Cellular and Molecular Life Sciences

, Volume 70, Issue 19, pp 3709–3722 | Cite as

Paleoproteomic study of the Iceman’s brain tissue

  • Frank Maixner
  • Thorsten Overath
  • Dennis Linke
  • Marek Janko
  • Gea Guerriero
  • Bart H. J. van den Berg
  • Bjoern Stade
  • Petra Leidinger
  • Christina Backes
  • Marta Jaremek
  • Benny Kneissl
  • Benjamin Meder
  • Andre Franke
  • Eduard Egarter-Vigl
  • Eckart Meese
  • Andreas Schwarz
  • Andreas Tholey
  • Albert Zink
  • Andreas Keller
Research Article


The Tyrolean Iceman, a Copper-age ice mummy, is one of the best-studied human individuals. While the genome of the Iceman has largely been decoded, tissue-specific proteomes have not yet been investigated. We studied the proteome of two distinct brain samples using gel-based and liquid chromatography–mass spectrometry-based proteomics technologies together with a multiple-databases and -search algorithms-driven data-analysis approach. Thereby, we identified a total of 502 different proteins. Of these, 41 proteins are known to be highly abundant in brain tissue and 9 are even specifically expressed in the brain. Furthermore, we found 10 proteins related to blood and coagulation. An enrichment analysis revealed a significant accumulation of proteins related to stress response and wound healing. Together with atomic force microscope scans, indicating clustered blood cells, our data reopens former discussions about a possible injury of the Iceman’s head near the site where the tissue samples have been extracted.


Tyrolean Iceman Mummy Neolithic Paleoproteomics Mass spectrometry Brain proteome Ancient proteins 



The work was supported in part by the SüdtirolerSparkasse. F.M., G.G. and A.Z. were supported by the law 14 grant of the province Bolzano, South Tyrol, Italy. A.T., T.O. and D.L. were supported by the Cluster of Excellence “Inflammation at Interfaces”. B.V.D.B. was supported by the SFB877-project Z2.

Conflict of interest

A.K. and M.J. are affiliates of Siemens Healthcare, Erlangen, Germany.

Supplementary material

18_2013_1360_MOESM1_ESM.docx (46 mb)
Supplementary material 4 (DOCX 47078 kb)
18_2013_1360_MOESM2_ESM.xlsx (72 kb)
Supplementary material 1 An overview of the proteins identified in-solution and in-gel for both samples, 1024 and 1025, respectively. (XLSX 71 kb)
18_2013_1360_MOESM3_ESM.xlsx (63 kb)
Supplementary material 2 The significant pathways for functional modelling (KEGG and gene ontologies) after adjusting with the Benjamini–Hochberg approach. (XLSX 63 kb)
18_2013_1360_MOESM4_ESM.xlsx (1.9 mb)
Supplementary material 3 A multi-tab table file with information regarding protein identification by the four search engines applied (Mascot, SEQUEST, OMSSA and X!Tandem) either (1) with specification of a protease (Trypsin) or (2) without specification of a protease (“No Enzyme”), respectively. For the in-solution analyses, the identified proteins are listed regarding the number of matches by the four search engines. For the samples analyzed after gel separation, the information about protein identification is linked to the position in the gel, (1) for each of the four search engines (non-merged data) and (2) after merging the data into a form representing a picture of the gel. (XLSX 1966 kb)


  1. 1.
    Lippert A, Gostner P, Egarter Vigl E, Pernter P (2007) Vom Leben und Sterben des Ötztaler Gletschermannes. Neue medizinische und archäologische Erkenntnisse. Germania 85:1–21Google Scholar
  2. 2.
    Spindler K (1994) The man in the ice. Weidenfeld and Nicolson, LondonGoogle Scholar
  3. 3.
    Lynnerup N (2007) Mummies. Am J Phys Anthropol 45:162–190. doi: 10.1002/ajpa.20728 PubMedCrossRefGoogle Scholar
  4. 4.
    Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, Leidinger P, Backes C, Khairat R, Forster M, Stade B, Franke A, Mayer J, Spangler J, McLaughlin S, Shah M, Lee C, Harkins TT, Sartori A, Moreno-Estrada A, Henn B, Sikora M, Semino O, Chiaroni J, Rootsi S, Myres NM, Cabrera VM, Underhill PA, Bustamante CD, Vigl EE, Samadelli M, Cipollini G, Haas J, Katus H, O’Connor BD, Carlson MR, Meder B, Blin N, Meese E, Pusch CM, Zink A (2012) New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat Commun 3:698. doi: 10.1038/ncomms1701 PubMedCrossRefGoogle Scholar
  5. 5.
    Aufderheide AC (2003) The Scientific Study of Mummies. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Tykot RH (2004) Stable isotopes and diet: you are what you eat. In: Martini M, Milazzo M, Piacentini M Physics methods in archaeometry Proceedings of the International School of Physics “Enrico Fermi”. Societá Italiana di Fisica, Bologna, pp 433–444Google Scholar
  7. 7.
    Ungar PS, Sponheimer M (2011) The diets of early hominins. Science 334(6053):190–193. doi: 10.1126/science.1207701 PubMedCrossRefGoogle Scholar
  8. 8.
    Barraco RA (1978) Preservation of proteins in mummified tissues. Am J Phys Anthropol 48(4):487–491. doi: 10.1002/ajpa.1330480407 PubMedCrossRefGoogle Scholar
  9. 9.
    Schmidt-Schultz TH, Schultz M (2004) Bone protects proteins over thousands of years: extraction, analysis, and interpretation of extracellular matrix proteins in archeological skeletal remains. Am J Phys Anthropol 123(1):30–39. doi: 10.1002/ajpa.10308 PubMedCrossRefGoogle Scholar
  10. 10.
    Ferrer I, Santpere G, Arzberger T, Bell J, Blanco R, Boluda S, Budka H, Carmona M, Giaccone G, Krebs B, Limido L, Parchi P, Puig B, Strammiello R, Strobel T, Kretzschmar H (2007) Brain protein preservation largely depends on the post-mortem storage temperature: implications for study of proteins in human neurologic diseases and management of brain banks: a BrainNet Europe Study. J Neuropathol Exp Neurol 66(1):35–46. doi: 10.1097/nen.0b013e31802c3e7d PubMedCrossRefGoogle Scholar
  11. 11.
    Vass AA, Barshick SA, Sega G, Caton J, Skeen JT, Love JC, Synstelien JA (2002) Decomposition chemistry of human remains: a new methodology for determining the post-mortem interval. J Forensic Sci 47(3):542–553PubMedGoogle Scholar
  12. 12.
    Paczkowski S, Schutz S (2011) Post-mortem volatiles of vertebrate tissue. Appl Microbiol Biotechnol 91(4):917–935. doi: 10.1007/s00253-011-3417-x PubMedCrossRefGoogle Scholar
  13. 13.
    Tuross N (1991) Recovery of bone and serum proteins from human skeletal tissue: IgG, osteonectin and albumin. In: Ortner DJ, Aufderheide AD (eds) Human paleopathology: current syntheses and future opinions. Smithsonian Institution, Washington, pp 51–54Google Scholar
  14. 14.
    Nielsen-Marsh CM, Ostrom PH, Gandhi H, Shapiro B, Cooper A, Hauschka PV, Collins M (2002) Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka. Geology 30(12):1099–1102CrossRefGoogle Scholar
  15. 15.
    Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC (2007) Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316(5822):280–285. doi: 10.1126/science.1137614 PubMedCrossRefGoogle Scholar
  16. 16.
    Schweitzer MH, Zheng W, Organ CL, Avci R, Suo Z, Freimark LM, Lebleu VS, Duncan MB, Vander Heiden MG, Neveu JM, Lane WS, Cottrell JS, Horner JR, Cantley LC, Kalluri R, Asara JM (2009) Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 324 (5927):626–631. doi: 10.1126/science.1165069 Google Scholar
  17. 17.
    Buckley M, Collins M, Thomas-Oates J, Wilson JC (2009) Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 23(23):3843–3854. doi: 10.1002/rcm.4316 PubMedCrossRefGoogle Scholar
  18. 18.
    Hollemeyer K, Altmeyer W, Heinzle E, Pitra C (2008) Species identification of Oetzi’s clothing with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on peptide pattern similarities of hair digests. Rapid Commun Mass Spectrom 22(18):2751–2767. doi: 10.1002/rcm.3679 PubMedCrossRefGoogle Scholar
  19. 19.
    Tran TN, Aboudharam G, Gardeisen A, Davoust B, Bocquet-Appel JP, Flaudrops C, Belghazi M, Raoult D, Drancourt M (2011) Classification of ancient mammal individuals using dental pulp MALDI-TOF MS peptide profiling. PLoS ONE 6(2):e17319. doi: 10.1371/journal.pone.0017319 PubMedCrossRefGoogle Scholar
  20. 20.
    Nielsen-Marsh CM, Richards MP, Hauschka PV, Thomas-Oates JE, Trinkaus E, Pettitt PB, Karavanic I, Poinar H, Collins MJ (2005) Osteocalcin protein sequences of Neanderthals and modern primates. Proc Natl Acad Sci USA 102(12):4409–4413. doi: 10.1073/pnas.0500450102 PubMedCrossRefGoogle Scholar
  21. 21.
    Solazzo C, Fitzhugh WW, Rolando C, Tokarski C (2008) Identification of protein remains in archaeological potsherds by proteomics. Anal Chem 80(12):4590–4597. doi: 10.1021/ac800515v PubMedCrossRefGoogle Scholar
  22. 22.
    Cappellini E, Gilbert MT, Geuna F, Fiorentino G, Hall A, Thomas-Oates J, Ashton PD, Ashford DA, Arthur P, Campos PF, Kool J, Willerslev E, Collins MJ (2010) A multidisciplinary study of archaeological grape seeds. Naturwissenschaften 97(2):205–217. doi: 10.1007/s00114-009-0629-3 PubMedCrossRefGoogle Scholar
  23. 23.
    Cappellini E, Jensen LJ, Szklarczyk D, Ginolhac A, da Fonseca RA, Stafford TW, Holen SR, Collins MJ, Orlando L, Willerslev E, Gilbert MT, Olsen JV (2012) Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J Proteome Res 11(2):917–926. doi: 10.1021/pr200721u PubMedCrossRefGoogle Scholar
  24. 24.
    Wang H, Qian WJ, Mottaz HM, Clauss TR, Anderson DJ, Moore RJ, Camp DG 2nd, Khan AH, Sforza DM, Pallavicini M, Smith DJ, Smith RD (2005) Development and evaluation of a micro- and nanoscale proteomic sample preparation method. J Proteome Res 4(6):2397–2403. doi: 10.1021/pr050160f PubMedCrossRefGoogle Scholar
  25. 25.
    Melchior K, Tholey A, Heisel S, Keller A, Lenhof HP, Meese E, Huber CG (2009) Proteomic study of human glioblastoma multiforme tissue employing complementary two-dimensional liquid chromatography- and mass spectrometry-based approaches. J Proteome Res 8(10):4604–4614. doi: 10.1021/pr900420b PubMedCrossRefGoogle Scholar
  26. 26.
    Leo G, Bonaduce I, Andreotti A, Marino G, Pucci P, Colombini MP, Birolo L (2011) Deamidation at asparagine and glutamine as a major modification upon deterioration/aging of proteinaceous binders in mural paintings. Anal Chem 83(6):2056–2064. doi: 10.1021/ac1027275 PubMedCrossRefGoogle Scholar
  27. 27.
    Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, Elnakady YA, Muller R, Meese E, Lenhof HP (2007) GeneTrail–advanced gene set enrichment analysis. Nucleic Acids Res 35 (Web Server issue):W186–W192. doi: 10.1093/nar/gkm323
  28. 28.
    Kapp EA, Schutz F, Connolly LM, Chakel JA, Meza JE, Miller CA, Fenyo D, Eng JK, Adkins JN, Omenn GS, Simpson RJ (2005) An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 5(13):3475–3490. doi: 10.1002/pmic.200500126 PubMedCrossRefGoogle Scholar
  29. 29.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  30. 30.
    Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39 (Database issue):D561–D568. doi: 10.1093/nar/gkq973
  31. 31.
    O’Reilly M, McDonnell L, O’Mullane J (2001) Quantification of red blood cells using atomic force microscopy. Ultramicroscopy 86(1–2):107–112. doi: S0304-3991(00)00081-4 PubMedCrossRefGoogle Scholar
  32. 32.
    Janko M, Stark RW, Zink A (2012) Preservation of 5300 year old red blood cells in the Iceman. J R Soc Interface. doi: 10.1098/rsif.2012.0174 PubMedGoogle Scholar
  33. 33.
    Wolberg AS (2007) Thrombin generation and fibrin clot structure. Blood Rev 21(3):131–142. doi: 10.1016/j.blre.2006.11.001 PubMedCrossRefGoogle Scholar
  34. 34.
    Papageorgopoulou C, Rentsch K, Raghavan M, Hofmann MI, Colacicco G, Gallien V, Bianucci R, Ruhli F (2010) Preservation of cell structures in a medieval infant brain: a paleohistological, paleogenetic, radiological and physico-chemical study. Neuroimage 50(3):893–901. doi: 10.1016/j.neuroimage.2010.01.029 PubMedCrossRefGoogle Scholar
  35. 35.
    Peck WH (1980) Mummies of ancient Egypt. In: Cockburn A, Cockburn E (eds), Mummies diseases and ancient cultures. Cambridge University Press, Cambridge, pp 11–70Google Scholar
  36. 36.
    Aufderheide AC (2011) Soft tissue taphonomy: a paleopathology perspective. Int J Paleopathol 1:75–80CrossRefGoogle Scholar
  37. 37.
    Fulda S, Gorman AM, Hori O, Samali A (2011) Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010:214074. doi: 10.1155/2010/214074 Google Scholar
  38. 38.
    Melchior K, Tholey A, Heisel S, Keller A, Lenhof HP, Meese E, Huber CG (2010) Protein- versus peptide fractionation in the first dimension of two-dimensional high-performance liquid chromatography-matrix-assisted laser desorption/ionization tandem mass spectrometry for qualitative proteome analysis of tissue samples. J Chromatogr A 1217(40):6159–6168. doi: 10.1016/j.chroma.2010.07.044 PubMedCrossRefGoogle Scholar
  39. 39.
    Vaudel M, Barsnes H, Berven FS, Sickmann A, Martens L (2011) SearchGUI: an open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11(5):996–999. doi: 10.1002/pmic.201000595 PubMedCrossRefGoogle Scholar
  40. 40.
    Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006. doi: 10.1101/gr.229102 PubMedGoogle Scholar
  41. 41.
    Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR, Giardine BM, Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM, Learned K, Li CH, Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE, Haussler D, Kent WJ (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Res 39 (Database issue): D876–D882. doi: 10.1093/nar/gkq963
  42. 42.
    Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, Searle S, Farrell CM, Loveland JE, Ruef BJ, Hart E, Suner MM, Landrum MJ, Aken B, Ayling S, Baertsch R, Fernandez-Banet J, Cherry JL, Curwen V, Dicuccio M, Kellis M, Lee J, Lin MF, Schuster M, Shkeda A, Amid C, Brown G, Dukhanina O, Frankish A, Hart J, Maidak BL, Mudge J, Murphy MR, Murphy T, Rajan J, Rajput B, Riddick LD, Snow C, Steward C, Webb D, Weber JA, Wilming L, Wu W, Birney E, Haussler D, Hubbard T, Ostell J, Durbin R, Lipman D (2009) The consensus coding sequence (CCDS) project: identifying a common protein-coding gene set for the human and mouse genomes. Genome Res 19(7):1316–1323. doi: 10.1101/gr.080531.108 PubMedCrossRefGoogle Scholar
  43. 43.
    Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, Haussler D (2006) The UCSC Known Genes. Bioinformatics 22(9):1036–1046. doi: 10.1093/bioinformatics/btl048 PubMedCrossRefGoogle Scholar
  44. 44.
    Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40 (Database issue):D290–D301. doi: 10.1093/nar/gkr1065
  45. 45.
    Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34 (Database issue):D354–D357. doi: 10.1093/nar/gkj102
  46. 46.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. doi: 10.1038/75556 PubMedCrossRefGoogle Scholar
  47. 47.
    Hildebrandt A, Katharina A, D, Rurainski A, Bertsch A, Schumann M, Toussaint N, C, Moll C, Stockel D, Nickels S, Mueller S, C, Lenhof H-P, Kohlbacher O (2010) BALL—Biochemical Algorithms Library 1.3. BMC Bioinformatics 11:531Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Frank Maixner
    • 1
  • Thorsten Overath
    • 2
  • Dennis Linke
    • 2
  • Marek Janko
    • 3
  • Gea Guerriero
    • 4
  • Bart H. J. van den Berg
    • 2
  • Bjoern Stade
    • 5
  • Petra Leidinger
    • 6
  • Christina Backes
    • 6
  • Marta Jaremek
    • 7
  • Benny Kneissl
    • 8
  • Benjamin Meder
    • 9
  • Andre Franke
    • 5
  • Eduard Egarter-Vigl
    • 10
  • Eckart Meese
    • 6
  • Andreas Schwarz
    • 11
  • Andreas Tholey
    • 2
  • Albert Zink
    • 1
  • Andreas Keller
    • 6
    • 7
  1. 1.Institute for Mummies and the IcemanEURAC researchBolzanoItaly
  2. 2.Division for Systematic Proteome Research, Institute for Experimental MedicineChristian-Albrechts-Universität KielKielGermany
  3. 3.Center of Smart InterfacesTU DarmstadtDarmstadtGermany
  4. 4.Department Environment and Agro-biotechnologies (EVA)Centre de Recherche Public-Gabriel LippmannBelvauxLuxembourg
  5. 5.Institute of Clinical Molecular BiologyChristian-Albrechts-Universität KielKielGermany
  6. 6.Department of Human GeneticsSaarland UniversityHomburgGermany
  7. 7.Siemens HealthcareErlangenGermany
  8. 8.Software Engineering and BioinformaticsJohannes Gutenberg-University of MainzMainzGermany
  9. 9.Department of Internal Medicine IIIUniversity of HeidelbergHeidelbergGermany
  10. 10.Department of Pathological Anatomy and HistologyGeneral Hospital BolzanoBolzanoItaly
  11. 11.Department of NeurosurgeryGeneral Hospital BolzanoBolzanoItaly

Personalised recommendations