Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 22, pp 4243–4253 | Cite as

Fibronectin in tissue regeneration: timely disassembly of the scaffold is necessary to complete the build

  • Josephine M. J. Stoffels
  • Chao Zhao
  • Wia Baron
Review

Abstract

Tissue injury initiates extracellular matrix molecule expression, including fibronectin production by local cells and fibronectin leakage from plasma. To benefit tissue regeneration, fibronectin promotes opsonization of tissue debris, migration, proliferation, and contraction of cells involved in the healing process, as well as angiogenesis. When regeneration proceeds, the fibronectin matrix is fully degraded. However, in a diseased environment, fibronectin clearance is often disturbed, allowing structural variants to persist and contribute to disease progression and failure of regeneration. Here, we discuss first how fibronectin helps tissue regeneration, with a focus on normal cutaneous wound healing as an example of complete tissue recovery. Then, we continue to argue that, although the fibronectin matrix generated following cartilage and central nervous system white matter (myelin) injury initially benefits regeneration, fibronectin clearance is incomplete in chronic wounds (skin), osteoarthritis (cartilage), and multiple sclerosis (myelin). Fibronectin fragments or aggregates persist, which impair tissue regeneration. The similarities in fibronectin-mediated mechanisms of frustrated regeneration indicate that complete fibronectin clearance is a prerequisite for recovery in any tissue. Also, they provide common targets for developing therapeutic strategies in regenerative medicine.

Keywords

Fibronectin Wound healing Osteoarthritis Multiple sclerosis Tissue regeneration 

Notes

Acknowledgments

Work in the Baron Laboratory is supported by grants from the Netherlands Foundation for the Support of MS Research (Stichting MS Research), and the Netherlands Organization of Scientific Research NWO (VIDI and Aspasia).

References

  1. 1.
    Nishinarita S, Yamamoto M, Takizawa T, Hayakawa J, Karasaki M, Sawada S (1990) Increased plasma fibronectin in patients with systemic lupus erythematosus. Clin Rheumatol 9:214–219PubMedGoogle Scholar
  2. 2.
    Goos M, Lange P, Hanisch UK, Prinz M, Scheffel J, Bergmann R, Ebert S, Nau R (2007) Fibronectin is elevated in the cerebrospinal fluid of patients suffering from bacterial meningitis and enhances inflammation caused by bacterial products in primary mouse microglial cell cultures. J Neurochem 102:2049–2060PubMedGoogle Scholar
  3. 3.
    Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275:21785–21788PubMedGoogle Scholar
  4. 4.
    Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115:3861–3863PubMedGoogle Scholar
  5. 5.
    Mosher DF (1988) Fibronectin. Academic Press, Inc., San DiegoGoogle Scholar
  6. 6.
    George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091PubMedGoogle Scholar
  7. 7.
    Scanzello CR, Plaas A, Crow MK (2008) Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? Curr Opin Rheumatol 20:565–572PubMedGoogle Scholar
  8. 8.
    Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542PubMedGoogle Scholar
  9. 9.
    Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5:40–46PubMedGoogle Scholar
  10. 10.
    Baum CL, Arpey CJ (2005) Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg 31:674–686 (discussion: 686)PubMedGoogle Scholar
  11. 11.
    Clark RA (1988) Potential roles of fibronectin in cutaneous wound repair. Arch Dermatol 124:201–206PubMedGoogle Scholar
  12. 12.
    Colvin RB (1989) In: Mosher DF (ed) Fibronectin in wound healing. Academic Press, Inc., San Diego, pp 213–254Google Scholar
  13. 13.
    Midwood KS, Mao Y, Hsia HC, Valenick LV, Schwarzbauer JE (2006) Modulation of cell-fibronectin matrix interactions during tissue repair. J Investig Dermatol Symp Proc 11:73–78PubMedGoogle Scholar
  14. 14.
    Sakai T, Johnson KJ, Murozono M, Sakai K, Magnuson MA, Wieloch T, Cronberg T, Isshiki A, Erickson HP, Fassler R (2001) Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis. Nat Med 7:324–330PubMedGoogle Scholar
  15. 15.
    Ni H, Yuen PS, Papalia JM, Trevithick JE, Sakai T, Fassler R, Hynes RO, Wagner DD (2003) Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proc Natl Acad Sci USA 100:2415–2419PubMedGoogle Scholar
  16. 16.
    Brown LF, Dubin D, Lavigne L, Logan B, Dvorak HF, Van de Water L (1993) Macrophages and fibroblasts express embryonic fibronectins during cutaneous wound healing. Am J Pathol 142:793–801PubMedGoogle Scholar
  17. 17.
    Takamiya M, Kumagai R, Nakayashiki N, Aoki Y (2006) A study on mRNA expressions of fibronectin in dermal and cerebral wound healing for wound age estimation. Leg Med (Tokyo) 8:214–219Google Scholar
  18. 18.
    Miller DR, Mankin HJ, Shoji H, D’Ambrosia RD (1984) Identification of fibronectin in preparations of osteoarthritic human cartilage. Connect Tissue Res 12:267–275PubMedGoogle Scholar
  19. 19.
    Sobel RA, Mitchell ME (1989) Fibronectin in multiple sclerosis lesions. Am J Pathol 135:161–168PubMedGoogle Scholar
  20. 20.
    van Horssen J, Bo L, Vos CM, Virtanen I, de Vries HE (2005) Basement membrane proteins in multiple sclerosis-associated inflammatory cuffs: potential role in influx and transport of leukocytes. J Neuropathol Exp Neurol 64:722–729PubMedGoogle Scholar
  21. 21.
    Satoh JI, Tabunoki H, Yamamura T (2009) Molecular network of the comprehensive multiple sclerosis brain-lesion proteome. Mult Scler 15:531–541PubMedGoogle Scholar
  22. 22.
    Hibbits N, Yoshino J, Le TQ, Armstrong RC (2012) Astrogliosis during acute and chronic cuprizone demyelination and implications for remyelination. ASN Neuro 4(6):393–408. doi: 10.1042/AN20120062 PubMedGoogle Scholar
  23. 23.
    Stoffels JM, de Jonge JC, Stancic M, Nomden A, van Strien ME, Ma D, Siskova Z, Maier O, ffrench-Constant C, Franklin RJ, Hoekstra D, Zhao C, Baron W (2013) Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain 136:116–131PubMedGoogle Scholar
  24. 24.
    Chevalier X, Claudepierre P, Groult N, Zardi L, Hornebeck W (1996) Presence of ED-A containing fibronectin in human articular cartilage from patients with osteoarthritis and rheumatoid arthritis. J Rheumatol 23:1022–1030PubMedGoogle Scholar
  25. 25.
    Chevalier X, Groult N, Hornebeck W (1996) Increased expression of the Ed-B-containing fibronectin (an embryonic isoform of fibronectin) in human osteoarthritic cartilage. Br J Rheumatol 35:407–415PubMedGoogle Scholar
  26. 26.
    Clark RA (2001) Fibrin and wound healing. Ann NY Acad Sci 936:355–367PubMedGoogle Scholar
  27. 27.
    Clark RA, An JQ, Greiling D, Khan A, Schwarzbauer JE (2003) Fibroblast migration on fibronectin requires three distinct functional domains. J Invest Dermatol 121:695–705PubMedGoogle Scholar
  28. 28.
    Bielefeld KA, Amini-Nik S, Whetstone H, Poon R, Youn A, Wang J, Alman BA (2011) Fibronectin and beta-catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J Biol Chem 286:27687–27697PubMedGoogle Scholar
  29. 29.
    Singh P, Reimer CL, Peters JH, Stepp MA, Hynes RO, Van De Water L (2004) The spatial and temporal expression patterns of integrin alpha9beta1 and one of its ligands, the EIIIA segment of fibronectin, in cutaneous wound healing. J Invest Dermatol 123:1176–1181PubMedGoogle Scholar
  30. 30.
    Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142:873–881PubMedGoogle Scholar
  31. 31.
    Kohan M, Muro AF, White ES, Berkman N (2010) EDA-containing cellular fibronectin induces fibroblast differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2-dependent signaling. FASEB J 24:4503–4512PubMedGoogle Scholar
  32. 32.
    Muro AF, Chauhan AK, Gajovic S, Iaconcig A, Porro F, Stanta G, Baralle FE (2003) Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. J Cell Biol 162:149–160PubMedGoogle Scholar
  33. 33.
    Tan MH, Sun Z, Opitz SL, Schmidt TE, Peters JH, George EL (2004) Deletion of the alternatively spliced fibronectin EIIIA domain in mice reduces atherosclerosis. Blood 104:11–18PubMedGoogle Scholar
  34. 34.
    Fukuda T, Yoshida N, Kataoka Y, Manabe R, Mizuno-Horikawa Y, Sato M, Kuriyama K, Yasui N, Sekiguchi K (2002) Mice lacking the EDB segment of fibronectin develop normally but exhibit reduced cell growth and fibronectin matrix assembly in vitro. Cancer Res 62:5603–5610PubMedGoogle Scholar
  35. 35.
    Grinnell F, Ho CH, Wysocki A (1992) Degradation of fibronectin and vitronectin in chronic wound fluid: analysis by cell blotting, immunoblotting, and cell adhesion assays. J Invest Dermatol 98:410–416PubMedGoogle Scholar
  36. 36.
    Moor AN, Vachon DJ, Gould LJ (2009) Proteolytic activity in wound fluids and tissues derived from chronic venous leg ulcers. Wound Repair Regen 17:832–839PubMedGoogle Scholar
  37. 37.
    Falanga V (2004) The chronic wound: impaired healing and solutions in the context of wound bed preparation. Blood Cells Mol Dis 32:88–94PubMedGoogle Scholar
  38. 38.
    Widgerow AD (2013) Chronic wounds - is cellular “reception” at fault? Examining integrins and intracellular signalling. Int Wound J 10:185–192PubMedGoogle Scholar
  39. 39.
    Wachtfogel YT, Abrams W, Kucich U, Weinbaum G, Schapira M, Colman RW (1988) Fibronectin degradation products containing the cytoadhesive tetrapeptide stimulate human neutrophil degranulation. J Clin Invest 81:1310–1316PubMedGoogle Scholar
  40. 40.
    Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF 3rd (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276:10229–10233PubMedGoogle Scholar
  41. 41.
    Gondokaryono SP, Ushio H, Niyonsaba F, Hara M, Takenaka H, Jayawardana ST, Ikeda S, Okumura K, Ogawa H (2007) The extra domain A of fibronectin stimulates murine mast cells via Toll-like receptor 4. J Leukoc Biol 82:657–665PubMedGoogle Scholar
  42. 42.
    Loeser RF (2008) Molecular mechanisms of cartilage destruction in osteoarthritis. J Musculoskelet Neuronal Interact 8:303–306PubMedGoogle Scholar
  43. 43.
    Edmonds S (2009) Therapeutic targets for osteoarthritis. Maturitas 63:191–194PubMedGoogle Scholar
  44. 44.
    Bing DH, Almeda S, Isliker H, Lahav J, Hynes RO (1982) Fibronectin binds to the C1q component of complement. Proc Natl Acad Sci USA 79:4198–4201PubMedGoogle Scholar
  45. 45.
    Carsons SE, Schwartzman S, Diamond HS, Berkowitz E (1988) Interaction between fibronectin and C1q in rheumatoid synovial fluid and normal plasma. Clin Exp Immunol 72:37–42PubMedGoogle Scholar
  46. 46.
    Lasarte JJ, Casares N, Gorraiz M, Hervas-Stubbs S, Arribillaga L, Mansilla C, Durantez M, Llopiz D, Sarobe P, Borras-Cuesta F, Prieto J, Leclerc C (2007) The extra domain A from fibronectin targets antigens to TLR4-expressing cells and induces cytotoxic T cell responses in vivo. J Immunol 178:748–756PubMedGoogle Scholar
  47. 47.
    Yasuda T (2006) Cartilage destruction by matrix degradation products. Mod Rheumatol 16:197–205PubMedGoogle Scholar
  48. 48.
    Sofat N (2009) Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int J Exp Pathol 90:463–479PubMedGoogle Scholar
  49. 49.
    Xie DL, Meyers R, Homandberg GA (1992) Fibronectin fragments in osteoarthritic synovial fluid. J Rheumatol 19:1448–1452PubMedGoogle Scholar
  50. 50.
    Zack MD, Arner EC, Anglin CP, Alston JT, Malfait AM, Tortorella MD (2006) Identification of fibronectin neoepitopes present in human osteoarthritic cartilage. Arthr Rheum 54:2912–2922Google Scholar
  51. 51.
    Gendron C, Kashiwagi M, Lim NH, Enghild JJ, Thogersen IB, Hughes C, Caterson B, Nagase H (2007) Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J Biol Chem 282:18294–18306PubMedGoogle Scholar
  52. 52.
    Zack MD, Malfait AM, Skepner AP, Yates MP, Griggs DW, Hall T, Hills RL, Alston JT, Nemirovskiy OV, Radabaugh MR, Leone JW, Arner EC, Tortorella MD (2009) ADAM-8 isolated from human osteoarthritic chondrocytes cleaves fibronectin at Ala (271). Arthr Rheum 60:2704–2713Google Scholar
  53. 53.
    Homandberg GA, Hui F (1994) High concentrations of fibronectin fragments cause short-term catabolic effects in cartilage tissue while lower concentrations cause continuous anabolic effects. Arch Biochem Biophys 311:213–218PubMedGoogle Scholar
  54. 54.
    Homandberg GA, Meyers R, Xie DL (1992) Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J Biol Chem 267:3597–3604PubMedGoogle Scholar
  55. 55.
    Yasuda T, Poole AR (2002) A fibronectin fragment induces type II collagen degradation by collagenase through an interleukin-1-mediated pathway. Arthr Rheum 46:138–148Google Scholar
  56. 56.
    Homandberg GA, Hui F, Wen C, Purple C, Bewsey K, Koepp H, Huch K, Harris A (1997) Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem J 321(Pt 3):751–757PubMedGoogle Scholar
  57. 57.
    Pulai JI, Chen H, Im HJ, Kumar S, Hanning C, Hegde PS, Loeser RF (2005) NF-kappa B mediates the stimulation of cytokine and chemokine expression by human articular chondrocytes in response to fibronectin fragments. J Immunol 174:5781–5788PubMedGoogle Scholar
  58. 58.
    Long D, Blake S, Song XY, Lark M, Loeser RF (2008) Human articular chondrocytes produce IL-7 and respond to IL-7 with increased production of matrix metalloproteinase-13. Arthr Res Ther 10:R23Google Scholar
  59. 59.
    Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109:877–889PubMedGoogle Scholar
  60. 60.
    Xie DL, Hui F, Meyers R, Homandberg GA (1994) Cartilage chondrolysis by fibronectin fragments is associated with release of several proteinases: stromelysin plays a major role in chondrolysis. Arch Biochem Biophys 311:205–212PubMedGoogle Scholar
  61. 61.
    Yasuda T, Poole AR, Shimizu M, Nakagawa T, Julovi SM, Tamamura H, Fujii N, Nakamura T (2003) Involvement of CD44 in induction of matrix metalloproteinases by a COOH-terminal heparin-binding fragment of fibronectin in human articular cartilage in culture. Arthr Rheum 48:1271–1280Google Scholar
  62. 62.
    Stanton H, Ung L, Fosang AJ (2002) The 45-kDa collagen-binding fragment of fibronectin induces matrix metalloproteinase-13 synthesis by chondrocytes and aggrecan degradation by aggrecanases. Biochem J 364:181–190PubMedGoogle Scholar
  63. 63.
    Yasuda T (2011) Activation of Akt leading to NF-kappaB up-regulation in chondrocytes stimulated with fibronectin fragment. Biomed Res 32:209–215PubMedGoogle Scholar
  64. 64.
    Sofat N, Robertson SD, Wait R (2012) Fibronectin III 13–14 domains induce joint damage via Toll-like receptor 4 activation and synergize with interleukin-1 and tumour necrosis factor. J Innate Immun 4:69–79PubMedGoogle Scholar
  65. 65.
    Forsyth CB, Pulai J, Loeser RF (2002) Fibronectin fragments and blocking antibodies to alpha2beta1 and alpha5beta1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthr Rheum 46:2368–2376Google Scholar
  66. 66.
    Homandberg GA, Costa V, Wen C (2002) Fibronectin fragments active in chondrocytic chondrolysis can be chemically cross-linked to the alpha5 integrin receptor subunit. Osteoarthr Cartil 10:938–949PubMedGoogle Scholar
  67. 67.
    Del Carlo M, Schwartz D, Erickson EA, Loeser RF (2007) Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free Radic Biol Med 42:1350–1358PubMedGoogle Scholar
  68. 68.
    Huhtala P, Humphries MJ, McCarthy JB, Tremble PM, Werb Z, Damsky CH (1995) Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 129:867–879PubMedGoogle Scholar
  69. 69.
    Peters JH, Loredo GA, Benton HP (2002) Is osteoarthritis a “fibronectin-integrin imbalance disorder”? Osteoarthr Cartil 10:831–835PubMedGoogle Scholar
  70. 70.
    Homandberg GA, Meyers R, Williams JM (1993) Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J Rheumatol 20:1378–1382PubMedGoogle Scholar
  71. 71.
    Yasuda T, Kakinuma T, Julovi SM, Yoshida M, Hiramitsu T, Akiyoshi M, Nakamura T (2004) COOH-terminal heparin-binding fibronectin fragment induces nitric oxide production in rheumatoid cartilage through CD44. Rheumatology (Oxford) 43:1116–1120Google Scholar
  72. 72.
    Williams JM, Zhang J, Kang H, Ummadi V, Homandberg GA (2003) The effects of hyaluronic acid on fibronectin fragment mediated cartilage chondrolysis in skeletally mature rabbits. Osteoarthr Cartil 11:44–49PubMedGoogle Scholar
  73. 73.
    Homandberg GA, Hui F, Wen C (1996) Fibronectin fragment mediated cartilage chondrolysis. I. Suppression by anti-oxidants. Biochim Biophys Acta 1317:134–142PubMedGoogle Scholar
  74. 74.
    Homandberg GA, Hui F, Wen C (1996) Fibronectin fragment mediated cartilage chondrolysis. II. Reparative effects of anti-oxidants. Biochim Biophys Acta 1317:143–148PubMedGoogle Scholar
  75. 75.
    Homandberg GA, Guo D, Ray LM, Ding L (2006) Mixtures of glucosamine and chondroitin sulfate reverse fibronectin fragment mediated damage to cartilage more effectively than either agent alone. Osteoarthr Cartil 14:793–806PubMedGoogle Scholar
  76. 76.
    Kang Y, Eger W, Koepp H, Williams JM, Kuettner KE, Homandberg GA (1999) Hyaluronan suppresses fibronectin fragment-mediated damage to human cartilage explant cultures by enhancing proteoglycan synthesis. J Orthop Res 17:858–869PubMedGoogle Scholar
  77. 77.
    Yasuda T (2010) Comparison of hyaluronan effects among normal, osteoarthritis, and rheumatoid arthritis cartilages stimulated with fibronectin fragment. Biomed Res 31:63–69PubMedGoogle Scholar
  78. 78.
    Ascherio A, Munger KL, Lunemann JD (2012) The initiation and prevention of multiple sclerosis. Nat Rev Neurol 8:602–612PubMedGoogle Scholar
  79. 79.
    Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18:601–609PubMedGoogle Scholar
  80. 80.
    Wolswijk G (2002) Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 125:338–349PubMedGoogle Scholar
  81. 81.
    Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269PubMedGoogle Scholar
  82. 82.
    Franklin RJ, ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855PubMedGoogle Scholar
  83. 83.
    Franklin RJ, ffrench-Constant C, Edgar JM, Smith KJ (2012) Neuroprotection and repair in multiple sclerosis. Nat Rev Neurol 8:624–634PubMedGoogle Scholar
  84. 84.
    Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13PubMedGoogle Scholar
  85. 85.
    Man S, Tucky B, Bagheri N, Li X, Kochar R, Ransohoff RM (2009) Alpha4 Integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. J Neuroimmunol 210:92–99PubMedGoogle Scholar
  86. 86.
    Rudick R, Polman C, Clifford D, Miller D, Steinman L (2013) Natalizumab: bench to bedside and beyond. JAMA Neurol 70:172–182PubMedGoogle Scholar
  87. 87.
    van der Laan LJ, De Groot CJ, Elices MJ, Dijkstra CD (1997) Extracellular matrix proteins expressed by human adult astrocytes in vivo and in vitro: an astrocyte surface protein containing the CS1 domain contributes to binding of lymphoblasts. J Neurosci Res 50:539–548PubMedGoogle Scholar
  88. 88.
    van der Laan LJ, van der Goes A, Wauben MH, Ruuls SR, Dopp EA, De Groot CJ, Kuijpers TW, Elices MJ, Dijkstra CD (2002) Beneficial effect of modified peptide inhibitor of alpha4 integrins on experimental allergic encephalomyelitis in Lewis rats. J Neurosci Res 67:191–199PubMedGoogle Scholar
  89. 89.
    Stuve O, Dooley NP, Uhm JH, Antel JP, Francis GS, Williams G, Yong VW (1996) Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann Neurol 40:853–863PubMedGoogle Scholar
  90. 90.
    Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedGoogle Scholar
  91. 91.
    Malik G, Knowles LM, Dhir R, Xu S, Yang S, Ruoslahti E, Pilch J (2010) Plasma fibronectin promotes lung metastasis by contributions to fibrin clots and tumor cell invasion. Cancer Res 70:4327–4334PubMedGoogle Scholar
  92. 92.
    Reticker-Flynn NE, Malta DF, Winslow MM, Lamar JM, Xu MJ, Underhill GH, Hynes RO, Jacks TE, Bhatia SN (2012) A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nat Commun 3:1122PubMedGoogle Scholar
  93. 93.
    Milner R, Crocker SJ, Hung S, Wang X, Frausto RF, del Zoppo GJ (2007) Fibronectin- and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins alpha5beta1 and alphavbeta5. J Immunol 178:8158–8167PubMedGoogle Scholar
  94. 94.
    Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021PubMedGoogle Scholar
  95. 95.
    Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22:2478–2486PubMedGoogle Scholar
  96. 96.
    Summers L, Kielty C, Pinteaux E (2009) Adhesion to fibronectin regulates interleukin-1 beta expression in microglial cells. Mol Cell Neurosci 41:148–155PubMedGoogle Scholar
  97. 97.
    Ribes S, Ebert S, Regen T, Czesnik D, Scheffel J, Zeug A, Bunkowski S, Eiffert H, Hanisch UK, Hammerschmidt S, Nau R (2010) Fibronectin stimulates Escherichia coli phagocytosis by microglial cells. Glia 58:367–376PubMedGoogle Scholar
  98. 98.
    Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26:328–332PubMedGoogle Scholar
  99. 99.
    Li WW, Setzu A, Zhao C, Franklin RJ (2005) Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J Neuroimmunol 158:58–66PubMedGoogle Scholar
  100. 100.
    Setzu A, Lathia JD, Zhao C, Wells K, Rao MS, ffrench-Constant C, Franklin RJ (2006) Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells. Glia 54:297–303PubMedGoogle Scholar
  101. 101.
    Tate CC, Garcia AJ, LaPlaca MC (2007) Plasma fibronectin is neuroprotective following traumatic brain injury. Exp Neurol 207:13–22PubMedGoogle Scholar
  102. 102.
    Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 100:8514–8519PubMedGoogle Scholar
  103. 103.
    Milner R, ffrench-Constant C (1994) A developmental analysis of oligodendroglial integrins in primary cells: changes in alpha v-associated beta subunits during differentiation. Development 120:3497–3506PubMedGoogle Scholar
  104. 104.
    Blaschuk KL, Frost EE, ffrench-Constant C (2000) The regulation of proliferation and differentiation in oligodendrocyte progenitor cells by alphaV integrins. Development 127:1961–1969PubMedGoogle Scholar
  105. 105.
    Zhao C, Fancy SP, Franklin RJ, ffrench-Constant C (2009) Up-regulation of oligodendrocyte precursor cell alphaV integrin and its extracellular ligands during central nervous system remyelination. J Neurosci Res 87:3447–3455PubMedGoogle Scholar
  106. 106.
    Frost E, Kiernan BW, Faissner A, ffrench-Constant C (1996) Regulation of oligodendrocyte precursor migration by extracellular matrix: evidence for substrate-specific inhibition of migration by tenascin-C. Dev Neurosci 18:266–273PubMedGoogle Scholar
  107. 107.
    Milner R, Edwards G, Streuli C, ffrench-Constant C (1996) A role in migration for the alpha V beta 1 integrin expressed on oligodendrocyte precursors. J Neurosci 16:7240–7252PubMedGoogle Scholar
  108. 108.
    Baron W, Shattil SJ, ffrench-Constant C (2002) The oligodendrocyte precursor mitogen PDGF stimulates proliferation by activation of alpha(v)beta3 integrins. EMBO J 21:1957–1966PubMedGoogle Scholar
  109. 109.
    Buttery PC, ffrench-Constant C (1999) Laminin-2/integrin interactions enhance myelin membrane formation by oligodendrocytes. Mol Cell Neurosci 14:199–212PubMedGoogle Scholar
  110. 110.
    Siskova Z, Baron W, de Vries H, Hoekstra D (2006) Fibronectin impedes “myelin” sheet-directed flow in oligodendrocytes: a role for a beta 1 integrin-mediated PKC signaling pathway in vesicular trafficking. Mol Cell Neurosci 33:150–159PubMedGoogle Scholar
  111. 111.
    Siskova Z, Yong VW, Nomden A, van Strien M, Hoekstra D, Baron W (2009) Fibronectin attenuates process outgrowth in oligodendrocytes by mislocalizing MMP-9 activity. Mol Cell Neurosci 42:234–242PubMedGoogle Scholar
  112. 112.
    Zhao C, Fancy SP, Franklin RJ, ffrench-Constant C (2009) Up-regulation of oligodendrocyte precursor cell alphaV integrin and its extracellular ligands during central nervous system remyelination. J Neurosci Res 87:3447–3455PubMedGoogle Scholar
  113. 113.
    Baron W, Decker L, Colognato H, ffrench-Constant C (2003) Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Curr Biol 13:151–155PubMedGoogle Scholar
  114. 114.
    Maier O, van der Heide T, van Dam AM, Baron W, de Vries H, Hoekstra D (2005) Alteration of the extracellular matrix interferes with raft association of neurofascin in oligodendrocytes. Potential significance for multiple sclerosis? Mol Cell Neurosci 28:390–401PubMedGoogle Scholar
  115. 115.
    Singh P, Carraher C, Schwarzbauer JE (2010) Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol 26:397–419PubMedGoogle Scholar
  116. 116.
    To WS, Midwood KS (2011) Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis Tissue Repair 4:21. doi: 10.1186/1755-1536-4-21 PubMedGoogle Scholar
  117. 117.
    Chen H, Mosher DF (1996) Formation of sodium dodecyl sulfate-stable fibronectin multimers. Failure to detect products of thiol-disulfide exchange in cyanogen bromide or limited acid digests of stabilized matrix fibronectin. J Biol Chem 271:9084–9089PubMedGoogle Scholar
  118. 118.
    Ohashi T, Erickson HP (2009) Revisiting the mystery of fibronectin multimers: the fibronectin matrix is composed of fibronectin dimers cross-linked by non-covalent bonds. Matrix Biol 28:170–175PubMedGoogle Scholar
  119. 119.
    McKeown-Longo PJ, Mosher DF (1983) Binding of plasma fibronectin to cell layers of human skin fibroblasts. J Cell Biol 97:466–472PubMedGoogle Scholar
  120. 120.
    Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36:1031–1037PubMedGoogle Scholar
  121. 121.
    Sottile J, Hocking DC (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13:3546–3559PubMedGoogle Scholar
  122. 122.
    To WS, Midwood KS (2011) Identification of novel and distinct binding sites within tenascin-C for soluble and fibrillar fibronectin. J Biol Chem 286:14881–14891PubMedGoogle Scholar
  123. 123.
    Ohashi T, Erickson HP (2011) Fibronectin aggregation and assembly: the unfolding of the second fibronectin type III domain. J Biol Chem 286:39188–39199PubMedGoogle Scholar
  124. 124.
    Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805PubMedGoogle Scholar
  125. 125.
    Nelea V, Nakano Y, Kaartinen MT (2008) Size distribution and molecular associations of plasma fibronectin and fibronectin crosslinked by transglutaminase 2. Protein J 27:223–233PubMedGoogle Scholar
  126. 126.
    van Strien ME, Breve JJ, Fratantoni S, Schreurs MW, Bol JG, Jongenelen CA, Drukarch B, van Dam AM (2011) Astrocyte-derived tissue transglutaminase interacts with fibronectin: a role in astrocyte adhesion and migration? PLoS ONE 6:e25037PubMedGoogle Scholar
  127. 127.
    Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511PubMedGoogle Scholar
  128. 128.
    Arslan F, Smeets MB, Riem Vis PW, Karper JC, Quax PH, Bongartz LG, Peters JH, Hoefer IE, Doevendans PA, Pasterkamp G, de Kleijn DP (2011) Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circ Res 108:582–592PubMedGoogle Scholar
  129. 129.
    Oegema TR Jr, Johnson SL, Aguiar DJ, Ogilvie JW (2000) Fibronectin and its fragments increase with degeneration in the human intervertebral disc. Spine (Phila Pa 1976) 25:2742–2747Google Scholar
  130. 130.
    Greg Anderson D, Li X, Tannoury T, Beck G, Balian G (2003) A fibronectin fragment stimulates intervertebral disc degeneration in vivo. Spine (Phila Pa 1976) 28:2338–2345Google Scholar
  131. 131.
    Xia M, Zhu Y (2011) Fibronectin fragment activation of ERK increasing integrin alpha and beta subunit expression to degenerate nucleus pulposus cells. J Orthop Res 29:556–561PubMedGoogle Scholar
  132. 132.
    Lu P, Takai K, Weaver VM and Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3. doi:  10.1101/cshperspect.a005058
  133. 133.
    Chowdhury TT, Schulz RM, Rai SS, Thuemmler CB, Wuestneck N, Bader A, Homandberg GA (2010) Biomechanical modulation of collagen fragment-induced anabolic and catabolic activities in chondrocyte/agarose constructs. Arthr Res Ther 12:R82Google Scholar
  134. 134.
    Goh FG, Piccinini AM, Krausgruber T, Udalova IA, Midwood KS (2010) Transcriptional regulation of the endogenous danger signal tenascin-C: a novel autocrine loop in inflammation. J Immunol 184:2655–2662PubMedGoogle Scholar
  135. 135.
    Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, Liu Y, Chang A, Trapp BD, Bebo BF Jr, Rao MS, Sherman LS (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972PubMedGoogle Scholar
  136. 136.
    Livant DL, Brabec RK, Kurachi K, Allen DL, Wu Y, Haaseth R, Andrews P, Ethier SP, Markwart S (2000) The PHSRN sequence induces extracellular matrix invasion and accelerates wound healing in obese diabetic mice. J Clin Invest 105:1537–1545PubMedGoogle Scholar
  137. 137.
    Miyamoto T, Tamura M, Kabashima N, Serino R, Shibata T, Furuno Y, Miyazaki M, Baba R, Sato N, Doi Y, Okazaki M, Otsuji Y (2010) An integrin-activating peptide, PHSRN, ameliorates inhibitory effects of conventional peritoneal dialysis fluids on peritoneal wound healing. Nephrol Dial Transplant 25:1109–1119PubMedGoogle Scholar
  138. 138.
    Feng Y, Mrksich M (2004) The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism. Biochemistry 43:15811–15821PubMedGoogle Scholar
  139. 139.
    Zeng ZZ, Yao H, Staszewski ED, Rockwood KF, Markwart SM, Fay KS, Spalding AC, Livant DL (2009) Alpha(5)beta(1) integrin ligand PHSRN induces invasion and alpha(5) mRNA in endothelial cells to stimulate angiogenesis. Transl Oncol 2:8–20PubMedGoogle Scholar
  140. 140.
    Lariviere B, Rouleau M, Picard S, Beaulieu AD (2003) Human plasma fibronectin potentiates the mitogenic activity of platelet-derived growth factor and complements its wound healing effects. Wound Repair Regen 11:79–89PubMedGoogle Scholar
  141. 141.
    Qiu Z, Kwon AH, Kamiyama Y (2007) Effects of plasma fibronectin on the healing of full-thickness skin wounds in streptozotocin-induced diabetic rats. J Surg Res 138:64–70PubMedGoogle Scholar
  142. 142.
    Kwon AH, Qiu Z, Hiraon Y (2007) Effect of plasma fibronectin on the incisional wound healing in rats. Surgery 141:254–261PubMedGoogle Scholar
  143. 143.
    McCulley JP, Horowitz B, Husseini ZM, Horowitz M (1993) Topical fibronectin therapy of persistent corneal epithelial defects. Fibronectin Study Group. Trans Am Ophthalmol Soc 91:367–386 (discussion 386–90)PubMedGoogle Scholar
  144. 144.
    Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923PubMedGoogle Scholar
  145. 145.
    Ghosh K, Ren XD, Shu XZ, Prestwich GD, Clark RA (2006) Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 12:601–613PubMedGoogle Scholar
  146. 146.
    Okiyama N, Kitajima T, Ito Y, Yokozeki H, Miyasaka N, Kohsaka H (2011) Addition of the collagen binding domain of fibronectin potentiates the biochemical availability of hepatocyte growth factor for cutaneous wound healing. J Dermatol Sci 61:215–217PubMedGoogle Scholar
  147. 147.
    Hamed S, Ullmann Y, Egozi D, Daod E, Hellou E, Ashkar M, Gilhar A, Teot L (2011) Fibronectin potentiates topical erythropoietin-induced wound repair in diabetic mice. J Invest Dermatol 131:1365–1374PubMedGoogle Scholar
  148. 148.
    Martino MM, Tortelli F, Mochizuki M, Traub S, Ben-David D, Kuhn GA, Muller R, Livne E, Eming SA, Hubbell JA (2011) Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med 3:100ra89PubMedGoogle Scholar
  149. 149.
    Schwarzbauer JE and DeSimone DW (2011) Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol 3. doi:  10.1101/cshperspect.a005041

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Josephine M. J. Stoffels
    • 1
  • Chao Zhao
    • 2
  • Wia Baron
    • 1
  1. 1.Department of Cell BiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
  2. 2.Wellcome Trust—Medical Research Council Stem Cell Institute and Department of Veterinary MedicineUniversity of CambridgeCambridgeUK

Personalised recommendations