Cellular and Molecular Life Sciences

, Volume 70, Issue 13, pp 2351–2365 | Cite as

Body size regulation and insulin-like growth factor signaling



How animals achieve their specific body size is a fundamental, but still largely unresolved, biological question. Over the past decades, studies on the insect model system have provided some important insights into the process of body size determination and highlighted the importance of insulin/insulin-like growth factor signaling. Fat body, the Drosophila counterpart of liver and adipose tissue, senses nutrient availability and controls larval growth rate by modulating peripheral insulin signaling. Similarly, insulin-like growth factor I produced from liver and muscle promotes postnatal body growth in mammals. Organismal growth is tightly coupled with the process of sexual maturation wherein the sex steroid hormone attenuates body growth. This review summarizes some important findings from Drosophila and mammalian studies that shed light on the general mechanism of animal size determination.


Body size Insulin signaling IGF-1 Growth hormone Sexual maturation Steroid hormone Fat body MicroRNA 



I apologize to the authors whose publications have not been cited due to space limitations. I thank Dr. Yoosik Kim, Dr. Sunhoe Bang, Wonho Kim, Sekyu Choi, and Gang Jun Lee for critical reading of the manuscript. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A1009732 to S.H.).


  1. 1.
    Oldham S, Hafen E (2003) Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol 13(2):79–85PubMedCrossRefGoogle Scholar
  2. 2.
    Carpenter CL, Duckworth BC, Auger KR, Cohen B, Schaffhausen BS, Cantley LC (1990) Purification and characterization of phosphoinositide 3-kinase from rat liver. J Biol Chem 265(32):19704–19711PubMedGoogle Scholar
  3. 3.
    Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC (1989) PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57(1):167–175PubMedCrossRefGoogle Scholar
  4. 4.
    Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99(3):323–334PubMedCrossRefGoogle Scholar
  5. 5.
    Mora A, Komander D, van Aalten DM, Alessi DR (2004) PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15(2):161–170PubMedCrossRefGoogle Scholar
  6. 6.
    Arden KC (2008) FOXO animal models reveal a variety of diverse roles for FOXO transcription factors. Oncogene 27(16):2345–2350PubMedCrossRefGoogle Scholar
  7. 7.
    Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945PubMedCrossRefGoogle Scholar
  8. 8.
    Radimerski T, Montagne J, Hemmings-Mieszczak M, Thomas G (2002) Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6K signaling. Genes Dev 16(20):2627–2632PubMedCrossRefGoogle Scholar
  9. 9.
    Dann SG, Thomas G (2006) The amino acid sensitive TOR pathway from yeast to mammals. FEBS Lett 580(12):2821–2829PubMedCrossRefGoogle Scholar
  10. 10.
    Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40(2):310–322PubMedCrossRefGoogle Scholar
  11. 11.
    Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484PubMedCrossRefGoogle Scholar
  12. 12.
    Potter CJ, Pedraza LG, Xu T (2002) Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4(9):658–665PubMedCrossRefGoogle Scholar
  13. 13.
    Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10(1):151–162PubMedCrossRefGoogle Scholar
  14. 14.
    Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657PubMedCrossRefGoogle Scholar
  15. 15.
    Cai SL, Tee AR, Short JD, Bergeron JM, Kim J, Shen J, Guo R, Johnson CL, Kiguchi K, Walker CL (2006) Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 173(2):279–289PubMedCrossRefGoogle Scholar
  16. 16.
    Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9(3):316–323PubMedCrossRefGoogle Scholar
  17. 17.
    Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915PubMedCrossRefGoogle Scholar
  18. 18.
    Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Leopold P (2003) A nutrient sensor mechanism controls Drosophila growth. Cell 114(6):739–749PubMedCrossRefGoogle Scholar
  19. 19.
    Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12(4):487–502PubMedCrossRefGoogle Scholar
  20. 20.
    Hietakangas V, Cohen SM (2007) Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth. Genes Dev 21(6):632–637PubMedCrossRefGoogle Scholar
  21. 21.
    Puig O, Tjian R (2005) Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev 19(20):2435–2446PubMedCrossRefGoogle Scholar
  22. 22.
    Teleman AA (2010) Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochem J 425(1):13–26CrossRefGoogle Scholar
  23. 23.
    Hietakangas V, Cohen SM (2009) Regulation of tissue growth through nutrient sensing. Annu Rev Genet 43:389–410PubMedCrossRefGoogle Scholar
  24. 24.
    Thummel CS (2001) Molecular mechanisms of developmental timing in C. elegans and Drosophila. Dev Cell 1(4):453–465PubMedCrossRefGoogle Scholar
  25. 25.
    Gilbert LI, Warren JT (2005) A molecular genetic approach to the biosynthesis of the insect steroid molting hormone. Vitam Horm 73:31–57PubMedCrossRefGoogle Scholar
  26. 26.
    Huang X, Warren JT, Gilbert LI (2008) New players in the regulation of ecdysone biosynthesis. J Genet Genomics 35(1):1–10PubMedCrossRefGoogle Scholar
  27. 27.
    Mirth C, Truman JW, Riddiford LM (2005) The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr Biol 15(20):1796–1807PubMedCrossRefGoogle Scholar
  28. 28.
    Nijhout HF (2003) The control of body size in insects. Dev Biol 261(1):1–9PubMedCrossRefGoogle Scholar
  29. 29.
    Mirth CK, Riddiford LM (2007) Size assessment and growth control: how adult size is determined in insects. BioEssays 29(4):344–355PubMedCrossRefGoogle Scholar
  30. 30.
    Shingleton AW, Das J, Vinicius L, Stern DL (2005) The temporal requirements for insulin signaling during development in Drosophila. PLoS Biol 3(9):e289PubMedCrossRefGoogle Scholar
  31. 31.
    Tennessen JM, Thummel CS (2011) Coordinating growth and maturation—insights from Drosophila. Curr Biol 21(18):R750–R757PubMedCrossRefGoogle Scholar
  32. 32.
    Caldwell PE, Walkiewicz M, Stern M (2005) Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release. Curr Biol 15(20):1785–1795PubMedCrossRefGoogle Scholar
  33. 33.
    Slaidina M, Delanoue R, Gronke S, Partridge L, Leopold P (2009) A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev Cell 17(6):874–884PubMedCrossRefGoogle Scholar
  34. 34.
    Okamoto N, Yamanaka N, Yagi Y, Nishida Y, Kataoka H, O’Connor MB, Mizoguchi A (2009) A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Dev Cell 17(6):885–891PubMedCrossRefGoogle Scholar
  35. 35.
    Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7(11):862–874PubMedCrossRefGoogle Scholar
  36. 36.
    Boisclair YR, Rhoads RP, Ueki I, Wang J, Ooi GT (2001) The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: an important but forgotten component of the circulating IGF system. J Endocrinol 170(1):63–70PubMedCrossRefGoogle Scholar
  37. 37.
    Arquier N, Geminard C, Bourouis M, Jarretou G, Honegger B, Paix A, Leopold P (2008) Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab 7(4):333–338PubMedCrossRefGoogle Scholar
  38. 38.
    Honegger B, Galic M, Kohler K, Wittwer F, Brogiolo W, Hafen E, Stocker H (2008) Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol 7(3):10PubMedCrossRefGoogle Scholar
  39. 39.
    Alic N, Hoddinott MP, Vinti G, Partridge L (2011) Lifespan extension by increased expression of the Drosophila homologue of the IGFBP7 tumour suppressor. Aging Cell 10(1):137–147PubMedCrossRefGoogle Scholar
  40. 40.
    Hull-Thompson J, Muffat J, Sanchez D, Walker DW, Benzer S, Ganfornina MD, Jasper H (2009) Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz. PLoS Genet 5(4):e1000460PubMedCrossRefGoogle Scholar
  41. 41.
    Pasco MY, Leopold P (2012) High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo. PLoS ONE 7(5):e36583PubMedCrossRefGoogle Scholar
  42. 42.
    Geminard C, Rulifson EJ, Leopold P (2009) Remote control of insulin secretion by fat cells in Drosophila. Cell Metab 10(3):199–207PubMedCrossRefGoogle Scholar
  43. 43.
    Rajan A, Perrimon N (2012) Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151(1):123–137PubMedCrossRefGoogle Scholar
  44. 44.
    Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, Chung J, Kim VN (2009) Conserved microRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 139(6):1096–1108PubMedCrossRefGoogle Scholar
  45. 45.
    Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA (2002) Drosophila’s insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev Cell 2(2):239–249PubMedCrossRefGoogle Scholar
  46. 46.
    DiAngelo JR, Bland ML, Bambina S, Cherry S, Birnbaum MJ (2009) The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc Natl Acad Sci USA 106(49):20853–20858PubMedCrossRefGoogle Scholar
  47. 47.
    Teleman AA, Hietakangas V, Sayadian AC, Cohen SM (2008) Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. Cell Metab 7(1):21–32PubMedCrossRefGoogle Scholar
  48. 48.
    Li L, Edgar BA, Grewal SS (2010) Nutritional control of gene expression in Drosophila larvae via TOR, Myc and a novel cis-regulatory element. BMC Cell Biol 11:7PubMedCrossRefGoogle Scholar
  49. 49.
    Parisi F, Riccardo S, Daniel M, Saqcena M, Kundu N, Pession A, Grifoni D, Stocker H, Tabak E, Bellosta P (2011) Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo. BMC Biol 9:65PubMedCrossRefGoogle Scholar
  50. 50.
    Delanoue R, Slaidina M, Leopold P (2010) The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells. Dev Cell 18(6):1012–1021PubMedCrossRefGoogle Scholar
  51. 51.
    Upadhya R, Lee J, Willis IM (2002) Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol Cell 10(6):1489–1494PubMedCrossRefGoogle Scholar
  52. 52.
    Michels AA, Robitaille AM, Buczynski-Ruchonnet D, Hodroj W, Reina JH, Hall MN, Hernandez N (2010) mTORC1 directly phosphorylates and regulates human MAF1. Mol Cell Biol 30(15):3749–3757PubMedCrossRefGoogle Scholar
  53. 53.
    Kantidakis T, Ramsbottom BA, Birch JL, Dowding SN, White RJ (2010) mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci USA 107(26):11823–11828PubMedCrossRefGoogle Scholar
  54. 54.
    Rideout EJ, Marshall L, Grewal SS (2012) Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. Proc Natl Acad Sci USA 109(4):1139–1144PubMedCrossRefGoogle Scholar
  55. 55.
    Marshall L, Rideout EJ, Grewal SS (2012) Nutrient/TOR-dependent regulation of RNA polymerase III controls tissue and organismal growth in Drosophila. EMBO J 31(8):1916–1930PubMedCrossRefGoogle Scholar
  56. 56.
    Killip LE, Grewal SS (2012) DREF is required for cell and organismal growth in Drosophila and functions downstream of the nutrition/TOR pathway. Dev Biol 371(2):191–202PubMedCrossRefGoogle Scholar
  57. 57.
    Okamoto N, Nakamori R, Murai T, Yamauchi Y, Masuda A, Nishimura T (2013) A secreted decoy of InR antagonizes insulin/IGF signaling to restrict body growth in Drosophila. Genes Dev 27(1):87–97PubMedCrossRefGoogle Scholar
  58. 58.
    Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920PubMedCrossRefGoogle Scholar
  59. 59.
    Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ (2004) Microbial factor-mediated development in a host-bacterial mutualism. Science 306(5699):1186–1188PubMedCrossRefGoogle Scholar
  60. 60.
    Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332(6032):974–977PubMedCrossRefGoogle Scholar
  61. 61.
    Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14(3):403–414PubMedCrossRefGoogle Scholar
  62. 62.
    Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334(6056):670–674PubMedCrossRefGoogle Scholar
  63. 63.
    Demontis F, Perrimon N (2009) Integration of insulin receptor/foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. Development 136(6):983–993PubMedCrossRefGoogle Scholar
  64. 64.
    Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, Mei Z, Curtin LR, Roche AF, Johnson CL (2000) CDC growth charts: United States. Adv Data 314:1–27PubMedGoogle Scholar
  65. 65.
    Tanner JM, Davies PS (1985) Clinical longitudinal standards for height and height velocity for North American children. J Pediatr 107(3):317–329PubMedCrossRefGoogle Scholar
  66. 66.
    King-Jones K, Thummel CS (2005) Developmental biology. Less steroids make bigger flies. Science 310(5748):630–631PubMedCrossRefGoogle Scholar
  67. 67.
    Colombani J, Bianchini L, Layalle S, Pondeville E, Dauphin-Villemant C, Antoniewski C, Carre C, Noselli S, Leopold P (2005) Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 310(5748):667–670PubMedCrossRefGoogle Scholar
  68. 68.
    Jin H, Kim VN, Hyun S (2012) Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila. Genes Dev 26(13):1427–1432PubMedCrossRefGoogle Scholar
  69. 69.
    Francis VA, Zorzano A, Teleman AA (2010) dDOR is an EcR coactivator that forms a feed-forward loop connecting insulin and ecdysone signaling. Curr Biol 20(20):1799–1808PubMedCrossRefGoogle Scholar
  70. 70.
    Russell MA (1974) Pattern formation in the imaginal discs of a temperature-sensitive cell-lethal mutant of Drosophila melanogaster. Dev Biol 40(1):24–39PubMedCrossRefGoogle Scholar
  71. 71.
    Kunkel JG (1977) Cockroach molting. II. The nature of regeneration-induced delay of molting hormone secretion. Biol Bull 153(1):145–162PubMedCrossRefGoogle Scholar
  72. 72.
    Simpson P, Berreur P, Berreur-Bonnenfant J (1980) The initiation of pupariation in Drosophila: dependence on growth of the imaginal discs. J Embryol Exp Morphol 57:155–165PubMedGoogle Scholar
  73. 73.
    Halme A, Cheng M, Hariharan IK (2010) Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr Biol 20(5):458–463PubMedCrossRefGoogle Scholar
  74. 74.
    Stieper BC, Kupershtok M, Driscoll MV, Shingleton AW (2008) Imaginal discs regulate developmental timing in Drosophila melanogaster. Dev Biol 321(1):18–26PubMedCrossRefGoogle Scholar
  75. 75.
    Parker NF, Shingleton AW (2011) The coordination of growth among Drosophila organs in response to localized growth-perturbation. Dev Biol 357(2):318–325PubMedCrossRefGoogle Scholar
  76. 76.
    Garelli A, Gontijo AM, Miguela V, Caparros E, Dominguez M (2012) Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science 336(6081):579–582PubMedCrossRefGoogle Scholar
  77. 77.
    Colombani J, Andersen DS, Leopold P (2012) Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336(6081):582–585PubMedCrossRefGoogle Scholar
  78. 78.
    D’Ercole AJ, Stiles AD, Underwood LE (1984) Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci USA 81(3):935–939PubMedCrossRefGoogle Scholar
  79. 79.
    Gosteli-Peter MA, Winterhalter KH, Schmid C, Froesch ER, Zapf J (1994) Expression and regulation of insulin-like growth factor-I (IGF-I) and IGF-binding protein messenger ribonucleic acid levels in tissues of hypophysectomized rats infused with IGF-I and growth hormone. Endocrinology 135(6):2558–2567PubMedCrossRefGoogle Scholar
  80. 80.
    Mathews LS, Norstedt G, Palmiter RD (1986) Regulation of insulin-like growth factor I gene expression by growth hormone. Proc Natl Acad Sci USA 83(24):9343–9347PubMedCrossRefGoogle Scholar
  81. 81.
    Argetsinger LS, Campbell GS, Yang X, Witthuhn BA, Silvennoinen O, Ihle JN, Carter-Su C (1993) Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74(2):237–244PubMedCrossRefGoogle Scholar
  82. 82.
    Waxman DJ, Ram PA, Park SH, Choi HK (1995) Intermittent plasma growth hormone triggers tyrosine phosphorylation and nuclear translocation of a liver-expressed, Stat 5-related DNA binding protein. Proposed role as an intracellular regulator of male-specific liver gene transcription. J Biol Chem 270(22):13262–13270PubMedCrossRefGoogle Scholar
  83. 83.
    Ram PA, Park SH, Choi HK, Waxman DJ (1996) Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver. Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. J Biol Chem 271(10):5929–5940PubMedCrossRefGoogle Scholar
  84. 84.
    Silva CM, Lu H, Day RN (1996) Characterization and cloning of STAT5 from IM-9 cells and its activation by growth hormone. Mol Endocrinol 10(5):508–518PubMedCrossRefGoogle Scholar
  85. 85.
    Woelfle J, Chia DJ, Rotwein P (2003) Mechanisms of growth hormone (GH) action. Identification of conserved Stat5 binding sites that mediate GH-induced insulin-like growth factor-I gene activation. J Biol Chem 278(51):51261–51266PubMedCrossRefGoogle Scholar
  86. 86.
    Davey HW, Xie T, McLachlan MJ, Wilkins RJ, Waxman DJ, Grattan DR (2001) STAT5b is required for GH-induced liver IGF-I gene expression. Endocrinology 142(9):3836–3841PubMedCrossRefGoogle Scholar
  87. 87.
    Woelfle J, Billiard J, Rotwein P (2003) Acute control of insulin-like growth factor-I gene transcription by growth hormone through Stat5b. J Biol Chem 278(25):22696–22702PubMedCrossRefGoogle Scholar
  88. 88.
    Woelfle J, Rotwein P (2004) In vivo regulation of growth hormone-stimulated gene transcription by STAT5b. Am J Physiol Endocrinol Metab 286(3):E393–E401PubMedCrossRefGoogle Scholar
  89. 89.
    Chia DJ, Ono M, Woelfle J, Schlesinger-Massart M, Jiang H, Rotwein P (2006) Characterization of distinct Stat5b binding sites that mediate growth hormone-stimulated IGF-I gene transcription. J Biol Chem 281(6):3190–3197PubMedCrossRefGoogle Scholar
  90. 90.
    Frost RA, Nystrom GJ, Lang CH (2002) Regulation of IGF-I mRNA and signal transducers and activators of transcription-3 and -5 (Stat-3 and -5) by GH in C2C12 myoblasts. Endocrinology 143(2):492–503PubMedCrossRefGoogle Scholar
  91. 91.
    Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A (2001) Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 229(1):141–162PubMedCrossRefGoogle Scholar
  92. 92.
    Baker J, Liu JP, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75(1):73–82PubMedGoogle Scholar
  93. 93.
    Brem G, Wanke R, Wolf E, Buchmuller T, Muller M, Brenig B, Hermanns W (1989) Multiple consequences of human growth hormone expression in transgenic mice. Mol Biol Med 6(6):531–547PubMedGoogle Scholar
  94. 94.
    Mathews LS, Hammer RE, Behringer RR, D’Ercole AJ, Bell GI, Brinster RL, Palmiter RD (1988) Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology 123(6):2827–2833PubMedCrossRefGoogle Scholar
  95. 95.
    Woods KA, Camacho-Hubner C, Savage MO, Clark AJ (1996) Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med 335(18):1363–1367PubMedCrossRefGoogle Scholar
  96. 96.
    Efstratiadis A (1998) Genetics of mouse growth. Int J Dev Biol 42(7):955–976PubMedGoogle Scholar
  97. 97.
    Green H, Morikawa M, Nixon T (1985) A dual effector theory of growth-hormone action. Differentiation 29(3):195–198PubMedCrossRefGoogle Scholar
  98. 98.
    Clemmons DR, Smith-Banks A, Underwood LE (1992) Reversal of diet-induced catabolism by infusion of recombinant insulin-like growth factor-I in humans. J Clin Endocrinol Metab 75(1):234–238PubMedCrossRefGoogle Scholar
  99. 99.
    Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander EA (2007) A single IGF1 allele is a major determinant of small size in dogs. Science 316(5821):112–115PubMedCrossRefGoogle Scholar
  100. 100.
    Crain DA, Bolten AB, Bjorndal KA, Guillette LJ Jr, Gross TS (1995) Size-dependent, sex-dependent, and seasonal changes in insulin-like growth factor I in the loggerhead sea turtle (Caretta caretta). Gen Comp Endocrinol 98(2):219–226PubMedCrossRefGoogle Scholar
  101. 101.
    Ditchkoff SS, Spicer LJ, Masters RE, Lochmiller RL (2001) Concentrations of insulin-like growth factor-I in adult male white-tailed deer (Odocoileus virginianus): associations with serum testosterone, morphometrics and age during and after the breeding season. Comp Biochem Physiol A Mol Integr Physiol 129(4):887–895PubMedCrossRefGoogle Scholar
  102. 102.
    Sparkman AM, Vleck CM, Bronikowski AM (2009) Evolutionary ecology of endocrine-mediated life-history variation in the garter snake Thamnophis elegans. Ecology 90(3):720–728PubMedCrossRefGoogle Scholar
  103. 103.
    Kenyon PR, Blair HT, Breier BH, Gluckman PD (2007) The influence of maternal IGF-1 genotype on birthweight and growth rate of lambs. N Z J Agricult Res 50(3):291–297CrossRefGoogle Scholar
  104. 104.
    Kenyon PR, Jenkinson CMC, Blair HT, Morel PCH, Breier BH, Gluckman PD (2009) Reproductive performance of progesterone synchronised IGF-1 selection line ewes. N Z J Agricult Res 52(3):307–314CrossRefGoogle Scholar
  105. 105.
    Beccavin C, Chevalier B, Cogburn LA, Simon J, Duclos MJ (2001) Insulin-like growth factors and body growth in chickens divergently selected for high or low growth rate. J Endocrinol 168(2):297–306PubMedCrossRefGoogle Scholar
  106. 106.
    Sjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, LeRoith D, Tornell J, Isaksson OG, Jansson JO, Ohlsson C (1999) Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci USA 96(12):7088–7092PubMedCrossRefGoogle Scholar
  107. 107.
    Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, LeRoith D (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 96(13):7324–7329PubMedCrossRefGoogle Scholar
  108. 108.
    Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D (2002) Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 110(6):771–781PubMedGoogle Scholar
  109. 109.
    Stratikopoulos E, Szabolcs M, Dragatsis I, Klinakis A, Efstratiadis A (2008) The hormonal action of IGF1 in postnatal mouse growth. Proc Natl Acad Sci USA 105(49):19378–19383PubMedCrossRefGoogle Scholar
  110. 110.
    Klover P, Hennighausen L (2007) Postnatal body growth is dependent on the transcription factors signal transducers and activators of transcription 5a/b in muscle: a role for autocrine/paracrine insulin-like growth factor I. Endocrinology 148(4):1489–1497PubMedCrossRefGoogle Scholar
  111. 111.
    O’Dell SD, Day IN (1998) Insulin-like growth factor II (IGF-II). Int J Biochem Cell Biol 30(7):767–771PubMedCrossRefGoogle Scholar
  112. 112.
    Gray A, Tam AW, Dull TJ, Hayflick J, Pintar J, Cavenee WK, Koufos A, Ullrich A (1987) Tissue-specific and developmentally regulated transcription of the insulin-like growth factor 2 gene. DNA 6(4):283–295PubMedCrossRefGoogle Scholar
  113. 113.
    Clemmons DR (1997) Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine Growth Factor Rev 8(1):45–62PubMedCrossRefGoogle Scholar
  114. 114.
    Tronche F, Opherk C, Moriggl R, Kellendonk C, Reimann A, Schwake L, Reichardt HM, Stangl K, Gau D, Hoeflich A, Beug H, Schmid W, Schutz G (2004) Glucocorticoid receptor function in hepatocytes is essential to promote postnatal body growth. Genes Dev 18(5):492–497PubMedCrossRefGoogle Scholar
  115. 115.
    Engblom D, Kornfeld JW, Schwake L, Tronche F, Reimann A, Beug H, Hennighausen L, Moriggl R, Schutz G (2007) Direct glucocorticoid receptor-Stat5 interaction in hepatocytes controls body size and maturation-related gene expression. Genes Dev 21(10):1157–1162PubMedCrossRefGoogle Scholar
  116. 116.
    Jing X, Miyajima M, Sawada T, Chen Q, Iida K, Furushima K, Arai D, Chihara K, Sakaguchi K (2012) Crosstalk of humoral and cell–cell contact-mediated signals in postnatal body growth. Cell Rep 2(3):652–665PubMedCrossRefGoogle Scholar
  117. 117.
    Cybulski N, Polak P, Auwerx J, Ruegg MA, Hall MN (2009) mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proc Natl Acad Sci USA 106(24):9902–9907PubMedCrossRefGoogle Scholar
  118. 118.
    Marin G, Domene HM, Barnes KM, Blackwell BJ, Cassorla FG, Cutler GB Jr (1994) The effects of estrogen priming and puberty on the growth hormone response to standardized treadmill exercise and arginine-insulin in normal girls and boys. J Clin Endocrinol Metab 79(2):537–541PubMedCrossRefGoogle Scholar
  119. 119.
    Leung KC, Johannsson G, Leong GM, Ho KK (2004) Estrogen regulation of growth hormone action. Endocr Rev 25(5):693–721PubMedCrossRefGoogle Scholar
  120. 120.
    Parfitt AM (2002) Misconceptions (1): epiphyseal fusion causes cessation of growth. Bone 30(2):337–339PubMedCrossRefGoogle Scholar
  121. 121.
    Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331(16):1056–1061PubMedCrossRefGoogle Scholar
  122. 122.
    Nilsson O, Abad V, Chrysis D, Ritzen EM, Savendahl L, Baron J (2002) Estrogen receptor-alpha and -beta are expressed throughout postnatal development in the rat and rabbit growth plate. J Endocrinol 173(3):407–414PubMedCrossRefGoogle Scholar
  123. 123.
    Amiel SA, Sherwin RS, Simonson DC, Lauritano AA, Tamborlane WV (1986) Impaired insulin action in puberty. A contributing factor to poor glycemic control in adolescents with diabetes. N Engl J Med 315(4):215–219PubMedCrossRefGoogle Scholar
  124. 124.
    Caprio S, Bronson M, Sherwin RS, Rife F, Tamborlane WV (1996) Co-existence of severe insulin resistance and hyperinsulinaemia in pre-adolescent obese children. Diabetologia 39(12):1489–1497PubMedCrossRefGoogle Scholar
  125. 125.
    Diamond MP, Grainger D, Diamond MC, Sherwin RS, Defronzo RA (1998) Effects of methyltestosterone on insulin secretion and sensitivity in women. J Clin Endocrinol Metab 83(12):4420–4425PubMedCrossRefGoogle Scholar
  126. 126.
    Polderman KH, Gooren LJ, Asscheman H, Bakker A, Heine RJ (1994) Induction of insulin resistance by androgens and estrogens. J Clin Endocrinol Metab 79(1):265–271PubMedCrossRefGoogle Scholar
  127. 127.
    Landon J, Wynn V, Samols E (1963) The effect of anabolic steroids on blood sugar and plasma insulin levels in man. Metabolism 12:924–935PubMedGoogle Scholar
  128. 128.
    Woodard TL, Burghen GA, Kitabchi AE, Wilimas JA (1981) Glucose intolerance and insulin resistance in aplastic anemia treated with oxymetholone. J Clin Endocrinol Metab 53(5):905–908PubMedCrossRefGoogle Scholar
  129. 129.
    Cohen JC, Hickman R (1987) Insulin resistance and diminished glucose tolerance in powerlifters ingesting anabolic steroids. J Clin Endocrinol Metab 64(5):960–963PubMedCrossRefGoogle Scholar
  130. 130.
    Buffington CK, Kitabchi AE (1994) Evidence for a defect in insulin metabolism in hyperandrogenic women with polycystic ovarian syndrome. Metabolism 43(11):1367–1372PubMedCrossRefGoogle Scholar
  131. 131.
    Collison M, Campbell IW, Salt IP, Dominiczak AF, Connell JM, Lyall H, Gould GW (2000) Sex hormones induce insulin resistance in 3T3-L1 adipocytes by reducing cellular content of IRS proteins. Diabetologia 43(11):1374–1380PubMedCrossRefGoogle Scholar
  132. 132.
    Clark SF, Molero JC, James DE (2000) Release of insulin receptor substrate proteins from an intracellular complex coincides with the development of insulin resistance. J Biol Chem 275(6):3819–3826PubMedCrossRefGoogle Scholar
  133. 133.
    Sulem P, Gudbjartsson DF, Rafnar T, Holm H, Olafsdottir EJ, Olafsdottir GH, Jonsson T, Alexandersen P, Feenstra B, Boyd HA, Aben KK, Verbeek AL, Roeleveld N, Jonasdottir A, Styrkarsdottir U, Steinthorsdottir V, Karason A, Stacey SN, Gudmundsson J, Jakobsdottir M, Thorleifsson G, Hardarson G, Gulcher J, Kong A, Kiemeney LA, Melbye M, Christiansen C, Tryggvadottir L, Thorsteinsdottir U, Stefansson K (2009) Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat Genet 41(6):734–738PubMedCrossRefGoogle Scholar
  134. 134.
    Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI, Sanna S, Eyheramendy S, Voight BF, Butler JL, Guiducci C, Illig T, Hackett R, Heid IM, Jacobs KB, Lyssenko V, Uda M, Boehnke M, Chanock SJ, Groop LC, Hu FB, Isomaa B, Kraft P, Peltonen L, Salomaa V, Schlessinger D, Hunter DJ, Hayes RB, Abecasis GR, Wichmann HE, Mohlke KL, Hirschhorn JN (2008) Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet 40(5):584–591PubMedCrossRefGoogle Scholar
  135. 135.
    Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB, Bingham SA, Brage S, Smith GD, Ekelund U, Gillson CJ, Glaser B, Golding J, Hardy R, Khaw KT, Kuh D, Luben R, Marcus M, McGeehin MA, Ness AR, Northstone K, Ring SM, Rubin C, Sims MA, Song K, Strachan DP, Vollenweider P, Waeber G, Waterworth DM, Wong A, Deloukas P, Barroso I, Mooser V, Loos RJ, Wareham NJ (2009) Genetic variation in LIN28B is associated with the timing of puberty. Nat Genet 41(6):729–733PubMedCrossRefGoogle Scholar
  136. 136.
    He C, Kraft P, Chen C, Buring JE, Pare G, Hankinson SE, Chanock SJ, Ridker PM, Hunter DJ, Chasman DI (2009) Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat Genet 41(6):724–728PubMedCrossRefGoogle Scholar
  137. 137.
    Perry JR, Stolk L, Franceschini N, Lunetta KL, Zhai G, McArdle PF, Smith AV, Aspelund T, Bandinelli S, Boerwinkle E, Cherkas L, Eiriksdottir G, Estrada K, Ferrucci L, Folsom AR, Garcia M, Gudnason V, Hofman A, Karasik D, Kiel DP, Launer LJ, van Meurs J, Nalls MA, Rivadeneira F, Shuldiner AR, Singleton A, Soranzo N, Tanaka T, Visser JA, Weedon MN, Wilson SG, Zhuang V, Streeten EA, Harris TB, Murray A, Spector TD, Demerath EW, Uitterlinden AG, Murabito JM (2009) Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat Genet 41(6):648–650PubMedCrossRefGoogle Scholar
  138. 138.
    Huang Y (2012) A mirror of two faces: Lin28 as a master regulator of both miRNA and mRNA. Wiley Interdiscip Rev RNA 3(4):483–494PubMedCrossRefGoogle Scholar
  139. 139.
    Zhu H, Shah S, Shyh-Chang N, Shinoda G, Einhorn WS, Viswanathan SR, Takeuchi A, Grasemann C, Rinn JL, Lopez MF, Hirschhorn JN, Palmert MR, Daley GQ (2010) Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nat Genet 42(7):626–630PubMedCrossRefGoogle Scholar
  140. 140.
    Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, Urbach A, Thornton JE, Triboulet R, Gregory RI, Altshuler D, Daley GQ (2011) The Lin28/let-7 axis regulates glucose metabolism. Cell 147(1):81–94PubMedCrossRefGoogle Scholar
  141. 141.
    Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, Benes V, Roche H, Dalenc F, Auboeuf D, Millevoi S, Vagner S (2009) Widespread estrogen-dependent repression of microRNAs involved in breast tumor cell growth. Cancer Res 69(21):8332–8340PubMedCrossRefGoogle Scholar
  142. 142.
    Yamagata K, Fujiyama S, Ito S, Ueda T, Murata T, Naitou M, Takeyama K, Minami Y, O’Malley BW, Kato S (2009) Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol Cell 36(2):340–347PubMedCrossRefGoogle Scholar
  143. 143.
    Nothnick WB, Healy C (2010) Estrogen induces distinct patterns of microRNA expression within the mouse uterus. Reprod Sci 17(11):987–994PubMedCrossRefGoogle Scholar
  144. 144.
    Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesChung-Ang UniversitySeoulKorea

Personalised recommendations