Zhang MQ, Spector DL (2005) Regulating gene expression through RNA nuclear retention. Cell 123:249–263PubMedCrossRefGoogle Scholar
  47. 47.
    Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1197:63–93PubMedCrossRefGoogle Scholar
  48. 48.
    Raynal P, van Bergen en Henegouwen PM, Hullin F, Ragab-Thomas JM, Fauvel J, Verkleij A and Chap H (1992) Morphological and biochemical evidence for partial nuclear localization of annexin 1 in endothelial cells. Biochem Biophys Res Commun 186:432-439Google Scholar
  49. 49.
    Rescher U, Zobiack N, Gerke V (2000) Intact Ca2+-binding sites are required for targeting of annexin 1 to endosomal membranes in living HeLa cells. J Cell Sci 113:3931–3938PubMedGoogle Scholar
  50. 50.
    Reynolds RC, Montgomery PO, Hughes B (1964) Nucleolar “caps” produced by actinomycin D. Cancer Res 24:1269–1277PubMedGoogle Scholar
  51. 51.
    Rick M, Ramos Garrido SI, Herr C, Thal DR, Noegel AA, Clemen CS (2005) Nuclear localization of Annexin A7 during murine brain development. BMC Neurosci 6:25–38PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Sacre SM, Moss SE (2002) Intracellular localization of endothelial cell annexins is differentially regulated by oxidative stress. Exp Cell Res 274:254–263PubMedCrossRefGoogle Scholar
  53. 53.
    Sasaki YT, Ideue T, Sano M, Mituyama T, Hirose T (2009) MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA 106:2525–2530PubMedCrossRefGoogle Scholar
  54. 54.
    Schiffner S, Zimara N, Schmid R, Bosserhoff AK (2011) P54nrb is a new regulator of progression of malignant melanoma. Carcinogenesis 32:1176–1182PubMedCrossRefGoogle Scholar
  55. 55.
    Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16:2395–2413PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Sui Y, Yang Z, Xiong S, Zhang L, Blanchard KL, Peiper SC, Dynan WS, Tuan D, Ko L (2007) Gene amplification and associated loss of 5′ regulatory sequences of CoAA in human cancers. Oncogene 26:822–835PubMedCrossRefGoogle Scholar
  57. 57.
    Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87:2466–2470PubMedCrossRefGoogle Scholar
  58. 58.
    Thiel C, Weber K, Gerke V (1991) Characterization of a Ca2+-binding site in human annexin II by site-directed mutagenesis. J Biol Chem 266:14732–14739PubMedGoogle Scholar
  59. 59.
    Tzima E, Trotter PJ, Orchard MA, Walker JH (2000) Annexin V relocates to the platelet cytoskeleton upon activation and binds to a specific isoform of actin. Eur J Biochem 267:4720–4730PubMedCrossRefGoogle Scholar
  60. 60.
    Tzima E, Trotter PJ, Orchard MA, Walker JH (1999) Annexin V binds to the actin-based cytoskeleton at the plasma membrane of activated platelets. Exp Cell Res 251:185–193PubMedCrossRefGoogle Scholar
  61. 61.
    Xu Y, Man X, Lv Z, Li D, Sun Z, Chen H, Wang Z, Luo Y, Xu H (2012) Loss of heterozygosity at chromosomes 1p35-pter, 4q, and 18q and protein expression differences between adenocarcinomas of the distal stomach and gastric cardia. Hum Pathol 43:2308–2317PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang Z, Carmichael GG (2001) The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106:465–475PubMedCrossRefGoogle Scholar
  63. 63.
    Zhu F, Xu C, Jiang Z, Jin M, Wang L, Zeng S, Teng L, Cao J (2010) Nuclear localization of annexin A1 correlates with advanced disease and peritoneal dissemination in patients with gastric carcinoma. Anat Rec (Hoboken) 293:1310–1314CrossRefGoogle Scholar
  64. 64.
    Zobiack N, Gerke V, Rescher U (2001) Complex formation and submembranous localization of annexin 2 and S100A10 in live HepG2 cells. FEBS Lett 500:137–140PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Nina Quiskamp
    • 1
  • Michaela Poeter
    • 1
  • Carsten Alexander Raabe
    • 2
  • Ulli Martin Hohenester
    • 3
  • Simone König
    • 3
  • Volker Gerke
    • 1
  • Ursula Rescher
    • 1
    Email author
  1. 1.Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research CentreUniversity of MünsterMünsterGermany
  2. 2.Institute of Experimental Pathology, Centre for Molecular Biology of InflammationUniversity of MünsterMünsterGermany
  3. 3.Integrated Functional Genomics, Interdisciplinary Centre for Clinical ResearchUniversity of MünsterMünsterGermany

Personalised recommendations