Cellular and Molecular Life Sciences

, Volume 71, Issue 1, pp 113–142 | Cite as

The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature

  • P. Chatakun
  • R. Núñez-Toldrà
  • E. J. Díaz López
  • C. Gil-Recio
  • E. Martínez-Sarrà
  • F. Hernández-Alfaro
  • E. Ferrés-Padró
  • L. Giner-Tarrida
  • M. AtariEmail author


Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.


Dental pulp stem cells Fibronectin BMPs Osteopontin Tenascin Bone sialoprotein 



Bone marrow stromal cells


Calcium phosphate


Embryonic stem cells


Extracellular matrix






Mesenchymal stem cells


Poly(ethyl acrylate)


Poly(l-lactic acid)


Tissue transglutaminase


Adipose-derived stromal cells


Adult human adipose-derived stem cells


Alkaline phosphatase


Bone morphogenetic proteins


Fibroblast growth factor


Hepatocyte growth factor


c-Jun NH2-terminal kinase








Pulsed electromagnetic fields


Platelet-derived growth factor-AB


cAMP-dependent protein kinase


Poly(lactic-co-glycolic acid)


Parathyroid hormone


Rho-associated protein kinase


Transforming growth factor-beta1


Vascular endothelial growth factor


Bone sialoprotein


Estrogen receptor-related receptor alpha


Granulocyte macrophage colony-stimulating factor




Bone mesenchymal stem cell


Activator protein 1


cAMP response element


Fibroblast growth factor 2


Fibroblast growth factor 2 response element




Homeodomain protein-binding site




Platelet-derived growth factor


Polycaprolactone/poly(2-hydroxyethyl methacrylate


  1. 1.
    Wilson-Hench J (1987) Osteoinduction. In progress in biomedical engineering. In: Williams DF (ed) Definitions in biomaterials, vol 4. Elsevier, Amsterdam, p 29Google Scholar
  2. 2.
    Schlegel KA, Fichtner G, Schultze-Mosgau S, Wiltfang J (2003) Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute. Int J Oral Maxillofac Implants 18(1):53–58PubMedGoogle Scholar
  3. 3.
    Yildirim M, Spiekermann H, Handt S, Edelhoff D (2001) Maxillary sinus augmentation with the xenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of the implant site: a histologic and histomorphometric clinical study in humans. Int J Oral Maxillofac Implants 16(1):23–33PubMedGoogle Scholar
  4. 4.
    Schimming R, Schmelzeisen R (2004) Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg 62(6):724–729PubMedGoogle Scholar
  5. 5.
    Frohlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G (2008) Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 3(4):254–264PubMedCentralPubMedGoogle Scholar
  6. 6.
    Mackie EJ, Ramsey S (1996) Modulation of osteoblast behaviour by tenascin. J Cell Sci 109(Pt 6):1597–1604PubMedGoogle Scholar
  7. 7.
    Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W (2004) Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells 22(3):405–414PubMedGoogle Scholar
  8. 8.
    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74PubMedGoogle Scholar
  9. 9.
    Mori G, Centonze M, Brunetti G, Ballini A, Oranger A, Mori C et al (2010) Osteogenic properties of human dental pulp stem cells. J Biol Regul Homeost Agents 24(2):167–175PubMedGoogle Scholar
  10. 10.
    Graziano A, d’Aquino R, Laino G, Papaccio G (2008) Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 4(1):21–26PubMedGoogle Scholar
  11. 11.
    Cooke MJ, Phillips SR, Shah DS, Athey D, Lakey JH, Przyborski SA (2008) Enhanced cell attachment using a novel cell culture surface presenting functional domains from extracellular matrix proteins. Cytotechnology 56(2):71–79PubMedCentralPubMedGoogle Scholar
  12. 12.
    Foster LJ, Zeemann PA, Li C, Mann M, Jensen ON, Kassem M (2005) Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells 23(9):1367–1377PubMedGoogle Scholar
  13. 13.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedGoogle Scholar
  14. 14.
    Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A et al (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116(Pt 9):1827–1835PubMedGoogle Scholar
  15. 15.
    Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE (2004) Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol 2004(1):24–34PubMedCentralPubMedGoogle Scholar
  16. 16.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317PubMedGoogle Scholar
  17. 17.
    Mimura S, Kimura N, Hirata M, Tateyama D, Hayashida M, Umezawa A et al (2011) Growth factor-defined culture medium for human mesenchymal stem cells. Int J Dev Biol 55(2):181–187PubMedGoogle Scholar
  18. 18.
    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97(25):13625–13630PubMedGoogle Scholar
  19. 19.
    Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, Naro F et al (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20(8):1394–1402PubMedGoogle Scholar
  20. 20.
    Zhang W, Walboomers XF, van Osch GJ, van den Dolder J, Jansen JA (2008) Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Eng Part A 14(2):285–294PubMedGoogle Scholar
  21. 21.
    d’Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A et al (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14(6):1162–1171PubMedGoogle Scholar
  22. 22.
    Graziano A, d’Aquino R, Laino G, Proto A, Giuliano MT, Pirozzi G et al (2008) Human CD34+ stem cells produce bone nodules in vivo. Cell Prolif 41(1):1–11PubMedGoogle Scholar
  23. 23.
    Palmieri A, Pezzetti F, Graziano A, Riccardo D, Zollino I, Brunelli G et al (2008) Comparison between osteoblasts derived from human dental pulp stem cells and osteosarcoma cell lines. Cell Biol Int 32(7):733–738PubMedGoogle Scholar
  24. 24.
    Koyama N, Okubo Y, Nakao K, Bessho K (2009) Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 67(3):501–506PubMedGoogle Scholar
  25. 25.
    Laino G, Graziano A, d’Aquino R, Pirozzi G, Lanza V, Valiante S et al (2006) An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol 206(3):693–701PubMedGoogle Scholar
  26. 26.
    Galler KM, Cavender A, Yuwono V, Dong H, Shi S, Schmalz G et al (2008) Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells. Tissue Eng Part A 14(12):2051–2058PubMedGoogle Scholar
  27. 27.
    Muthna D, Soukup T, Vavrova J, Mokry J, Cmielova J, Visek B et al (2010) Irradiation of adult human dental pulp stem cells provokes activation of p53, cell cycle arrest, and senescence but not apoptosis. Stem Cells Dev 19(12):1855–1862PubMedGoogle Scholar
  28. 28.
    Yang X, van der Kraan PM, Bian Z, Fan M, Walboomers XF, Jansen JA (2009) Mineralized tissue formation by BMP2-transfected pulp stem cells. J Dent Res 88(11):1020–1025PubMedGoogle Scholar
  29. 29.
    Yang X, Walboomers XF, van den Beucken JJ, Bian Z, Fan M, Jansen JA (2009) Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo. Tissue Eng Part A 15(2):367–375PubMedGoogle Scholar
  30. 30.
    Yu J, He H, Tang C, Zhang G, Li Y, Wang R et al (2010) Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol 11:32PubMedCentralPubMedGoogle Scholar
  31. 31.
    Abukawa H, Zhang W, Young CS, Asrican R, Vacanti JP, Kaban LB et al (2009) Reconstructing mandibular defects using autologous tissue-engineered tooth and bone constructs. J Oral Maxillofac Surg 67(2):335–347PubMedGoogle Scholar
  32. 32.
    Graziano A, d’Aquino R, Cusella-De Angelis MG, Laino G, Piattelli A, Pacifici M et al (2007) Concave pit-containing scaffold surfaces improve stem cell-derived osteoblast performance and lead to significant bone tissue formation. PLoS One 2(6):e496PubMedCentralPubMedGoogle Scholar
  33. 33.
    Kumabe S, Nakatsuka M, Kim GS, Jue SS, Aikawa F, Shin JW et al (2006) Human dental pulp cell culture and cell transplantation with an alginate scaffold. Okajimas Folia Anat Jpn 82(4):147–155PubMedGoogle Scholar
  34. 34.
    Otaki S, Ueshima S, Shiraishi K, Sugiyama K, Hamada S, Yorimoto M et al (2007) Mesenchymal progenitor cells in adult human dental pulp and their ability to form bone when transplanted into immunocompromised mice. Cell Biol Int 31(10):1191–1197PubMedGoogle Scholar
  35. 35.
    Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M (2010) Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 46(6):1639–1651PubMedCentralPubMedGoogle Scholar
  36. 36.
    Tomic S, Djokic J, Vasilijic S, Vucevic D, Todorovic V, Supic G et al (2011) Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by Toll-like receptor agonists. Stem Cells Dev 20(4):695–708PubMedGoogle Scholar
  37. 37.
    Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T (2011) Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transpl 20(7):1003–1013Google Scholar
  38. 38.
    Lee SH, Ryu JS, Lee JW, Kwak DH, Ko K, Choo YK (2010) Comparison of ganglioside expression between human adipose- and dental pulp-derived stem cell differentiation into osteoblasts. Arch Pharm Res 33(4):585–591PubMedGoogle Scholar
  39. 39.
    d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A et al (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83PubMedGoogle Scholar
  40. 40.
    Riccio M, Resca E, Maraldi T, Pisciotta A, Ferrari A, Bruzzesi G et al (2010) Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures. Eur J Histochem 54(4):e46PubMedCentralPubMedGoogle Scholar
  41. 41.
    Morito A, Kida Y, Suzuki K, Inoue K, Kuroda N, Gomi K et al (2009) Effects of basic fibroblast growth factor on the development of the stem cell properties of human dental pulp cells. Arch Histol Cytol 72(1):51–64PubMedGoogle Scholar
  42. 42.
    Mangano C, Paino F, d’Aquino R, De Rosa A, Iezzi G, Piattelli A et al (2011) Human dental pulp stem cells hook into biocoral scaffold forming an engineered biocomplex. PLoS One 6(4):e18721PubMedCentralPubMedGoogle Scholar
  43. 43.
    Galler KM, Cavender AC, Koeklue U, Suggs LJ, Schmalz G, D’Souza RN (2011) Bioengineering of dental stem cells in a PEGylated fibrin gel. Regen Med 6(2):191–200PubMedGoogle Scholar
  44. 44.
    Liu HC, LL E, Wang D, Su F, Wu X, Shi ZP et al (2011) Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(l-lactide). Tissue Eng Part A 17(19–20):2417–2433PubMedGoogle Scholar
  45. 45.
    Mangano C, De Rosa A, Desiderio V, d’Aquino R, Piattelli A, De Francesco F et al (2010) The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 31(13):3543–3551PubMedGoogle Scholar
  46. 46.
    Huang CH, Tseng WY, Yao CC, Jeng JH, Young TH, Chen YJ (2010) Glucosamine promotes osteogenic differentiation of dental pulp stem cells through modulating the level of the transforming growth factor-beta type I receptor. J Cell Physiol 225(1):140–151PubMedGoogle Scholar
  47. 47.
    D’ Alimonte I, Nargi E, Mastrangelo F, Falco G, Lanuti P, Marchisio M et al (2011) Vascular endothelial growth factor enhances in vitro proliferation and osteogenic differentiation of human dental pulp stem cells. J Biol Regul Homeost Agents 25(1):57–69Google Scholar
  48. 48.
    De Rosa A, Tirino V, Paino F, Tartaglione A, Mitsiadis T, Feki A et al (2011) Amniotic fluid-derived mesenchymal stem cells lead to bone differentiation when cocultured with dental pulp stem cells. Tissue Eng Part A 17(5–6):645–653PubMedGoogle Scholar
  49. 49.
    Atari M, Barajas M, Hernandez-Alfaro F, Gil C, Fabregat M, Ferres Padro E et al (2011) Isolation of pluripotent stem cells from human third molar dental pulp. Histol Histopathol 26(8):1057–1070PubMedGoogle Scholar
  50. 50.
    Atari M, Gil-Recio C, Fabregat M, Garcia-Fernandez D, Barajas M, Carrasco MA et al (2012) Dental pulp of the third molar: a new source of pluripotent-like stem cells. J Cell Sci 125(Pt 14):3343–3356PubMedGoogle Scholar
  51. 51.
    Pierschbacher MD, Ruoslahti E (1984) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci USA 81(19):5985–5988PubMedGoogle Scholar
  52. 52.
    Humphries MJ, Obara M, Olden K, Yamada KM (1989) Role of fibronectin in adhesion, migration, and metastasis. Cancer Invest 7(4):373–393PubMedGoogle Scholar
  53. 53.
    Ding HT, Wang CG, Zhang TL, Wang K (2006) Fibronectin enhances in vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells via ERK pathway. J Cell Biochem 99(5):1343–1352PubMedGoogle Scholar
  54. 54.
    Kennedy SB, Washburn NR, Simon CG Jr, Amis EJ (2006) Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation. Biomaterials 27(20):3817–3824PubMedGoogle Scholar
  55. 55.
    Ribeiro N, Sousa SR, Monteiro FJ (2010) Influence of crystallite size of nanophased hydroxyapatite on fibronectin and osteonectin adsorption and on MC3T3-E1 osteoblast adhesion and morphology. J Colloid Interface Sci 351(2):398–406PubMedGoogle Scholar
  56. 56.
    Rico P, Rodriguez Hernandez JC, Moratal D, Altankov G, Monleon Pradas M, Salmeron-Sanchez M (2009) Substrate-induced assembly of fibronectin into networks: influence of surface chemistry and effect on osteoblast adhesion. Tissue Eng Part A 15(11):3271–3281PubMedGoogle Scholar
  57. 57.
    Shahryari A, Azari F, Vali H, Omanovic S (2009) The positive influence of electrochemical cyclic potentiodynamic passivation (CPP) of a SS316LS surface on its response to fibronectin and pre-osteoblasts. Phys Chem Chem Phys 11(29):6218–6224PubMedGoogle Scholar
  58. 58.
    Sasano Y, Li HC, Zhu JX, Imanaka-Yoshida K, Mizoguchi I, Kagayama M (2000) Immunohistochemical localization of type I collagen, fibronectin and tenascin C during embryonic osteogenesis in the dentary of mandibles and tibias in rats. Histochem J 32(10):591–598PubMedGoogle Scholar
  59. 59.
    Tang CH, Yang RS, Chen YF, Fu WM (2007) Basic fibroblast growth factor stimulates fibronectin expression through phospholipase C gamma, protein kinase C alpha, c-Src, NF-kappaB, and p300 pathway in osteoblasts. J Cell Physiol 211(1):45–55PubMedGoogle Scholar
  60. 60.
    Ball MD, O’Connor D, Pandit A (2009) Use of tissue transglutaminase and fibronectin to influence osteoblast responses to tricalcium phosphate scaffolds. J Mater Sci Mater Med 20(1):113–122PubMedGoogle Scholar
  61. 61.
    Forsprecher J, Wang Z, Nelea V, Kaartinen MT (2009) Enhanced osteoblast adhesion on transglutaminase 2-crosslinked fibronectin. Amino Acids 36(4):747–753PubMedGoogle Scholar
  62. 62.
    Woo DG, Shim MS, Park JS, Yang HN, Lee DR, Park KH (2009) The effect of electrical stimulation on the differentiation of hESCs adhered onto fibronectin-coated gold nanoparticles. Biomaterials 30(29):5631–5638PubMedGoogle Scholar
  63. 63.
    Wang Z, Telci D, Griffin M (2011) Importance of syndecan-4 and syndecan -2 in osteoblast cell adhesion and survival mediated by a tissue transglutaminase-fibronectin complex. Exp Cell Res 317(3):367–381PubMedGoogle Scholar
  64. 64.
    Bentmann A, Kawelke N, Moss D, Zentgraf H, Bala Y, Berger I et al (2010) Circulating fibronectin affects bone matrix, whereas osteoblast fibronectin modulates osteoblast function. J Bone Miner Res 25(4):706–715PubMedGoogle Scholar
  65. 65.
    Cairns ML, Meenan BJ, Burke GA, Boyd AR (2010) Influence of surface topography on osteoblast response to fibronectin coated calcium phosphate thin films. Colloids Surf B Biointerfaces 78(2):283–290PubMedGoogle Scholar
  66. 66.
    Gonzalez-Garcia C, Sousa SR, Moratal D, Rico P, Salmeron-Sanchez M (2010) Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids Surf B Biointerfaces 77(2):181–190PubMedGoogle Scholar
  67. 67.
    Toworfe GK, Bhattacharyya S, Composto RJ, Adams CS, Shapiro IM, Ducheyne P (2009) Effect of functional end groups of silane self-assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function. J Tissue Eng Regen Med 3(1):26–36PubMedCentralPubMedGoogle Scholar
  68. 68.
    Tsai WB, Ting YC, Yang JY, Lai JY, Liu HL (2009) Fibronectin modulates the morphology of osteoblast-like cells (MG-63) on nano-grooved substrates. J Mater Sci Mater Med 20(6):1367–1378PubMedGoogle Scholar
  69. 69.
    Deligianni D, Korovessis P, Porte-Derrieu MC, Amedee J, Repantis T (2006) Experimental usage of hydroxyapatite preadsorption with fibronectin to increase permanent stability and longevity of spinal implants. Stud Health Technol Inform 123:289–298PubMedGoogle Scholar
  70. 70.
    Pegueroles M, Aparicio C, Bosio M, Engel E, Gil FJ, Planell JA et al (2010) Spatial organization of osteoblast fibronectin matrix on titanium surfaces: effects of roughness, chemical heterogeneity and surface energy. Acta Biomater 6(1):291–301PubMedGoogle Scholar
  71. 71.
    Elias CN, Gravina PA, Silva Filho CE, Nascente PA (2012) Preparation of bioactive titanium surfaces via fluoride and fibronectin retention. Int J Biomater 2012:290179PubMedCentralPubMedGoogle Scholar
  72. 72.
    Rapuano BE, Hackshaw KM, Schniepp HC, MacDonald DE (2012) Effects of coating a titanium alloy with fibronectin on the expression of osteoblast gene markers in the MC3T3 osteoprogenitor cell line. Int J Oral Maxillofac Implants 27(5):1081–1090PubMedCentralPubMedGoogle Scholar
  73. 73.
    Schonmeyr BH, Wong AK, Li S, Gewalli F, Cordiero PG, Mehrara BJ (2008) Treatment of hydroxyapatite scaffolds with fibronectin and fetal calf serum increases osteoblast adhesion and proliferation in vitro. Plast Reconstr Surg 121(3):751–762PubMedGoogle Scholar
  74. 74.
    Chen C, Lee IS, Zhang SM, Yang HC (2010) Biomimetic apatite formation on calcium phosphate-coated titanium in Dulbecco’s phosphate-buffered saline solution containing CaCl(2) with and without fibronectin. Acta Biomater 6(6):2274–2281PubMedGoogle Scholar
  75. 75.
    Sogo Y, Ito A, Matsuno T, Oyane A, Tamazawa G, Satoh T et al (2007) Fibronectin-calcium phosphate composite layer on hydroxyapatite to enhance adhesion, cell spread and osteogenic differentiation of human mesenchymal stem cells in vitro. Biomed Mater 2(2):116–123PubMedGoogle Scholar
  76. 76.
    Sousa SR, Lamghari M, Sampaio P, Moradas-Ferreira P, Barbosa MA (2008) Osteoblast adhesion and morphology on TiO2 depends on the competitive preadsorption of albumin and fibronectin. J Biomed Mater Res A 84(2):281–290PubMedGoogle Scholar
  77. 77.
    Lehnert M, Gorbahn M, Rosin C, Klein M, Koper I, Al-Nawas B et al (2011) Adsorption and conformation behavior of biotinylated fibronectin on streptavidin-modified TiO(X) surfaces studied by SPR and AFM. Langmuir 27(12):7743–7751PubMedGoogle Scholar
  78. 78.
    Pugdee K, Shibata Y, Yamamichi N, Tsutsumi H, Yoshinari M, Abiko Y et al (2007) Gene expression of MC3T3-E1 cells on fibronectin-immobilized titanium using tresyl chloride activation technique. Dent Mater J 26(5):647–655PubMedGoogle Scholar
  79. 79.
    Jimbo R, Sawase T, Shibata Y, Hirata K, Hishikawa Y, Tanaka Y et al (2007) Enhanced osseointegration by the chemotactic activity of plasma fibronectin for cellular fibronectin-positive cells. Biomaterials 28(24):3469–3477PubMedGoogle Scholar
  80. 80.
    Osathanon T, Bespinyowong K, Arksornnukit M, Takahashi H, Pavasant P (2006) Ti-6Al-7Nb promotes cell spreading and fibronectin and osteopontin synthesis in osteoblast-like cells. J Mater Sci Mater Med 17(7):619–625PubMedGoogle Scholar
  81. 81.
    Park JM, Koak JY, Jang JH, Han CH, Kim SK, Heo SJ (2006) Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Int J Oral Maxillofac Implants 21(6):859–866PubMedGoogle Scholar
  82. 82.
    Hindie M, Degat MC, Gaudiere F, Gallet O, Van Tassel PR, Pauthe E (2011) Pre-osteoblasts on poly(l-lactic acid) and silicon oxide: influence of fibronectin and albumin adsorption. Acta Biomater 7(1):387–394PubMedGoogle Scholar
  83. 83.
    Zhang Y, Xiang Q, Dong S, Li C, Zhou Y (2010) Fabrication and characterization of a recombinant fibronectin/cadherin bio-inspired ceramic surface and its influence on adhesion and ossification in vitro. Acta Biomater 6(3):776–785PubMedGoogle Scholar
  84. 84.
    Muhonen V, Fauveaux C, Olivera G, Vigneron P, Danilov A, Nagel MD et al (2009) Fibronectin modulates osteoblast behavior on Nitinol. J Biomed Mater Res A 88(3):787–796PubMedGoogle Scholar
  85. 85.
    Susperregui AR, Vinals F, Ho PW, Gillespie MT, Martin TJ, Ventura F (2008) BMP-2 regulation of PTHrP and osteoclastogenic factors during osteoblast differentiation of C2C12 cells. J Cell Physiol 216(1):144–152PubMedGoogle Scholar
  86. 86.
    Liu H, Zhang R, Chen D, Oyajobi BO, Zhao M (2012) Functional redundancy of type II BMP receptor and type IIB activin receptor in BMP2-induced osteoblast differentiation. J Cell Physiol 227(3):952–963PubMedCentralPubMedGoogle Scholar
  87. 87.
    Singhatanadgit W, Salih V, Olsen I (2008) RNA interference of the BMPR-IB gene blocks BMP-2-induced osteogenic gene expression in human bone cells. Cell Biol Int 32(11):1362–1370PubMedGoogle Scholar
  88. 88.
    Ding HF, Liu R, Li BG, Lou JR, Dai KR, Tang TT (2007) Biologic effect and immunoisolating behavior of BMP-2 gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules. Biochem Biophys Res Commun 362(4):923–927PubMedGoogle Scholar
  89. 89.
    Liu R, Ginn SL, Lek M, North KN, Alexander IE, Little DG et al (2009) Myoblast sensitivity and fibroblast insensitivity to osteogenic conversion by BMP-2 correlates with the expression of Bmpr-1a. BMC Musculoskelet Disord 10:51PubMedCentralPubMedGoogle Scholar
  90. 90.
    Gersbach CA, Guldberg RE, Garcia AJ (2007) In vitro and in vivo osteoblastic differentiation of BMP-2- and Runx2-engineered skeletal myoblasts. J Cell Biochem 100(5):1324–1336PubMedGoogle Scholar
  91. 91.
    Zhao L, Yang S, Zhou GQ, Yang J, Ji D, Sabatakos G et al (2006) Downregulation of cAMP-dependent protein kinase inhibitor gamma is required for BMP-2-induced osteoblastic differentiation. Int J Biochem Cell Biol 38(12):2064–2073PubMedGoogle Scholar
  92. 92.
    Liu T, Gao Y, Sakamoto K, Minamizato T, Furukawa K, Tsukazaki T et al (2007) BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. J Cell Physiol 211(3):728–735PubMedGoogle Scholar
  93. 93.
    Celil AB, Campbell PG (2005) BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 280(36):31353–31359PubMedGoogle Scholar
  94. 94.
    Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM (2003) BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 309(3):689–694PubMedGoogle Scholar
  95. 95.
    Ulsamer A, Ortuno MJ, Ruiz S, Susperregui AR, Osses N, Rosa JL et al (2008) BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Biol Chem 283(7):3816–3826PubMedGoogle Scholar
  96. 96.
    Lavery K, Swain P, Falb D, Alaoui-Ismaili MH (2008) BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem 283(30):20948–20958PubMedGoogle Scholar
  97. 97.
    Zhang M, Yan Y, Lim YB, Tang D, Xie R, Chen A et al (2009) BMP-2 modulates beta-catenin signaling through stimulation of Lrp5 expression and inhibition of beta-TrCP expression in osteoblasts. J Cell Biochem 108(4):896–905PubMedCentralPubMedGoogle Scholar
  98. 98.
    Jager M, Fischer J, Dohrn W, Li X, Ayers DC, Czibere A et al (2008) Dexamethasone modulates BMP-2 effects on mesenchymal stem cells in vitro. J Orthop Res 26(11):1440–1448PubMedGoogle Scholar
  99. 99.
    Schwartz Z, Simon BJ, Duran MA, Barabino G, Chaudhri R, Boyan BD (2008) Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J Orthop Res 26(9):1250–1255PubMedGoogle Scholar
  100. 100.
    Itoh T, Takeda S, Akao Y (2010) MicroRNA-208 modulates BMP-2-stimulated mouse preosteoblast differentiation by directly targeting V-ets erythroblastosis virus E26 oncogene homolog 1. J Biol Chem 285(36):27745–27752PubMedGoogle Scholar
  101. 101.
    Liu H, Liu Y, Viggeswarapu M, Zheng Z, Titus L, Boden SD (2011) Activation of c-Jun NH(2)-terminal kinase 1 increases cellular responsiveness to BMP-2 and decreases binding of inhibitory Smad6 to the type I BMP receptor. J Bone Miner Res 26(5):1122–1132PubMedGoogle Scholar
  102. 102.
    Suzuki A, Ghayor C, Guicheux J, Magne D, Quillard S, Kakita A et al (2006) Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells. J Bone Miner Res 21(5):674–683PubMedGoogle Scholar
  103. 103.
    Cowan CM, Jiang X, Hsu T, Soo C, Zhang B, Wang JZ et al (2007) Synergistic effects of Nell-1 and BMP-2 on the osteogenic differentiation of myoblasts. J Bone Miner Res 22(6):918–930PubMedCentralPubMedGoogle Scholar
  104. 104.
    Luppen CA, Chandler RL, Noh T, Mortlock DP, Frenkel B (2008) BMP-2 vs. BMP-4 expression and activity in glucocorticoid-arrested MC3T3-E1 osteoblasts: smad signaling, not alkaline phosphatase activity, predicts rescue of mineralization. Growth Factors 26(4):226–237PubMedCentralPubMedGoogle Scholar
  105. 105.
    Singh M, Del Carpio-Cano FE, Monroy MA, Popoff SN, Safadi FF (2012) Homeodomain transcription factors regulate BMP-2-induced osteoactivin transcription in osteoblasts. J Cell Physiol 227(1):390–399PubMedGoogle Scholar
  106. 106.
    Chen PY, Sun JS, Tsuang YH, Chen MH, Weng PW, Lin FH (2010) Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway. Nutr Res 30(3):191–199PubMedGoogle Scholar
  107. 107.
    Su JL, Chiou J, Tang CH, Zhao M, Tsai CH, Chen PS et al (2010) CYR61 regulates BMP-2-dependent osteoblast differentiation through the {alpha}v{beta}3 integrin/integrin-linked kinase/ERK pathway. J Biol Chem 285(41):31325–31336PubMedGoogle Scholar
  108. 108.
    Honda T, Yamamoto H, Ishii A, Inui M (2010) PDZRN3 negatively regulates BMP-2-induced osteoblast differentiation through inhibition of Wnt signaling. Mol Biol Cell 21(18):3269–3277PubMedCentralPubMedGoogle Scholar
  109. 109.
    Liu X, Zeng B, Zhang C (2011) Osteogenic and angiogenic effects of mesenchymal stromal cells with co-transfected human Ang-1 gene and BMP2 gene. Biotechnol Lett 33(10):1933–1938PubMedGoogle Scholar
  110. 110.
    Ono M, Inkson CA, Kilts TM, Young MF (2011) WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity. J Bone Miner Res 26(1):193–208PubMedGoogle Scholar
  111. 111.
    Carpenter RS, Goodrich LR, Frisbie DD, Kisiday JD, Carbone B, McIlwraith CW et al (2010) Osteoblastic differentiation of human and equine adult bone marrow-derived mesenchymal stem cells when BMP-2 or BMP-7 homodimer genetic modification is compared to BMP-2/7 heterodimer genetic modification in the presence and absence of dexamethasone. J Orthop Res 28(10):1330–1337PubMedCentralPubMedGoogle Scholar
  112. 112.
    Johnson MR, Lee HJ, Bellamkonda RV, Guldberg RE (2009) Sustained release of BMP-2 in a lipid-based microtube vehicle. Acta Biomater 5(1):23–28PubMedCentralPubMedGoogle Scholar
  113. 113.
    Gutierrez J, Osses N, Brandan E (2006) Changes in secreted and cell associated proteoglycan synthesis during conversion of myoblasts to osteoblasts in response to bone morphogenetic protein-2: role of decorin in cell response to BMP-2. J Cell Physiol 206(1):58–67PubMedGoogle Scholar
  114. 114.
    Kim IS, Song YM, Cho TH, Kim JY, Weber FE, Hwang SJ (2009) Synergistic action of static stretching and BMP-2 stimulation in the osteoblast differentiation of C2C12 myoblasts. J Biomech 42(16):2721–2727PubMedGoogle Scholar
  115. 115.
    Yang S, Zhao L, Yang J, Chai D, Zhang M, Zhang J et al (2007) deltaEF1 represses BMP-2-induced differentiation of C2C12 myoblasts into the osteoblast lineage. J Biomed Sci 14(5):663–679PubMedGoogle Scholar
  116. 116.
    Molders M, Felix J, Bingmann D, Hirner A, Wiemann M (2007) Uptake of nickel from 316L stainless steel into contacting osteoblastic cells and metal ion interference with BMP-2-induced alkaline phosphatase. J Biomed Mater Res A 83(2):303–312PubMedGoogle Scholar
  117. 117.
    Minamizato T, Sakamoto K, Liu T, Kokubo H, Katsube K, Perbal B et al (2007) CCN3/NOV inhibits BMP-2-induced osteoblast differentiation by interacting with BMP and Notch signaling pathways. Biochem Biophys Res Commun 354(2):567–573PubMedGoogle Scholar
  118. 118.
    Kanzaki S, Takahashi T, Kanno T, Ariyoshi W, Shinmyouzu K, Tujisawa T et al (2008) Heparin inhibits BMP-2 osteogenic bioactivity by binding to both BMP-2 and BMP receptor. J Cell Physiol 216(3):844–850PubMedGoogle Scholar
  119. 119.
    Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Canalis E (2008) Activation of the ERK pathway in osteoblastic cells, role of gremlin and BMP-2. J Cell Biochem 104(4):1421–1426PubMedGoogle Scholar
  120. 120.
    Verrier S, Meury TR, Kupcsik L, Heini P, Stoll T, Alini M (2010) Platelet-released supernatant induces osteoblastic differentiation of human mesenchymal stem cells: potential role of BMP-2. Eur Cell Mater 20:403–414PubMedGoogle Scholar
  121. 121.
    Tseng WP, Yang SN, Lai CH, Tang CH (2010) Hypoxia induces BMP-2 expression via ILK, Akt, mTOR, and HIF-1 pathways in osteoblasts. J Cell Physiol 223(3):810–818PubMedGoogle Scholar
  122. 122.
    Kim HJ, Kim SH (2010) Tanshinone IIA enhances BMP-2-stimulated commitment of C2C12 cells into osteoblasts via p38 activation. Amino Acids 39(5):1217–1226PubMedGoogle Scholar
  123. 123.
    Takase H, Yano S, Yamaguchi T, Kanazawa I, Hayashi K, Yamamoto M et al (2009) Parathyroid hormone upregulates BMP-2 mRNA expression through mevalonate kinase and Rho kinase inhibition in osteoblastic MC3T3-E1 cells. Horm Metab Res 41(12):861–865PubMedGoogle Scholar
  124. 124.
    Huang CY, Lee CY, Chen MY, Tsai HC, Hsu HC, Tang CH (2010) Adiponectin increases BMP-2 expression in osteoblasts via AdipoR receptor signaling pathway. J Cell Physiol 224(2):475–483PubMedGoogle Scholar
  125. 125.
    Mandal CC, Ganapathy S, Gorin Y, Mahadev K, Block K, Abboud HE et al (2010) Reactive oxygen species derived from Nox4 mediate BMP2 gene transcription and osteoblast differentiation. Biochem J 433(2):393–402Google Scholar
  126. 126.
    Hou CH, Hou SM, Tang CH (2009) Ultrasound increased BMP-2 expression via PI3 K, Akt, c-Fos/c-Jun, and AP-1 pathways in cultured osteoblasts. J Cell Biochem 106(1):7–15PubMedGoogle Scholar
  127. 127.
    Kim IS, Cho TH, Kim K, Weber FE, Hwang SJ (2010) High power-pulsed Nd:YAG laser as a new stimulus to induce BMP-2 expression in MC3T3-E1 osteoblasts. Lasers Surg Med 42(6):510–518PubMedGoogle Scholar
  128. 128.
    Ishibashi O, Ikegame M, Takizawa F, Yoshizawa T, Moksed MA, Iizawa F et al (2010) Endoglin is involved in BMP-2-induced osteogenic differentiation of periodontal ligament cells through a pathway independent of Smad-1/5/8 phosphorylation. J Cell Physiol 222(2):465–473PubMedGoogle Scholar
  129. 129.
    Ko H, Yang W, Park K, Kim M (2010) Cytotoxicity of mineral trioxide aggregate (MTA) and bone morphogenetic protein 2 (BMP-2) and response of rat pulp to MTA and BMP-2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(6):e103–e108PubMedGoogle Scholar
  130. 130.
    Van der Zande M, Walboomers XF, Briest A, Springer M, Alava JI, Jansen JA (2008) The effect of combined application of TGFbeta-1, BMP-2, and COLLOSS E on the development of bone marrow derived osteoblast-like cells in vitro. J Biomed Mater Res A 86(3):788–795PubMedGoogle Scholar
  131. 131.
    Singhatanadgit W, Salih V, Olsen I (2006) Up-regulation of bone morphogenetic protein receptor IB by growth factors enhances BMP-2-induced human bone cell functions. J Cell Physiol 209(3):912–922PubMedGoogle Scholar
  132. 132.
    Samee M, Kasugai S, Kondo H, Ohya K, Shimokawa H, Kuroda S (2008) Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J Pharmacol Sci 108(1):18–31PubMedGoogle Scholar
  133. 133.
    Kawasaki T, Niki Y, Miyamoto T, Horiuchi K, Matsumoto M, Aizawa M et al (2010) The effect of timing in the administration of hepatocyte growth factor to modulate BMP-2-induced osteoblast differentiation. Biomaterials 31(6):1191–1198PubMedGoogle Scholar
  134. 134.
    Maegawa N, Kawamura K, Hirose M, Yajima H, Takakura Y, Ohgushi H (2007) Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med 1(4):306–313PubMedGoogle Scholar
  135. 135.
    Hughes-Fulford M, Li CF (2011) The role of FGF-2 and BMP-2 in regulation of gene induction, cell proliferation and mineralization. J Orthop Surg Res 6(1):8PubMedCentralPubMedGoogle Scholar
  136. 136.
    Kaewsrichan J, Wongwitwichot P, Chandarajoti K, Chua KH, Ruszymah BH (2011) Sequential induction of marrow stromal cells by FGF2 and BMP2 improves their growth and differentiation potential in vivo. Arch Oral Biol 56(1):90–101PubMedGoogle Scholar
  137. 137.
    Turhani D, Weissenbock M, Stein E, Wanschitz F, Ewers R (2007) Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules. J Oral Maxillofac Surg 65(3):485–493PubMedGoogle Scholar
  138. 138.
    Keibl C, Fugl A, Zanoni G, Tangl S, Wolbank S, Redl H et al (2011) Human adipose derived stem cells reduce callus volume upon BMP-2 administration in bone regeneration. Injury 42(8):814–820PubMedGoogle Scholar
  139. 139.
    Lee JW, Kang KS, Lee SH, Kim JY, Lee BK, Cho DW (2011) Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32(3):744–752PubMedGoogle Scholar
  140. 140.
    Degat MC, Dubreucq G, Meunier A, Dahri-Correia L, Sedel L, Petite H et al (2009) Enhancement of the biological activity of BMP-2 by synthetic dextran derivatives. J Biomed Mater Res A 88(1):174–183PubMedGoogle Scholar
  141. 141.
    Laflamme C, Rouabhia M (2008) Effect of BMP-2 and BMP-7 homodimers and a mixture of BMP-2/BMP-7 homodimers on osteoblast adhesion and growth following culture on a collagen scaffold. Biomed Mater 3(1):015008PubMedGoogle Scholar
  142. 142.
    Seib FP, Lanfer B, Bornhauser M, Werner C (2010) Biological activity of extracellular matrix-associated BMP-2. J Tissue Eng Regen Med 4(4):324–327PubMedGoogle Scholar
  143. 143.
    Cowan CM, Aghaloo T, Chou YF, Walder B, Zhang X, Soo C et al (2007) MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects. Tissue Eng 13(3):501–512PubMedGoogle Scholar
  144. 144.
    Li H, Dai K, Tang T, Zhang X, Yan M, Lou J (2007) Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2. Biochem Biophys Res Commun 356(4):836–842PubMedGoogle Scholar
  145. 145.
    Schofer M, Fuchs-Winkelmann S, Wack C, Rudisile M, Dersch R, Leifeld I et al (2009) Lack of obvious influence of PLLA nanofibers on the gene expression of BMP-2 and VEGF during growth and differentiation of human mesenchymal stem cells. ScientificWorldJournal 9:313–319PubMedGoogle Scholar
  146. 146.
    Schofer MD, Veltum A, Theisen C, Chen F, Agarwal S, Fuchs-Winkelmann S et al (2011) Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on growth and osteogenic differentiation of human mesenchymal stem cells. J Mater Sci Mater Med 22(7):1753–1762PubMedCentralPubMedGoogle Scholar
  147. 147.
    Schofer MD, Roessler PP, Schaefer J, Theisen C, Schlimme S, Heverhagen JT et al (2011) Electrospun PLLA nanofiber scaffolds and their use in combination with BMP-2 for reconstruction of bone defects. PLoS One 6(9):e25462PubMedCentralPubMedGoogle Scholar
  148. 148.
    Seol YJ, Park YJ, Lee SC, Kim KH, Lee JY, Kim TI et al (2006) Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2. J Biomed Mater Res A 77(3):599–607PubMedGoogle Scholar
  149. 149.
    Bae SE, Choi J, Joung YK, Park K, Han DK (2012) Controlled release of bone morphogenetic protein (BMP)-2 from nanocomplex incorporated on hydroxyapatite-formed titanium surface. J Control Release 160(3):676–684PubMedGoogle Scholar
  150. 150.
    Kodama T, Goto T, Miyazaki T, Takahashi T (2008) Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin. Int J Oral Maxillofac Implants 23(6):1013–1019PubMedGoogle Scholar
  151. 151.
    Kim SE, Song SH, Yu YP, Choi BJ, Kwon IK, Bae MS et al (2011) The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function. Biomaterials 32(2):366–373PubMedGoogle Scholar
  152. 152.
    Lee DW, Yun YP, Park K, Kim SE (2012) Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration. Bone 50(4):974–982PubMedGoogle Scholar
  153. 153.
    Kim SE, Yun Y-P, Lee JY, Shim J-S, Park K, Huh J-B (2013) Co-delivery of platelet-derived growth factor (PDGF-BB) and bone morphogenic protein (BMP-2) coated onto heparinized titanium for improving osteoblast function and osteointegration. J Tissue Eng Regen Med. doi: 10.1002/term.1668
  154. 154.
    Zhao J, Hu J, Wang S, Sun X, Xia L, Zhang X et al (2010) Combination of beta-TCP and BMP-2 gene-modified bMSCs to heal critical size mandibular defects in rats. Oral Dis 16(1):46–54PubMedGoogle Scholar
  155. 155.
    Zheng Z, Yin W, Zara JN, Li W, Kwak J, Mamidi R et al (2010) The use of BMP-2 coupled—Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials 31(35):9293–9300PubMedCentralPubMedGoogle Scholar
  156. 156.
    Balmayor ER, Feichtinger GA, Azevedo HS, van Griensven M, Reis RL (2009) Starch-poly-epsilon-caprolactone microparticles reduce the needed amount of BMP-2. Clin Orthop Relat Res 467(12):3138–3148PubMedGoogle Scholar
  157. 157.
    Chabas D (2005) Osteopontin, a multi-faceted molecule. Med Sci (Paris) 21(10):832–838Google Scholar
  158. 158.
    Ishijima M, Tsuji K, Rittling SR, Yamashita T, Kurosawa H, Denhardt DT et al (2007) Osteopontin is required for mechanical stress-dependent signals to bone marrow cells. J Endocrinol 193(2):235–243PubMedGoogle Scholar
  159. 159.
    Li H, Liu Y, Zhang Q, Jing Y, Chen S, Song Z et al (2009) Ras dependent paracrine secretion of osteopontin by Nf1± osteoblasts promote osteoclast activation in a neurofibromatosis type I murine model. Pediatr Res 65(6):613–618PubMedGoogle Scholar
  160. 160.
    Ono N, Nakashima K, Rittling SR, Schipani E, Hayata T, Soma K et al (2008) Osteopontin negatively regulates parathyroid hormone receptor signaling in osteoblasts. J Biol Chem 283(28):19400–19409PubMedGoogle Scholar
  161. 161.
    Zirngibl RA, Chan JS, Aubin JE (2008) Estrogen receptor-related receptor alpha (ERRalpha) regulates osteopontin expression through a non-canonical ERRalpha response element in a cell context-dependent manner. J Mol Endocrinol 40(2):61PubMedGoogle Scholar
  162. 162.
    Liu L, Qin C, Butler WT, Ratner BD, Jiang S (2007) Controlling the orientation of bone osteopontin via its specific binding with collagen I to modulate osteoblast adhesion. J Biomed Mater Res A 80(1):102–110PubMedGoogle Scholar
  163. 163.
    Kato N, Kitahara K, Rittling SR, Nakashima K, Denhardt DT, Kurosawa H et al (2007) Osteopontin deficiency enhances anabolic action of EP4 agonist at a sub-optimal dose in bone. J Endocrinol 193(1):171–182PubMedGoogle Scholar
  164. 164.
    Addison WN, Masica DL, Gray JJ, McKee MD (2010) Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Miner Res 25(4):695–705PubMedGoogle Scholar
  165. 165.
    Wu CC, Huang ST, Lin HC, Tseng TW, Rao QL, Chen MY (2010) Expression of osteopontin and type I collagen of hFOB 1.19 cells on sintered fluoridated hydroxyapatite composite bone graft materials. Implant Dent 19(6):487–497PubMedGoogle Scholar
  166. 166.
    Grimm G, Vila G, Bieglmayer C, Riedl M, Luger A, Clodi M (2010) Changes in osteopontin and in biomarkers of bone turnover during human endotoxemia. Bone 47(2):388–391PubMedGoogle Scholar
  167. 167.
    Saito K, Nakatomi M, Ida-Yonemochi H, Kenmotsu S, Ohshima H (2011) The expression of GM-CSF and osteopontin in immunocompetent cells precedes the odontoblast differentiation following allogenic tooth transplantation in mice. J Histochem Cytochem 59(5):518–529PubMedGoogle Scholar
  168. 168.
    Giachelli CM, Steitz S (2000) Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol 19(7):615–622PubMedGoogle Scholar
  169. 169.
    Suzuki K, Zhu B, Rittling SR, Denhardt DT, Goldberg HA, McCulloch CA et al (2002) Colocalization of intracellular osteopontin with CD44 is associated with migration, cell fusion, and resorption in osteoclasts. J Bone Miner Res 17(8):1486–1497PubMedGoogle Scholar
  170. 170.
    Bernards MT, Qin C, Jiang S (2008) MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin. Colloids Surf B Biointerfaces 64(2):236–247PubMedCentralPubMedGoogle Scholar
  171. 171.
    Bernards MT, Qin C, Ratner BD, Jiang S (2008) Adhesion of MC3T3-E1 cells to bone sialoprotein and bone osteopontin specifically bound to collagen I. J Biomed Mater Res A 86(3):779–787PubMedCentralPubMedGoogle Scholar
  172. 172.
    Forsprecher J, Wang Z, Goldberg HA, Kaartinen MT (2011) Transglutaminase-mediated oligomerization promotes osteoblast adhesive properties of osteopontin and bone sialoprotein. Cell Adh Migr 5(1):65–72PubMedGoogle Scholar
  173. 173.
    Addison WN, Azari F, Sorensen ES, Kaartinen MT, McKee MD (2007) Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem 282(21):15872–15883PubMedGoogle Scholar
  174. 174.
    Jensen T, Baas J, Dolathshahi-Pirouz A, Jacobsen T, Singh G, Nygaard JV et al (2011) Osteopontin functionalization of hydroxyapatite nanoparticles in a PDLLA matrix promotes bone formation. J Biomed Mater Res A 99(1):94–101PubMedGoogle Scholar
  175. 175.
    Chiquet-Ehrismann R, Tucker RP (2004) Connective tissues: signalling by tenascins. Int J Biochem Cell Biol 36(6):1085–1089PubMedGoogle Scholar
  176. 176.
    Prieto AL, Andersson-Fisone C, Crossin KL (1992) Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin. J Cell Biol 119(3):663–678PubMedGoogle Scholar
  177. 177.
    Lotz MM, Burdsal CA, Erickson HP, McClay DR (1989) Cell adhesion to fibronectin and tenascin: quantitative measurements of initial binding and subsequent strengthening response. J Cell Biol 109(4 Pt 1):1795–1805PubMedGoogle Scholar
  178. 178.
    Roche P, Goldberg HA, Delmas PD, Malaval L (1999) Selective attachment of osteoprogenitors to laminin. Bone 24(4):329–336PubMedGoogle Scholar
  179. 179.
    Chiquet M, Renedo AS, Huber F, Fluck M (2003) How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol 22(1):73–80PubMedGoogle Scholar
  180. 180.
    Mackie EJ, Ramsey S (1996) Expression of tenascin in joint-associated tissues during development and postnatal growth. J Anat 188(Pt 1):157–165PubMedGoogle Scholar
  181. 181.
    Mikura A, Okuhara S, Saito M, Ota M, Ueda K, Iseki S (2009) Association of tenascin-W expression with mineralization in mouse calvarial development. Congenit Anom (Kyoto) 49(2):77–84Google Scholar
  182. 182.
    Meloty-Kapella CV, Degen M, Chiquet-Ehrismann R, Tucker RP (2008) Effects of tenascin-W on osteoblasts in vitro. Cell Tissue Res 334(3):445–455PubMedGoogle Scholar
  183. 183.
    Kimura H, Akiyama H, Nakamura T, de Crombrugghe B (2007) Tenascin-W inhibits proliferation and differentiation of preosteoblasts during endochondral bone formation. Biochem Biophys Res Commun 356(4):935–941PubMedGoogle Scholar
  184. 184.
    Chiquet M, Fambrough DM (1984) Chick myotendinous antigen. I. A monoclonal antibody as a marker for tendon and muscle morphogenesis. J Cell Biol 98(6):1926–1936PubMedGoogle Scholar
  185. 185.
    Mackie EJ, Murphy LI (1998) The role of tenascin-C and related glycoproteins in early chondrogenesis. Microsc Res Tech 43(2):102–110PubMedGoogle Scholar
  186. 186.
    Ozcakir-Tomruk C, Chiquet M, Mericske-Stern R (2012) Tenascin-C and matrix metalloproteinase-9 levels in crevicular fluid of teeth and implants. Clin Implant Dent Relat Res 14(5):672–681PubMedGoogle Scholar
  187. 187.
    Juhasz A, Sziklai I, Rakosy Z, Ecsedi S, Adany R, Balazs M (2009) Elevated level of tenascin and matrix metalloproteinase 9 correlates with the bone destruction capacity of cholesteatomas. Otol Neurotol 30(4):559–565PubMedGoogle Scholar
  188. 188.
    Wang J, Zhou HY, Salih E, Xu L, Wunderlich L, Gu X et al (2006) Site-specific in vivo calcification and osteogenesis stimulated by bone sialoprotein. Calcif Tissue Int 79(3):179–189PubMedGoogle Scholar
  189. 189.
    Wang S, Sasaki Y, Zhou L, Matsumura H, Araki S, Mezawa M et al (2011) Transcriptional regulation of bone sialoprotein gene by interleukin-11. Gene 476(1–2):46–55PubMedGoogle Scholar
  190. 190.
    Yang Y, Cui Q, Sahai N (2010) How does bone sialoprotein promote the nucleation of hydroxyapatite? A molecular dynamics study using model peptides of different conformations. Langmuir 26(12):9848–9859PubMedGoogle Scholar
  191. 191.
    Ganss B, Kim RH, Sodek J (1999) Bone sialoprotein. Crit Rev Oral Biol Med 10(1):79–98PubMedGoogle Scholar
  192. 192.
    Xia B, Wang J, Guo L, Jiang Z (2011) Effect of bone sialoprotein on proliferation and osteodifferentiation of human bone marrow-derived mesenchymal stem cells in vitro. Biologicals 39(4):217–223PubMedGoogle Scholar
  193. 193.
    Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunter GK, Goldberg HA (2007) Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 41(3):462–473PubMedGoogle Scholar
  194. 194.
    Monfoulet L, Malaval L, Aubin JE, Rittling SR, Gadeau AP, Fricain JC et al (2010) Bone sialoprotein, but not osteopontin, deficiency impairs the mineralization of regenerating bone during cortical defect healing. Bone 46(2):447–452PubMedGoogle Scholar
  195. 195.
    Gordon JA, Hunter GK, Goldberg HA (2009) Activation of the mitogen-activated protein kinase pathway by bone sialoprotein regulates osteoblast differentiation. Cells Tissues Organs 189(1–4):138–143PubMedGoogle Scholar
  196. 196.
    Valverde P, Zhang J, Fix A, Zhu J, Ma W, Tu Q et al (2008) Overexpression of bone sialoprotein leads to an uncoupling of bone formation and bone resorption in mice. J Bone Miner Res 23(11):1775–1788PubMedGoogle Scholar
  197. 197.
    Malaval L, Wade-Gueye NM, Boudiffa M, Fei J, Zirngibl R, Chen F et al (2008) Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 205(5):1145–1153PubMedCentralPubMedGoogle Scholar
  198. 198.
    Malaval L, Monfoulet L, Fabre T, Pothuaud L, Bareille R, Miraux S et al (2009) Absence of bone sialoprotein (BSP) impairs cortical defect repair in mouse long bone. Bone 45(5):853–861PubMedGoogle Scholar
  199. 199.
    Boudiffa M, Wade-Gueye NM, Guignandon A, Vanden-Bossche A, Sabido O, Aubin JE et al (2010) Bone sialoprotein deficiency impairs osteoclastogenesis and mineral resorption in vitro. J Bone Miner Res 25(12):2669–2679PubMedGoogle Scholar
  200. 200.
    Mezawa M, Araki S, Takai H, Sasaki Y, Wang S, Li X et al (2009) Regulation of human bone sialoprotein gene transcription by platelet-derived growth factor-BB. Gene 435(1–2):80–87PubMedGoogle Scholar
  201. 201.
    Nakayama Y, Nakajima Y, Kato N, Takai H, Kim DS, Arai M et al (2006) Insulin-like growth factor-I increases bone sialoprotein (BSP) expression through fibroblast growth factor-2 response element and homeodomain protein-binding site in the proximal promoter of the BSP gene. J Cell Physiol 208(2):326–335PubMedGoogle Scholar
  202. 202.
    Takai H, Araki S, Mezawa M, Kim DS, Li X, Yang L et al (2008) AP1 binding site is another target of FGF2 regulation of bone sialoprotein gene transcription. Gene 410(1):97–104PubMedGoogle Scholar
  203. 203.
    Wang Z, Li X, Li Z, Yang L, Sasaki Y, Wang S et al (2010) Effects of inorganic polyphosphate on bone sialoprotein gene expression. Gene 452(2):79–86PubMedGoogle Scholar
  204. 204.
    Yang L, Li Z, Li X, Wang Z, Wang S, Sasaki Y et al (2010) Butyric acid stimulates bone sialoprotein gene transcription. J Oral Sci 52(2):231–237PubMedGoogle Scholar
  205. 205.
    Yang L, Takai H, Utsunomiya T, Li X, Li Z, Wang Z et al (2010) Kaempferol stimulates bone sialoprotein gene transcription and new bone formation. J Cell Biochem 110(6):1342–1355PubMedGoogle Scholar
  206. 206.
    Li X, Kato N, Mezawa M, Li Z, Wang Z, Yang L et al (2010) Transcriptional regulation of bone sialoprotein gene by Porphyromonas gingivalis lipopolysaccharide. J Cell Biochem 110(4):823–833PubMedGoogle Scholar
  207. 207.
    Li Z, Sasaki Y, Mezawa M, Wang S, Li X, Yang L et al (2011) cAMP and fibroblast growth factor 2 regulate bone sialoprotein gene expression in human prostate cancer cells. Gene 471(1–2):1–12PubMedGoogle Scholar
  208. 208.
    Wang S, Sasaki Y, Ogata Y (2011) Calcium hydroxide regulates bone sialoprotein gene transcription in human osteoblast-like Saos2 cells. J Oral Sci 53(1):77–86PubMedGoogle Scholar
  209. 209.
    Sasaki Y, Wang S, Ogata Y (2011) Transcriptional regulation of bone sialoprotein gene by CO(2) laser irradiation. J Oral Sci 53(1):51–59PubMedGoogle Scholar
  210. 210.
    Lamour V, Detry C, Sanchez C, Henrotin Y, Castronovo V, Bellahcene A (2007) Runx2- and histone deacetylase 3-mediated repression is relieved in differentiating human osteoblast cells to allow high bone sialoprotein expression. J Biol Chem 282(50):36240–36249PubMedGoogle Scholar
  211. 211.
    Nakajima Y, Kato N, Nakayama Y, Kim DS, Takai H, Arai M et al (2006) Effect of chlorpromazine on bone sialoprotein (BSP) gene transcription. J Cell Biochem 97(6):1198–1206PubMedGoogle Scholar
  212. 212.
    Kato N, Nakayama Y, Nakajima Y, Samoto H, Saito R, Yamanouchi F et al (2006) Regulation of bone sialoprotein (BSP) gene transcription by lipopolysaccharide. J Cell Biochem 97(2):368–379PubMedGoogle Scholar
  213. 213.
    Karadag A, Fisher LW (2006) Bone sialoprotein enhances migration of bone marrow stromal cells through matrices by bridging MMP-2 to alpha(v)beta3-integrin. J Bone Miner Res 21(10):1627–1636PubMedGoogle Scholar
  214. 214.
    Chan WD, Goldberg HA, Hunter GK, Dixon SJ, Rizkalla AS (2010) Modification of polymer networks with bone sialoprotein promotes cell attachment and spreading. J Biomed Mater Res A 94(3):945–952PubMedGoogle Scholar
  215. 215.
    Schaeren S, Jaquiery C, Wolf F, Papadimitropoulos A, Barbero A, Schultz-Thater E et al (2010) Effect of bone sialoprotein coating of ceramic and synthetic polymer materials on in vitro osteogenic cell differentiation and in vivo bone formation. J Biomed Mater Res A 92(4):1461–1467PubMedGoogle Scholar
  216. 216.
    Graf HL, Stoeva S, Armbruster FP, Neuhaus J, Hilbig H (2008) Effect of bone sialoprotein and collagen coating on cell attachment to TICER and pure titanium implant surfaces. Int J Oral Maxillofac Surg 37(7):634–640PubMedGoogle Scholar
  217. 217.
    O’Toole GC, Salih E, Gallagher C, FitzPatrick D, O’Higgins N, O’Rourke SK (2004) Bone sialoprotein-coated femoral implants are osteoinductive but mechanically compromised. J Orthop Res 22(3):641–646PubMedGoogle Scholar
  218. 218.
    Hilbig H, Kirsten M, Rupietta R, Graf HL, Thalhammer S, Strasser S, Armbruster FP (2007) Implant surface coatings with bone sialoprotein, collagen, and fibronectin and their effects on cells derived from human maxillar bone. Eur J Med Res 12(1):6–12PubMedGoogle Scholar
  219. 219.
    Huang GT, Shagramanova K, Chan SW (2007) Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro. J Endod 32(11):1066–1073Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • P. Chatakun
    • 1
    • 2
  • R. Núñez-Toldrà
    • 1
    • 3
  • E. J. Díaz López
    • 1
  • C. Gil-Recio
    • 1
    • 3
  • E. Martínez-Sarrà
    • 1
    • 3
  • F. Hernández-Alfaro
    • 4
  • E. Ferrés-Padró
    • 4
    • 5
  • L. Giner-Tarrida
    • 1
    • 3
  • M. Atari
    • 1
    • 3
    • 4
    Email author
  1. 1.Laboratory for Regenerative Medicine, College of DentistryUniversitat Internacional de CatalunyaBarcelonaSpain
  2. 2.Police General HospitalBangkokThailand
  3. 3.Chair of Regenerative Implantology MIS-UICUniversitat Internacional de CatalunyaBarcelonaSpain
  4. 4.Surgery and Oral Implantology Department, College of DentistryUniversitat Internacional de CatalunyaBarcelonaSpain
  5. 5.Oral and Maxillofacial Surgery DepartmentFundacio Hospital de Nens de BarcelonaBarcelonaSpain

Personalised recommendations