Cellular and Molecular Life Sciences

, Volume 71, Issue 3, pp 365–378

Interleukin 7 and thymic stromal lymphopoietin: from immunity to leukemia

  • Noa Tal
  • Chen Shochat
  • Ifat Geron
  • Dani Bercovich
  • Shai Izraeli
Review

Abstract

Cancer is often caused by deregulation of normal developmental processes. Here, we review recent research on the aberrant activation of two hematopoietic cytokine receptors in acute lymphoid leukemias. Somatic events in the genes for thymic stromal lymphopoietin and Interleukin 7 receptors as well as in their downstream JAK kinases result in constitutive ligand-independent activation of survival and proliferation in B and T lymphoid precursors. Drugs targeting these receptors or the signaling pathways might provide effective therapies of these leukemias.

Keywords

Thymic stromal lymphopoietin CRLF2 IL7 receptor alpha JAK1 JAK2 Leukemia 

References

  1. 1.
    Izraeli S (2004) Leukaemia—a developmental perspective. Br J Haematol 126(1):3–10PubMedGoogle Scholar
  2. 2.
    Mullighan CG et al (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446(7137):758–764PubMedGoogle Scholar
  3. 3.
    Weng AP et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271PubMedGoogle Scholar
  4. 4.
    Aplan PD et al (1990) Disruption of the human SCL locus by “illegitimate” V-(D)-J recombinase activity. Science 250(4986):1426–1429PubMedGoogle Scholar
  5. 5.
    Khaled AR, Durum SK (2002) Lymphocide: cytokines and the control of lymphoid homeostasis. Nat Rev Immunol 2(11):817–830PubMedGoogle Scholar
  6. 6.
    Carrette F, Surh CD (2012) IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin Immunol 24(3):209–217PubMedCentralPubMedGoogle Scholar
  7. 7.
    Kang J, Coles M (2012) IL-7: the global builder of the innate lymphoid network and beyond, one niche at a time. Semin Immunol 24(3):190–197PubMedCentralPubMedGoogle Scholar
  8. 8.
    Lundstrom W, Fewkes NM, Mackall CL (2012) IL-7 in human health and disease. Semin Immunol 24(3):218–224PubMedCentralPubMedGoogle Scholar
  9. 9.
    Mazzucchelli RI, Riva A, Durum SK (2012) The human IL-7 receptor gene: deletions, polymorphisms and mutations. Semin Immunol 24(3):225–230PubMedGoogle Scholar
  10. 10.
    Liu YJ et al (2007) TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol 25:193–219PubMedGoogle Scholar
  11. 11.
    Zhou B et al (2005) Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6(10):1047–1053PubMedGoogle Scholar
  12. 12.
    Namen AE et al (1988) Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature 333(6173):571–573PubMedGoogle Scholar
  13. 13.
    Morrissey PJ et al (1991) Administration of IL-7 to normal mice stimulates B-lymphopoiesis and peripheral lymphadenopathy. J Immunol 147(2):561–568PubMedGoogle Scholar
  14. 14.
    Grabstein KH et al (1993) Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7 monoclonal antibody. J Exp Med 178(1):257–264PubMedGoogle Scholar
  15. 15.
    Goodwin RG et al (1989) Human interleukin 7: molecular cloning and growth factor activity on human and murine B-lineage cells. Proc Natl Acad Sci USA 86(1):302–306PubMedGoogle Scholar
  16. 16.
    Lupton SD et al (1990) Characterization of the human and murine IL-7 genes. J Immunol 144(9):3592–3601PubMedGoogle Scholar
  17. 17.
    Fujihashi K et al (1996) Interleukin 2 (IL-2) and interleukin 7 (IL-7) reciprocally induce IL-7 and IL-2 receptors on gamma delta T-cell receptor-positive intraepithelial lymphocytes. Proc Natl Acad Sci USA 93(8):3613–3618PubMedGoogle Scholar
  18. 18.
    Funk PE, Stephan RP, Witte PL (1995) Vascular cell adhesion molecule 1-positive reticular cells express interleukin-7 and stem cell factor in the bone marrow. Blood 86(7):2661–2671PubMedGoogle Scholar
  19. 19.
    Heufler C et al (1993) Interleukin 7 is produced by murine and human keratinocytes. J Exp Med 178(3):1109–1114PubMedGoogle Scholar
  20. 20.
    Golden-Mason L et al (2001) Expression of interleukin 7 (IL-7) mRNA and protein in the normal adult human liver: implications for extrathymic T cell development. Cytokine 14(3):143–151PubMedGoogle Scholar
  21. 21.
    Mazzucchelli RI et al (2009) Visualization and identification of IL-7 producing cells in reporter mice. PLoS ONE 4(11):e7637PubMedCentralPubMedGoogle Scholar
  22. 22.
    Alves NL et al (2009) Characterization of the thymic IL-7 niche in vivo. Proc Natl Acad Sci USA 106(5):1512–1517PubMedGoogle Scholar
  23. 23.
    Al-Rawi MA, Mansel RE, Jiang WG (2003) Interleukin-7 (IL-7) and IL-7 receptor (IL-7R) signalling complex in human solid tumours. Histol Histopathol 18(3):911–923PubMedGoogle Scholar
  24. 24.
    Lynch M et al (1992) The interleukin-7 receptor gene is at 5p13. Hum Genet 89(5):566–568PubMedGoogle Scholar
  25. 25.
    Goodwin RG et al (1990) Cloning of the human and murine interleukin-7 receptors: demonstration of a soluble form and homology to a new receptor superfamily. Cell 60(6):941–951PubMedGoogle Scholar
  26. 26.
    Mazzucchelli R, Durum SK (2007) Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 7(2):144–154PubMedGoogle Scholar
  27. 27.
    Sudo T et al (1993) Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc Natl Acad Sci USA 90(19):9125–9129PubMedGoogle Scholar
  28. 28.
    Park JH et al (2004) Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 21(2):289–302PubMedGoogle Scholar
  29. 29.
    Crawley AM et al (2010) Interleukin-4 downregulates CD127 expression and activity on human thymocytes and mature CD8+ T cells. Eur J Immunol 40(5):1396–1407PubMedGoogle Scholar
  30. 30.
    Ouyang W et al (2009) An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30(3):358–371PubMedCentralPubMedGoogle Scholar
  31. 31.
    Xue HH et al (2004) GA binding protein regulates interleukin 7 receptor alpha-chain gene expression in T cells. Nat Immunol 5(10):1036–1044PubMedGoogle Scholar
  32. 32.
    Grenningloh R et al (2011) Ets-1 maintains IL-7 receptor expression in peripheral T cells. J Immunol 186(2):969–976PubMedCentralPubMedGoogle Scholar
  33. 33.
    DeKoter RP et al (2007) Regulation of the interleukin-7 receptor alpha promoter by the Ets transcription factors PU.1 and GA-binding protein in developing B cells. J Biol Chem 282(19):14194–14204PubMedGoogle Scholar
  34. 34.
    Henriques CM et al (2010) IL-7 induces rapid clathrin-mediated internalization and JAK3-dependent degradation of IL-7Ralpha in T cells. Blood 115(16):3269–3277PubMedGoogle Scholar
  35. 35.
    Luo H et al (2011) Ephrinb1 and Ephrinb2 are associated with interleukin-7 receptor alpha and retard its internalization from the cell surface. J Biol Chem 286(52):44976–44987PubMedGoogle Scholar
  36. 36.
    Noguchi M et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262(5141):1877–1880PubMedGoogle Scholar
  37. 37.
    Park LS et al (1990) Murine interleukin 7 (IL-7) receptor. Characterization on an IL-7-dependent cell line. J Exp Med 171(4):1073–1089PubMedGoogle Scholar
  38. 38.
    McElroy CA et al (2012) Structural reorganization of the interleukin-7 signaling complex. Proc Natl Acad Sci USA 109(7):2503–2508PubMedGoogle Scholar
  39. 39.
    Rose T et al (2010) Interleukin-7 compartmentalizes its receptor signaling complex to initiate CD4 T lymphocyte response. J Biol Chem 285(20):14898–14908PubMedGoogle Scholar
  40. 40.
    Gregory SG et al (2007) Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 39(9):1083–1091PubMedGoogle Scholar
  41. 41.
    Roberts KG et al (2012) Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22(2):153–166PubMedCentralPubMedGoogle Scholar
  42. 42.
    von Freeden-Jeffry U et al (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 181(4):1519–1526Google Scholar
  43. 43.
    Moore TA et al (1996) Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7−/− mice. J Immunol 157(6):2366–2373PubMedGoogle Scholar
  44. 44.
    Corcoran AE et al (1996) The interleukin-7 receptor alpha chain transmits distinct signals for proliferation and differentiation during B lymphopoiesis. EMBO J 15(8):1924–1932PubMedGoogle Scholar
  45. 45.
    Peschon JJ et al (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 180(5):1955–1960PubMedGoogle Scholar
  46. 46.
    Miller JP et al (2002) The earliest step in B lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin 7. J Exp Med 196(5):705–711PubMedCentralPubMedGoogle Scholar
  47. 47.
    Puel A et al (1998) Defective IL7R expression in T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet 20(4):394–397PubMedGoogle Scholar
  48. 48.
    Roifman CM et al (2000) A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency. Blood 96(8):2803–2807PubMedGoogle Scholar
  49. 49.
    Prieyl JA, LeBien TW (1996) Interleukin 7 independent development of human B cells. Proc Natl Acad Sci USA 93(19):10348–10353PubMedGoogle Scholar
  50. 50.
    Parrish YK et al (2009) IL-7 dependence in human B lymphopoiesis increases during progression of ontogeny from cord blood to bone marrow. J Immunol 182(7):4255–4266PubMedCentralPubMedGoogle Scholar
  51. 51.
    LeBien TW (2000) Fates of human B-cell precursors. Blood 96(1):9–23PubMedGoogle Scholar
  52. 52.
    Hertzberg L et al (2010) Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood 115(5):1006–1017PubMedGoogle Scholar
  53. 53.
    Kikuchi K et al (2005) IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF. J Exp Med 201(8):1197–1203PubMedCentralPubMedGoogle Scholar
  54. 54.
    Purohit SJ et al (2003) Determination of lymphoid cell fate is dependent on the expression status of the IL-7 receptor. EMBO J 22(20):5511–5521PubMedGoogle Scholar
  55. 55.
    Corcoran AE et al (1998) Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature 391(6670):904–907PubMedGoogle Scholar
  56. 56.
    Candeias S et al (1997) Defective T-cell receptor gamma gene rearrangement in interleukin-7 receptor knockout mice. Immunol Lett 57(1–3):9–14PubMedGoogle Scholar
  57. 57.
    Chowdhury D, Sen R (2003) Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 18(2):229–241PubMedGoogle Scholar
  58. 58.
    Nodland SE et al (2011) IL-7R expression and IL-7 signaling confer a distinct phenotype on developing human B-lineage cells. Blood 118(8):2116–2127PubMedGoogle Scholar
  59. 59.
    Malin S, McManus S, Busslinger M (2010) STAT5 in B cell development and leukemia. Curr Opin Immunol 22(2):168–176PubMedGoogle Scholar
  60. 60.
    Hofmeister R et al (1999) Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev 10(1):41–60PubMedGoogle Scholar
  61. 61.
    Jiang Q et al (2004) Distinct regions of the interleukin-7 receptor regulate different Bcl2 family members. Mol Cell Biol 24(14):6501–6513PubMedCentralPubMedGoogle Scholar
  62. 62.
    Lu L, Chaudhury P, Osmond DG (1999) Regulation of cell survival during B lymphopoiesis: apoptosis and Bcl-2/Bax content of precursor B cells in bone marrow of mice with altered expression of IL-7 and recombinase-activating gene-2. J Immunol 162(4):1931–1940PubMedGoogle Scholar
  63. 63.
    Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88(4):435–437PubMedGoogle Scholar
  64. 64.
    Swainson L et al (2007) IL-7-induced proliferation of recent thymic emigrants requires activation of the PI3K pathway. Blood 109(3):1034–1042PubMedGoogle Scholar
  65. 65.
    Neill DR et al (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464(7293):1367–1370PubMedCentralPubMedGoogle Scholar
  66. 66.
    Spits H, Di Santo JP (2011) The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 12(1):21–27PubMedGoogle Scholar
  67. 67.
    Sun Z et al (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288(5475):2369–2373PubMedGoogle Scholar
  68. 68.
    Sawa S et al (2010) Lineage relationship analysis of RORgammat + innate lymphoid cells. Science 330(6004):665–669PubMedGoogle Scholar
  69. 69.
    Vonarbourg C et al (2010) Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 33(5):736–751PubMedCentralPubMedGoogle Scholar
  70. 70.
    Vonarbourg C, Diefenbach A (2012) Multifaceted roles of interleukin-7 signaling for the development and function of innate lymphoid cells. Semin Immunol 24(3):165–174PubMedGoogle Scholar
  71. 71.
    Park LS et al (2000) Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: formation of a functional heteromeric complex requires interleukin 7 receptor. J Exp Med 192(5):659–670PubMedCentralPubMedGoogle Scholar
  72. 72.
    Pandey A et al (2000) Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol 1(1):59–64PubMedGoogle Scholar
  73. 73.
    Tonozuka Y et al (2001) Molecular cloning of a human novel type I cytokine receptor related to delta1/TSLPR. Cytogenet Cell Genet 93(1–2):23–25PubMedGoogle Scholar
  74. 74.
    Friend SL et al (1994) A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp Hematol 22(3):321–328PubMedGoogle Scholar
  75. 75.
    Quentmeier H et al (2001) Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia 15(8):1286–1292PubMedGoogle Scholar
  76. 76.
    Siracusa MC et al (2011) TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477(7363):229–233PubMedCentralPubMedGoogle Scholar
  77. 77.
    Taylor BC et al (2009) TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J Exp Med 206(3):655–667PubMedCentralPubMedGoogle Scholar
  78. 78.
    Lu N et al (2009) TSLP and IL-7 use two different mechanisms to regulate human CD4+ T cell homeostasis. J Exp Med 206(10):2111–2119PubMedCentralPubMedGoogle Scholar
  79. 79.
    Fujio K et al (2000) Molecular cloning of a novel type 1 cytokine receptor similar to the common gamma chain. Blood 95(7):2204–2210PubMedGoogle Scholar
  80. 80.
    Reche PA et al (2001) Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J Immunol 167(1):336–343PubMedGoogle Scholar
  81. 81.
    Watanabe N et al (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+ CD25+ regulatory T cells in human thymus. Nature 436(7054):1181–1185PubMedGoogle Scholar
  82. 82.
    Al-Shami A et al (2004) A role for thymic stromal lymphopoietin in CD4(+) T cell development. J Exp Med 200(2):159–168PubMedCentralPubMedGoogle Scholar
  83. 83.
    Chappaz S et al (2007) Increased TSLP availability restores T- and B-cell compartments in adult IL-7 deficient mice. Blood 110(12):3862–3870PubMedGoogle Scholar
  84. 84.
    Astrakhan A et al (2007) Local increase in thymic stromal lymphopoietin induces systemic alterations in B cell development. Nat Immunol 8(5):522–531PubMedGoogle Scholar
  85. 85.
    Vosshenrich CA et al (2004) Pre-B cell receptor expression is necessary for thymic stromal lymphopoietin responsiveness in the bone marrow but not in the liver environment. Proc Natl Acad Sci USA 101(30):11070–11075PubMedGoogle Scholar
  86. 86.
    Dorshkind K, Montecino-Rodriguez E (2007) Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nat Rev Immunol 7(3):213–219PubMedGoogle Scholar
  87. 87.
    Griffin DO, Holodick NE, Rothstein TL (2011) Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med 208(1):67–80PubMedCentralPubMedGoogle Scholar
  88. 88.
    Montecino-Rodriguez E, Dorshkind K (2012) B-1 B cell development in the fetus and adult. Immunity 36(1):13–21PubMedCentralPubMedGoogle Scholar
  89. 89.
    Scheeren FA et al (2010) Thymic stromal lymphopoietin induces early human B-cell proliferation and differentiation. Eur J Immunol 40(4):955–965PubMedGoogle Scholar
  90. 90.
    Chappaz S, Finke D (2010) The IL-7 signaling pathway regulates lymph node development independent of peripheral lymphocytes. J Immunol 184(7):3562–3569PubMedGoogle Scholar
  91. 91.
    Foxwell BM et al (1995) Interleukin-7 can induce the activation of Jak 1, Jak 3 and STAT 5 proteins in murine T cells. Eur J Immunol 25(11):3041–3046PubMedGoogle Scholar
  92. 92.
    Levin SD et al (1999) Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J Immunol 162(2):677–683PubMedGoogle Scholar
  93. 93.
    Isaksen DE et al (1999) Requirement for stat5 in thymic stromal lymphopoietin-mediated signal transduction. J Immunol 163(11):5971–5977PubMedGoogle Scholar
  94. 94.
    Rodig SJ et al (1998) Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93(3):373–383PubMedGoogle Scholar
  95. 95.
    Dadi H, Ke S, Roifman CM (1994) Activation of phosphatidylinositol-3 kinase by ligation of the interleukin-7 receptor is dependent on protein tyrosine kinase activity. Blood 84(5):1579–1586PubMedGoogle Scholar
  96. 96.
    Venkitaraman AR, Cowling RJ (1994) Interleukin-7 induces the association of phosphatidylinositol 3-kinase with the alpha chain of the interleukin-7 receptor. Eur J Immunol 24(9):2168–2174PubMedGoogle Scholar
  97. 97.
    Sharfe N, Dadi HK, Roifman CM (1995) JAK3 protein tyrosine kinase mediates interleukin-7-induced activation of phosphatidylinositol-3′ kinase. Blood 86(6):2077–2085PubMedGoogle Scholar
  98. 98.
    Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501PubMedGoogle Scholar
  99. 99.
    Palomero T et al (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13(10):1203–1210PubMedCentralPubMedGoogle Scholar
  100. 100.
    Rochman Y et al (2010) Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7-induced signaling. Proc Natl Acad Sci USA 107(45):19455–19460PubMedGoogle Scholar
  101. 101.
    Goetz CA et al (2004) STAT5 activation underlies IL7 receptor-dependent B cell development. J Immunol 172(8):4770–4778PubMedGoogle Scholar
  102. 102.
    Brown VI et al (2007) Thymic stromal-derived lymphopoietin induces proliferation of pre-B leukemia and antagonizes mTOR inhibitors, suggesting a role for interleukin-7Ralpha signaling. Cancer Res 67(20):9963–9970PubMedGoogle Scholar
  103. 103.
    Zhong J et al. (2012) TSLP signaling network revealed by SILAC-based phosphoproteomics. Mol Cell Proteomics 11(6):M112.017764Google Scholar
  104. 104.
    Mullighan CG et al (2009) Rearrangement of CRLF2 in B-progenitor-and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet 41(11):1243–1246PubMedCentralPubMedGoogle Scholar
  105. 105.
    Russell LJ et al (2009) Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood 114(13):2688–2698PubMedGoogle Scholar
  106. 106.
    Yoda A et al (2010) Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 107(1):252–257PubMedGoogle Scholar
  107. 107.
    Cario G et al (2010) Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 115(26):5393–5397PubMedGoogle Scholar
  108. 108.
    Harvey RC et al (2010) Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, hispanic/latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 115(26):5312–5321PubMedGoogle Scholar
  109. 109.
    Ensor HM et al (2011) Demographic, clinical, and outcome features of children with acute lymphoblastic leukemia and CRLF2 deregulation: results from the MRC ALL97 clinical trial. Blood 117(7):2129–2136PubMedGoogle Scholar
  110. 110.
    Chen IM et al (2012) Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children’s Oncology Group Study. Blood 119(15):3512–3522PubMedGoogle Scholar
  111. 111.
    Moorman AV et al (2012) IGH@ translocations, CRLF2 deregulation, and microdeletions in adolescents and adults with acute lymphoblastic leukemia. J Clin Oncol 30(25):3100–3108PubMedGoogle Scholar
  112. 112.
    Malinge S, Izraeli S, Crispino JD (2009) Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 113(12):2619–2628PubMedGoogle Scholar
  113. 113.
    Rand V et al (2011) Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B-cell precursor acute lymphoblastic leukemia. Blood 117(25):6848–6855PubMedGoogle Scholar
  114. 114.
    Tasian SK et al (2012) Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood 120(4):833–842PubMedGoogle Scholar
  115. 115.
    Chapiro E et al (2010) Activating mutation in the TSLPR gene in B-cell precursor lymphoblastic leukemia. Leukemia 24(3):642–645PubMedGoogle Scholar
  116. 116.
    van Bodegom D et al (2012) Differences in signaling through the B-cell leukemia oncoprotein CRLF2 in response to TSLP and through mutant JAK2. Blood 120(14):2853–2863PubMedGoogle Scholar
  117. 117.
    Shochat C et al (2011) Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med 208(5):901–908PubMedCentralPubMedGoogle Scholar
  118. 118.
    Lacronique V et al (1997) A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278(5341):1309–1312PubMedGoogle Scholar
  119. 119.
    Peeters P et al (1997) Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90(7):2535–2540PubMedGoogle Scholar
  120. 120.
    Griesinger F et al (2005) A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes Chromosomes Cancer 44(3):329–333PubMedGoogle Scholar
  121. 121.
    Bousquet M et al (2005) The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 24(48):7248–7252PubMedGoogle Scholar
  122. 122.
    Levine RL et al (2007) Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer 7(9):673–683PubMedGoogle Scholar
  123. 123.
    James C et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148PubMedGoogle Scholar
  124. 124.
    Levine RL et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397PubMedGoogle Scholar
  125. 125.
    Kralovics R et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790PubMedGoogle Scholar
  126. 126.
    Baxter EJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464):1054–1061PubMedGoogle Scholar
  127. 127.
    Campbell PJ et al (2006) Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 108(10):3548–3555PubMedGoogle Scholar
  128. 128.
    Anand S et al (2011) Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood 118(1):177–181PubMedGoogle Scholar
  129. 129.
    Bercovich D et al (2008) Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet 372(9648):1484–1492PubMedGoogle Scholar
  130. 130.
    Malinge S et al (2007) Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia. Blood 109(5):2202–2204PubMedGoogle Scholar
  131. 131.
    Mullighan CG et al (2009) JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 106(23):9414–9418PubMedGoogle Scholar
  132. 132.
    Bandaranayake RM et al (2012) Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol 19(8):754–759PubMedCentralPubMedGoogle Scholar
  133. 133.
    Gery S et al (2009) Lnk inhibits myeloproliferative disorder-associated JAK2 mutant, JAK2V617F. J Leukoc Biol 85(6):957–965PubMedGoogle Scholar
  134. 134.
    Gery S et al (2007) Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders. Blood 110(9):3360–3364PubMedGoogle Scholar
  135. 135.
    Li Y et al (2000) Cloning and characterization of human Lnk, an adaptor protein with pleckstrin homology and Src homology 2 domains that can inhibit T cell activation. J Immunol 164(10):5199–5206PubMedGoogle Scholar
  136. 136.
    Tong W, Zhang J, Lodish HF (2005) Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood 105(12):4604–4612PubMedGoogle Scholar
  137. 137.
    Velazquez L et al (2002) Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med 195(12):1599–1611PubMedCentralPubMedGoogle Scholar
  138. 138.
    Oh ST et al (2010) Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 116(6):988–992PubMedGoogle Scholar
  139. 139.
    Takaki S et al (2000) Control of B cell production by the adaptor protein lnk. Definition of a conserved family of signal-modulating proteins. Immunity 13(5):599–609PubMedGoogle Scholar
  140. 140.
    Takaki S et al (2003) Impaired lymphopoiesis and altered B cell subpopulations in mice overexpressing Lnk adaptor protein. J Immunol 170(2):703–710PubMedGoogle Scholar
  141. 141.
    Den Boer ML et al (2009) A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10(2):125–134Google Scholar
  142. 142.
    Zenatti PP et al (2011) Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 43(10):932–939PubMedGoogle Scholar
  143. 143.
    Zhang J et al (2012) The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481(7380):157–163PubMedCentralPubMedGoogle Scholar
  144. 144.
    Gonzalez-Garcia S et al (2009) CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7R alpha gene expression in early human thymopoiesis and leukemia. J Exp Med 206(4):779–791PubMedCentralPubMedGoogle Scholar
  145. 145.
    Flex E et al (2008) Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med 205(4):751–758PubMedCentralPubMedGoogle Scholar
  146. 146.
    Kleppe M et al (2010) Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat Genet 42(6):530–535PubMedCentralPubMedGoogle Scholar
  147. 147.
    Hacein-Bey-Abina S et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–419PubMedGoogle Scholar
  148. 148.
    Touw I et al (1990) Interleukin-7 is a growth factor of precursor B and T acute lymphoblastic leukemia. Blood 75(11):2097–2101PubMedGoogle Scholar
  149. 149.
    Eder M et al (1992) In vitro culture of common acute lymphoblastic leukemia blasts: effects of interleukin-3, interleukin-7, and accessory cells. Blood 79(12):3274–3284PubMedGoogle Scholar
  150. 150.
    Digel W et al (1991) Human interleukin-7 induces proliferation of neoplastic cells from chronic lymphocytic leukemia and acute leukemias. Blood 78(3):753–759PubMedGoogle Scholar
  151. 151.
    Barata JT et al (2001) Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27(kip1). Blood 98(5):1524–1531PubMedGoogle Scholar
  152. 152.
    Dalloul A et al (1992) Interleukin-7 is a growth factor for Sezary lymphoma cells. J Clin Invest 90(3):1054–1060PubMedCentralPubMedGoogle Scholar
  153. 153.
    Abraham N et al (2005) Haploinsufficiency identifies STAT5 as a modifier of IL-7-induced lymphomas. Oncogene 24(33):5252–5257PubMedGoogle Scholar
  154. 154.
    Verstovsek S (2009) Therapeutic potential of JAK2 inhibitors. Hematology Am Soc Hematol Educ Program 636–642Google Scholar
  155. 155.
    Meydan N et al (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379(6566):645–648PubMedGoogle Scholar
  156. 156.
    Weigert O et al (2012) Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. J Exp Med 209(2):259–273PubMedCentralPubMedGoogle Scholar
  157. 157.
    Maude SL et al (2012) Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 120(17):3510–3518PubMedGoogle Scholar
  158. 158.
    Koppikar P et al (2012) Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature 489(7414):155–159PubMedGoogle Scholar
  159. 159.
    Morak M et al (2012) Small sizes and indolent evolutionary dynamics challenge the potential role of P2RY8-CRLF2-harboring clones as main relapse-driving force in childhood ALL. Blood 120(26):5134–5142PubMedGoogle Scholar
  160. 160.
    Ott CJ et al (2012) BET bromodomain inhibition targets both c-MYC and IL7R in high-risk acute lymphoblastic leukemia. Blood 120(14):2843–2852PubMedGoogle Scholar
  161. 161.
    Shi L et al (2008) Local blockade of TSLP receptor alleviated allergic disease by regulating airway dendritic cells. Clin Immunol 129(2):202–210PubMedGoogle Scholar
  162. 162.
    Zhang F et al (2011) A soluble thymic stromal lymphopoietin (TSLP) antagonist, TSLPR-immunoglobulin, reduces the severity of allergic disease by regulating pulmonary dendritic cells. Clin Exp Immunol 164(2):256–264PubMedCentralPubMedGoogle Scholar
  163. 163.
    Borowski A et al (2012) Expression analysis and specific blockade of the receptor for human thymic stromal lymphopoietin (TSLP) by novel antibodies to the human TSLPRalpha receptor chain. Cytokine 61(2):546–555PubMedGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Noa Tal
    • 1
    • 2
  • Chen Shochat
    • 2
    • 3
    • 4
  • Ifat Geron
    • 1
    • 2
    • 5
  • Dani Bercovich
    • 3
    • 4
  • Shai Izraeli
    • 1
    • 2
  1. 1.Cancer Research Center, Sheba Medical CenterEdmond and Lily Safra Children’s HospitalRamat GanIsrael
  2. 2.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Migal Galilee Technology CenterKiryat ShmonaIsrael
  4. 4.Tel Hai CollegeUpper GalileeIsrael
  5. 5.Division of Biological Sciences and Department of Medicine Stem Cell ProgramUniversity of California San DiegoLa JollaUSA

Personalised recommendations