Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 19, pp 3631–3656 | Cite as

Biomarkers for predicting future metastasis of human gastrointestinal tumors

  • Lui Ng
  • Ronnie Tung Ping Poon
  • Roberta Pang
Review

Abstract

The recent advances in surgery and radiation therapy have significantly improved the prognosis of patients with primary cancer, and the major challenge of cancer treatment now is metastatic disease development. The 5-year survival rate of cancer patients who have distant metastasis at diagnosis is extremely low, suggesting that prediction and early detection of metastasis would definitely improve their prognosis because suitable patient therapeutic management and treatment strategy can be provided. Cancer cells from a primary site give rise to a metastatic tumor via a number of steps which require the involvement and altered expression of many regulators. These regulators may serve as biomarkers for predicting metastasis. Over the past few years, numerous regulators have been found correlating with metastasis. In this review, we summarize the findings of a number of potential biomarkers that are involved in cadherin–catenin interaction, integrin signaling, PI3K/Akt/mTOR signaling and cancer stem cell identification in gastrointestinal cancers. We will also discuss how certain biomarkers are associated with the tumor microenvironment that favors cancer metastasis.

Keywords

Metastasis Hepatocellular carcinoma Colorectal cancer Gastric cancer Pancreatic cancer Esophageal cancer 

References

  1. 1.
    Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904PubMedCrossRefGoogle Scholar
  2. 2.
    Yang SY et al (2011) Growth factors and their receptors in cancer metastases. Front Biosci 16:531–538CrossRefGoogle Scholar
  3. 3.
    Locker GY et al (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24(33):5313–5327PubMedCrossRefGoogle Scholar
  4. 4.
    Ishihara S et al (2010) Prognostic significance of response to preoperative radiotherapy, lymph node metastasis, and CEA level in patients undergoing total mesorectal excision of rectal cancer. Int J Colorectal Dis 25(12):1417–1425PubMedCrossRefGoogle Scholar
  5. 5.
    Fletcher RH (1986) Carcinoembryonic antigen. Ann Intern Med 104(1):66–73PubMedCrossRefGoogle Scholar
  6. 6.
    Begent RH (1984) The value of carcinoembryonic antigen measurement in clinical practice. Ann Clin Biochem 21(Pt 4):231–238PubMedGoogle Scholar
  7. 7.
    Thomas P et al (1990) The structure, metabolism and function of the carcinoembryonic antigen gene family. Biochim Biophys Acta 1032(2–3):177–189PubMedGoogle Scholar
  8. 8.
    Sorbye H, Dahl O (2003) Carcinoembryonic antigen surge in metastatic colorectal cancer patients responding to oxaliplatin combination chemotherapy: implications for tumor marker monitoring and guidelines. J Clin Oncol 21(23):4466–4467PubMedCrossRefGoogle Scholar
  9. 9.
    Sorbye H, Dahl O (2004) Transient CEA increase at start of oxaliplatin combination therapy for metastatic colorectal cancer. Acta Oncol 43(5):495–498PubMedCrossRefGoogle Scholar
  10. 10.
    Sato H et al (2010) Significance of serum concentrations of E-selectin and CA19-9 in the prognosis of colorectal cancer. Jpn J Clin Oncol 40(11):1073–1080PubMedCrossRefGoogle Scholar
  11. 11.
    Kim DH et al (2011) The relationships between perioperative CEA, CA 19–9, and CA 72–4 and recurrence in gastric cancer patients after curative radical gastrectomy. J Surg Oncol 104(6):585–591PubMedCrossRefGoogle Scholar
  12. 12.
    Yakabe T et al (2010) Clinical significance of CEA and CA19-9 in postoperative follow-up of colorectal cancer. Ann Surg Oncol 17(9):2349–2356PubMedCrossRefGoogle Scholar
  13. 13.
    Sanyal AJ, Yoon SK, Lencioni R (2010) The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist 15(Suppl 4):14–22PubMedCrossRefGoogle Scholar
  14. 14.
    Bruix J, Sherman M (2005) Management of hepatocellular carcinoma. Hepatology 42(5):1208–1236PubMedCrossRefGoogle Scholar
  15. 15.
    Di Bisceglie AM (2004) Issues in screening and surveillance for hepatocellular carcinoma. Gastroenterology 127(5 Suppl 1):S104–S107PubMedCrossRefGoogle Scholar
  16. 16.
    Daniele B et al (2004) Alpha-fetoprotein and ultrasonography screening for hepatocellular carcinoma. Gastroenterology 127(5 Suppl 1):S108–S112PubMedCrossRefGoogle Scholar
  17. 17.
    Ucar E et al (2008) Prognostic value of preoperative CEA, CA 19–9, CA 72–4, and AFP levels in gastric cancer. Adv Ther 25(10):1075–1084PubMedCrossRefGoogle Scholar
  18. 18.
    Nakajima K et al (1998) Impact of preoperative serum carcinoembryonic antigen, CA 19–9 and alpha fetoprotein levels in gastric cancer patients. Tumour Biol 19(6):464–469PubMedCrossRefGoogle Scholar
  19. 19.
    Steeg PS (2003) Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 3(1):55–63PubMedCrossRefGoogle Scholar
  20. 20.
    Birchmeier W, Behrens J (1994) Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198(1):11–26PubMedGoogle Scholar
  21. 21.
    Zhang CH et al (2010) Activation of STAT3 signal pathway correlates with twist and E-cadherin expression in hepatocellular carcinoma and their clinical significance. J Surg Res 174(1):120–129PubMedCrossRefGoogle Scholar
  22. 22.
    Boo YJ et al (2007) L1 expression as a marker for poor prognosis, tumor progression, and short survival in patients with colorectal cancer. Ann Surg Oncol 14(5):1703–1711PubMedCrossRefGoogle Scholar
  23. 23.
    Saad AA et al (2010) Prognostic significance of E-cadherin expression and peripheral blood micrometastasis in gastric carcinoma patients. Ann Surg Oncol 17(11):3059–3067PubMedCrossRefGoogle Scholar
  24. 24.
    Uchikado Y et al (2011) Increased slug and decreased E-cadherin expression is related to poor prognosis in patients with gastric cancer. Gastric Cancer 14(1):41–49PubMedCrossRefGoogle Scholar
  25. 25.
    Castro Alves C et al (2007) Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J Pathol 211(5):507–515PubMedCrossRefGoogle Scholar
  26. 26.
    Joo YE et al (2002) Expression of E-cadherin, alpha- and beta-catenins in patients with pancreatic adenocarcinoma. Pancreatology 2(2):129–137PubMedCrossRefGoogle Scholar
  27. 27.
    Zhao XJ et al (2003) Expression of e-cadherin and beta-catenin in human esophageal squamous cell carcinoma: relationships with prognosis. World J Gastroenterol 9(2):225–232PubMedGoogle Scholar
  28. 28.
    Chan AO et al (2005) Early prediction of tumor recurrence after curative resection of gastric carcinoma by measuring soluble E-cadherin. Cancer 104(4):740–746PubMedCrossRefGoogle Scholar
  29. 29.
    Chan AO et al (2001) Soluble E-cadherin is a valid prognostic marker in gastric carcinoma. Gut 48(6):808–811PubMedCrossRefGoogle Scholar
  30. 30.
    Soyama A et al (2008) Significance of the serum level of soluble E-cadherin in patients with HCC. Hepatogastroenterology 55(85):1390–1393PubMedGoogle Scholar
  31. 31.
    Okugawa Y et al (2011) Clinical significance of serum soluble E-cadherin in colorectal carcinoma. J Surg Res 175(2):e67–e73Google Scholar
  32. 32.
    Chung Y et al (2011) Serum soluble E-cadherin is a potential prognostic marker in esophageal squamous cell carcinoma. Dis Esophagus 24(1):49–55PubMedCrossRefGoogle Scholar
  33. 33.
    Weiss JV et al (2011) Soluble E-cadherin as a serum biomarker candidate: elevated levels in patients with late-stage colorectal carcinoma and FAP. Int J Cancer 128(6):1384–1392PubMedCrossRefGoogle Scholar
  34. 34.
    Pedrazzani C et al (2008) Influence of age on soluble E-cadherin serum levels prevents its utility as a disease marker in gastric cancer patients. Scand J Gastroenterol 43(6):765–766PubMedCrossRefGoogle Scholar
  35. 35.
    Batlle E et al (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2(2):84–89PubMedCrossRefGoogle Scholar
  36. 36.
    Cano A et al (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76–83PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang K et al (2011) Slug enhances invasion ability of pancreatic cancer cells through upregulation of matrix metalloproteinase-9 and actin cytoskeleton remodeling. Lab Invest 91(3):426–438PubMedCrossRefGoogle Scholar
  38. 38.
    Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142PubMedCrossRefGoogle Scholar
  39. 39.
    Min AL et al (2009) High expression of snail mRNA in blood from hepatocellular carcinoma patients with extra-hepatic metastasis. Clin Exp Metastasis 26(7):759–767PubMedCrossRefGoogle Scholar
  40. 40.
    Otsuki S et al (2011) Vimentin expression is associated with decreased survival in gastric cancer. Oncol Rep 25(5):1235–1242PubMedGoogle Scholar
  41. 41.
    Hu L et al (2004) Association of vimentin overexpression and hepatocellular carcinoma metastasis. Oncogene 23(1):298–302PubMedGoogle Scholar
  42. 42.
    Gal A et al (2008) Sustained TGF beta exposure suppresses smad and non-smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene 27(9):1218–1230PubMedCrossRefGoogle Scholar
  43. 43.
    Kaplan RN et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827PubMedCrossRefGoogle Scholar
  44. 44.
    Iwatsuki M et al (2010) The clinical significance of vimentin-expressing gastric cancer cells in bone marrow. Ann Surg Oncol 17(9):2526–2533PubMedCrossRefGoogle Scholar
  45. 45.
    Shirahata A et al (2010) Detection of vimentin (VIM) methylation in the serum of colorectal cancer patients. Anticancer Res 30(12):5015–5018PubMedGoogle Scholar
  46. 46.
    Sugimachi K et al (2003) Transcriptional repressor snail and progression of human hepatocellular carcinoma. Clin Cancer Res 9(7):2657–2664PubMedGoogle Scholar
  47. 47.
    Miyoshi A et al (2005) Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer 92(2):252–258PubMedGoogle Scholar
  48. 48.
    Yin T et al (2007) Expression of snail in pancreatic cancer promotes metastasis and chemoresistance. J Surg Res 141(2):196–203PubMedCrossRefGoogle Scholar
  49. 49.
    Natsugoe S et al (2007) Snail plays a key role in E-cadherin-preserved esophageal squamous cell carcinoma. Oncol Rep 17(3):517–523PubMedGoogle Scholar
  50. 50.
    Shioiri M et al (2006) Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br J Cancer 94(12):1816–1822PubMedCrossRefGoogle Scholar
  51. 51.
    Uchikado Y et al (2005) Slug expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res 11(3):1174–1180PubMedGoogle Scholar
  52. 52.
    Yang MH et al (2009) Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology 50(5):1464–1474PubMedCrossRefGoogle Scholar
  53. 53.
    Zhao XL et al (2011) Promotion of hepatocellular carcinoma metastasis through matrix metalloproteinase activation by epithelial-mesenchymal transition regulator Twist1. J Cell Mol Med 15(3):691–700PubMedCrossRefGoogle Scholar
  54. 54.
    Lee TK et al (2006) Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res 12(18):5369–5376PubMedCrossRefGoogle Scholar
  55. 55.
    Niu RF et al (2007) Up-regulation of twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res 26(3):385–394PubMedGoogle Scholar
  56. 56.
    Gomez I et al (2011) TWIST1 is expressed in colorectal carcinomas and predicts patient survival. PLoS ONE 6(3):e18023PubMedCrossRefGoogle Scholar
  57. 57.
    Ru GQ et al (2011) Upregulation of twist in gastric carcinoma associated with tumor invasion and poor prognosis. Pathol Oncol Res 17(2):341–347PubMedCrossRefGoogle Scholar
  58. 58.
    Yan-Qi Z et al (2007) Expression and significance of TWIST basic helix-loop-helix protein over-expression in gastric cancer. Pathology 39(5):470–475PubMedCrossRefGoogle Scholar
  59. 59.
    Ohk Sung C et al (2011) Twist1 is up-regulated in gastric cancer-associated fibroblasts with poor clinical outcomes. Am J Pathol 179(4):1827–1838Google Scholar
  60. 60.
    Gong T et al (2012) Nuclear expression of twist promotes lymphatic metastasis in esophageal squamous cell carcinoma. Cancer Biol Ther 13(8):606–613PubMedCrossRefGoogle Scholar
  61. 61.
    Forghanifard MM et al (2012) Expression analysis elucidates the roles of MAML1 and Twist1 in esophageal squamous cell carcinoma aggressiveness and metastasis. Ann Surg Oncol 19(3):743–749PubMedCrossRefGoogle Scholar
  62. 62.
    Xie F, Li K, Ouyang X (2009) Twist, an independent prognostic marker for predicting distant metastasis and survival rates of esophageal squamous cell carcinoma patients. Clin Exp Metastasis 26(8):1025–1032PubMedCrossRefGoogle Scholar
  63. 63.
    Yuen HF et al (2007) Upregulation of twist in oesophageal squamous cell carcinoma is associated with neoplastic transformation and distant metastasis. J Clin Pathol 60(5):510–514PubMedCrossRefGoogle Scholar
  64. 64.
    Ohuchida K et al (2007) Twist, a novel oncogene, is upregulated in pancreatic cancer: clinical implication of twist expression in pancreatic juice. Int J Cancer 120(8):1634–1640PubMedCrossRefGoogle Scholar
  65. 65.
    Sun T et al (2010) Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 51(2):545–556PubMedCrossRefGoogle Scholar
  66. 66.
    Che N et al (2011) The role of Twist1 in hepatocellular carcinoma angiogenesis: a clinical study. Hum Pathol 42(6):840–847PubMedCrossRefGoogle Scholar
  67. 67.
    Sun T et al (2011) Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma. Hepatology 54(5):1690–1706Google Scholar
  68. 68.
    Zhou YM et al (2011) Clinicopathological significance of ZEB1 protein in patients with hepatocellular carcinoma. Ann Surg Oncol 19(5):1700–1706Google Scholar
  69. 69.
    Zhu W et al (2011) Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial-mesenchymaltransition. Gut 61(4):562–575Google Scholar
  70. 70.
    Tang DJ et al (2010) Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology 51(4):1255–1263PubMedCrossRefGoogle Scholar
  71. 71.
    Lee NP et al (2010) Prognostic significance and therapeutic potential of eukaryotic translation initiation factor 5A (eIF5A) in hepatocellular carcinoma. Int J Cancer 127(4):968–976PubMedGoogle Scholar
  72. 72.
    Meng HM et al (2010) Overexpression of nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther 9(4):295–302Google Scholar
  73. 73.
    Fu J et al (2011) p28GANK overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-1alpha pathways. Hepatology 53(1):181–192PubMedCrossRefGoogle Scholar
  74. 74.
    Zheng P et al (2011) Snail as a key regulator of PRL-3 gene in colorectal cancer. Cancer Biol Ther 12(8):742–749Google Scholar
  75. 75.
    Kim NW et al (2011) Correlation between liver metastases and the level of PRL-3 mRNA expression in patients with primary colorectal cancer. J Korean Soc Coloproctol 27(5):231–236PubMedCrossRefGoogle Scholar
  76. 76.
    Bardelli A et al (2003) PRL-3 expression in metastatic cancers. Clin Cancer Res 9(15):5607–5615PubMedGoogle Scholar
  77. 77.
    Kato H et al (2004) High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clin Cancer Res 10(21):7318–7328PubMedCrossRefGoogle Scholar
  78. 78.
    Mollevi DG et al (2008) PRL-3 is essentially overexpressed in primary colorectal tumours and associates with tumour aggressiveness. Br J Cancer 99(10):1718–1725PubMedCrossRefGoogle Scholar
  79. 79.
    Peng L et al (2004) The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. J Cancer Res Clin Oncol 130(9):521–526PubMedCrossRefGoogle Scholar
  80. 80.
    Guzinska-Ustymowicz K et al (2011) Immunohistochemical assessment of PRL-3 (PTP4A3) expression in tumor buds, invasion front, central region of tumor and metastases of colorectal cancer. Adv Med Sci 56(1):39–43PubMedCrossRefGoogle Scholar
  81. 81.
    Miskad UA et al (2004) Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology 71(4):176–184PubMedCrossRefGoogle Scholar
  82. 82.
    Ooki A et al (2009) Phosphatase of regenerating liver-3 as a prognostic biomarker in histologically node-negative gastric cancer. Oncol Rep 21(6):1467–1475PubMedGoogle Scholar
  83. 83.
    Wang Z et al (2008) Expression and prognostic impact of PRL-3 in lymph node metastasis of gastric cancer: its molecular mechanism was investigated using artificial microRNA interference. Int J Cancer 123(6):1439–1447PubMedCrossRefGoogle Scholar
  84. 84.
    Miskad UA et al (2007) High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: an in situ hybridization study. Virchows Arch 450(3):303–310PubMedCrossRefGoogle Scholar
  85. 85.
    Pryczynicz A et al (2010) PTP4A3 (PRL-3) expression correlate with lymphatic metastases in gastric cancer. Folia Histochem Cytobiol 48(4):632–636PubMedGoogle Scholar
  86. 86.
    Zhao WB et al (2008) Evaluation of PRL-3 expression, and its correlation with angiogenesis and invasion in hepatocellular carcinoma. Int J Mol Med 22(2):187–192PubMedGoogle Scholar
  87. 87.
    Mayinuer A et al (2012) Upregulation of protein tyrosine phosphatase type IVA member 3 (PTP4A3/PRL-3) is associated with tumor differentiation and a poor prognosis in human hepatocellular carcinoma. Ann Surg Oncol 20(1):305–317Google Scholar
  88. 88.
    Liu YQ et al (2008) Expression of phosphatase of regenerating liver 1 and 3 mRNA in esophageal squamous cell carcinoma. Arch Pathol Lab Med 132(8):1307–1312PubMedGoogle Scholar
  89. 89.
    Ooki A et al (2010) Phosphatase of regenerating liver-3 as a convergent therapeutic target for lymph node metastasis in esophageal squamous cell carcinoma. Int J Cancer 127(3):543–554PubMedCrossRefGoogle Scholar
  90. 90.
    Zheng P et al (2010) Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. J Proteome Res 9(10):4897–4905PubMedCrossRefGoogle Scholar
  91. 91.
    Hsieh SY et al (2010) Stathmin1 overexpression associated with polyploidy, tumor-cell invasion, early recurrence, and poor prognosis in human hepatoma. Mol Carcinog 49(5):476–487PubMedGoogle Scholar
  92. 92.
    Wang H et al (2010) PCBP1 suppresses the translation of metastasis-associated PRL-3 phosphatase. Cancer Cell 18(1):52–62PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang T et al (2010) PCBP-1 regulates alternative splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells. Mol Cancer 9:72PubMedCrossRefGoogle Scholar
  94. 94.
    Wong SC et al (2004) Quantification of plasma beta-catenin mRNA in colorectal cancer and adenoma patients. Clin Cancer Res 10(5):1613–1617PubMedCrossRefGoogle Scholar
  95. 95.
    Zekri AR et al (2011) Serum levels of beta-catenin as a potential marker for genotype 4/hepatitis C-associated hepatocellular carcinoma. Oncol Rep 26(4):825–831PubMedGoogle Scholar
  96. 96.
    Gavert N et al (2005) L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 168(4):633–642PubMedCrossRefGoogle Scholar
  97. 97.
    Zander H et al (2011) Circulating levels of cell adhesion molecule L1 as a prognostic marker in gastrointestinal stromal tumor patients. BMC Cancer 11(189):1–7Google Scholar
  98. 98.
    Brabletz T, Jung A, Kirchner T (2002) Beta-catenin and the morphogenesis of colorectal cancer. Virchows Arch 441(1):1–11PubMedCrossRefGoogle Scholar
  99. 99.
    Liu L et al (2010) Activation of beta-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis. Clin Cancer Res 16(10):2740–2750PubMedCrossRefGoogle Scholar
  100. 100.
    Matsukuma S, Sato K (2011) Peritoneal seeding of hepatocellular carcinoma: clinicopathological characteristics of 17 autopsy cases. Pathol Int 61(6):356–362PubMedCrossRefGoogle Scholar
  101. 101.
    Cheng XX et al (2005) Correlation of Wnt-2 expression and beta-catenin intracellular accumulation in Chinese gastric cancers: relevance with tumour dissemination. Cancer Lett 223(2):339–347PubMedCrossRefGoogle Scholar
  102. 102.
    Choi MG et al (2010) Mucinous gastric cancer presents with more advanced tumor stage and weaker beta-catenin expression than nonmucinous cancer. Ann Surg Oncol 17(11):3053–3058PubMedCrossRefGoogle Scholar
  103. 103.
    Takayama T et al (1998) Aberrant expression and phosphorylation of beta-catenin in human colorectal cancer. Br J Cancer 77(4):605–613PubMedCrossRefGoogle Scholar
  104. 104.
    Miyamoto S et al (2004) Nuclear beta-catenin accumulation as a prognostic factor in Dukes’ D human colorectal cancers. Oncol Rep 12(2):245–251PubMedGoogle Scholar
  105. 105.
    Chen WC et al (2007) Survey of molecular profiling during human colon cancer development and progression by immunohistochemical staining on tissue microarray. World J Gastroenterol 13(5):699–708PubMedGoogle Scholar
  106. 106.
    Zhang B et al (2003) Beta-catenin and ras oncogenes detect most human colorectal cancer. Clin Cancer Res 9(8):3073–3079PubMedGoogle Scholar
  107. 107.
    Hervieu V et al (2006) Expression of beta-catenin in gastroenteropancreatic endocrine tumours: a study of 229 cases. J Clin Pathol 59(12):1300–1304PubMedCrossRefGoogle Scholar
  108. 108.
    Wang W, Xue L, Wang P (2011) Prognostic value of beta-catenin, c-myc, and cyclin D1 expressions in patients with esophageal squamous cell carcinoma. Med Oncol 28(1):163–169PubMedCrossRefGoogle Scholar
  109. 109.
    Ben QW et al (2010) Positive expression of L1-CAM is associated with perineural invasion and poor outcome in pancreatic ductal adenocarcinoma. Ann Surg Oncol 17(8):2213–2221PubMedCrossRefGoogle Scholar
  110. 110.
    Tsutsumi S et al (2011) L1 Cell adhesion molecule (L1CAM) expression at the cancer invasive front is a novel prognostic marker of pancreatic ductal adenocarcinoma. J Surg Oncol 103(7):669–673PubMedCrossRefGoogle Scholar
  111. 111.
    Kim MY, Han SI, Lim SC (2011) Roles of cyclin-dependent kinase 8 and beta-catenin in the oncogenesis and progression of gastric adenocarcinoma. Int J Oncol 38(5):1375–1383PubMedGoogle Scholar
  112. 112.
    Yang P et al (2009) Enhanced activity of very low density lipoprotein receptor II promotes SGC7901 cell proliferation and migration. Life Sci 84(13–14):402–408PubMedCrossRefGoogle Scholar
  113. 113.
    He L et al (2010) Up-regulated expression of type II very low density lipoprotein receptor correlates with cancer metastasis and has a potential link to beta-catenin in different cancers. BMC Cancer 10:601PubMedCrossRefGoogle Scholar
  114. 114.
    Kim B et al (2006) TC1(C8orf4) correlates with Wnt/beta-catenin target genes and aggressive biological behavior in gastric cancer. Clin Cancer Res 12(11 Pt 1):3541–3548PubMedCrossRefGoogle Scholar
  115. 115.
    Boissan M et al (2010) Implication of metastasis suppressor NM23-H1 in maintaining adherens junctions and limiting the invasive potential of human cancer cells. Cancer Res 70(19):7710–7722PubMedCrossRefGoogle Scholar
  116. 116.
    Zhang S et al (2011) EPLIN downregulation promotes epithelial-mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis. Oncogene 30(50):4941–4952Google Scholar
  117. 117.
    Yamaguchi A et al (1994) Expression of human nm23-H1 and nm23-H2 proteins in hepatocellular cacinoma. Cancer 73(9):2280–2284PubMedCrossRefGoogle Scholar
  118. 118.
    Kodera Y et al (1994) Expression of nm23 H-1 RNA levels in human gastric cancer tissues. A negative correlation with nodal metastasis. Cancer 73(2):259–265PubMedCrossRefGoogle Scholar
  119. 119.
    Liu WK et al (2009) The relationship between cyclooxygenase-2, CD44v6, and nm23H1 in esophageal squamous cell carcinoma. Onkologie 32(10):574–578PubMedCrossRefGoogle Scholar
  120. 120.
    Liu WK et al (2005) The relationship between HPV16 and expression of CD44v6, nm23H1 in esophageal squamous cell carcinoma. Arch Virol 150(5):991–1001PubMedCrossRefGoogle Scholar
  121. 121.
    Elagoz S et al (2006) The intratumoral microvessel density and expression of bFGF and nm23-H1 in colorectal cancer. Pathol Oncol Res 12(1):21–27PubMedCrossRefGoogle Scholar
  122. 122.
    Felding-Habermann B (2003) Integrin adhesion receptors in tumor metastasis. Clin Exp Metastasis 20(3):203–213PubMedCrossRefGoogle Scholar
  123. 123.
    Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22PubMedCrossRefGoogle Scholar
  124. 124.
    Ke JJ, Shao QS, Ling ZQ (2006) Expression of E-selectin, integrin beta1 and immunoglobulin superfamily member in human gastric carcinoma cells and its clinicopathologic significance. World J Gastroenterol 12(22):3609–3611PubMedGoogle Scholar
  125. 125.
    Zhao ZS et al (2011) Expression and prognostic significance of CEACAM6, ITGB1, and CYR61 in peripheral blood of patients with gastric cancer. J Surg Oncol 104(5):525–529PubMedCrossRefGoogle Scholar
  126. 126.
    Kuo ML et al (2005) Cyr61 induces gastric cancer cell motility/invasion via activation of the integrin/nuclear factor-kappa B/cyclooxygenase-2 signaling pathway. Clin Cancer Res 11(16):5809–5820PubMedCrossRefGoogle Scholar
  127. 127.
    Li H et al (2011) HIF-1alpha-activated ANGPTL4 contributes to tumor metastasis via VCAM-1/integrin beta1 signaling in human hepatocellular carcinoma. Hepatology 54(3):910–919Google Scholar
  128. 128.
    Zhou G et al (2012) Detection and clinical significance of CD44v6 and integrin-beta1 in pancreatic cancer patients using a triplex real-time RT-PCR assay. Appl Biochem Biotechnol 167(8):2257–2268PubMedCrossRefGoogle Scholar
  129. 129.
    Zhou G et al (2012) The efficacy evaluation of cryosurgery in pancreatic cancer patients with the expression of CD44v6, integrin-beta1, CA199, and CEA. Mol Biotechnol 52(1):59–67PubMedCrossRefGoogle Scholar
  130. 130.
    Lu JG et al (2011) Overexpression of osteopontin and integrin alphav in laryngeal and hypopharyngeal carcinomas associated with differentiation and metastasis. J Cancer Res Clin Oncol 137(11):1613–1618Google Scholar
  131. 131.
    Wu CY et al (2007) Elevated plasma osteopontin associated with gastric cancer development, invasion and survival. Gut 56(6):782–789PubMedCrossRefGoogle Scholar
  132. 132.
    Sun J et al (2010) The prognostic significance of preoperative plasma levels of osteopontin in patients with TNM stage-I of hepatocellular carcinoma. J Cancer Res Clin Oncol 136(1):1–7PubMedCrossRefGoogle Scholar
  133. 133.
    Zhang H et al (2006) The prognostic significance of preoperative plasma levels of osteopontin in patients with hepatocellular carcinoma. J Cancer Res Clin Oncol 132(11):709–717PubMedCrossRefGoogle Scholar
  134. 134.
    Shimada Y et al (2005) Clinical significance of osteopontin in esophageal squamous cell carcinoma: comparison with common tumor markers. Oncology 68(2–3):285–292PubMedCrossRefGoogle Scholar
  135. 135.
    Wild N et al (2010) A combination of serum markers for the early detection of colorectal cancer. Clin Cancer Res 16(24):6111–6121PubMedCrossRefGoogle Scholar
  136. 136.
    Fransvea E et al (2009) Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology 49(3):839–850PubMedCrossRefGoogle Scholar
  137. 137.
    Zhao ZS et al (2010) SPARC is associated with gastric cancer progression and poor survival of patients. Clin Cancer Res 16(1):260–268PubMedCrossRefGoogle Scholar
  138. 138.
    Ura H et al (1998) Separate functions of alpha2beta1 and alpha3beta1 integrins in the metastatic process of human gastric carcinoma. Surg Today 28(10):1001–1006PubMedCrossRefGoogle Scholar
  139. 139.
    Giannelli G et al (2002) Transforming growth factor-beta1 triggers hepatocellular carcinoma invasiveness via alpha3beta1 integrin. Am J Pathol 161(1):183–193PubMedCrossRefGoogle Scholar
  140. 140.
    Hosotani R et al (2002) Expression of integrin alphaVbeta3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas 25(2):e30–e35PubMedCrossRefGoogle Scholar
  141. 141.
    Likui W, Hong W, Shuwen Z (2010) Clinical significance of the upregulated osteopontin mRNA expression in human colorectal cancer. J Gastrointest Surg 14(1):74–81PubMedCrossRefGoogle Scholar
  142. 142.
    Pan HW et al (2003) Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98(1):119–127PubMedCrossRefGoogle Scholar
  143. 143.
    Ye QH et al (2003) Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9(4):416–423PubMedCrossRefGoogle Scholar
  144. 144.
    Higashiyama M et al (2007) Prognostic significance of osteopontin expression in human gastric carcinoma. Ann Surg Oncol 14(12):3419–3427PubMedCrossRefGoogle Scholar
  145. 145.
    Takafuji V et al (2007) An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma. Oncogene 26(44):6361–6371PubMedCrossRefGoogle Scholar
  146. 146.
    Collins AL et al (2012) Osteopontin expression is associated with improved survival in patients with pancreatic adenocarcinoma. Ann Surg Oncol 19(8):2673–2678Google Scholar
  147. 147.
    Huang X et al (2009) Prognostic significance of altered expression of SDC2 and CYR61 in esophageal squamous cell carcinoma. Oncol Rep 21(4):1123–1129PubMedGoogle Scholar
  148. 148.
    Zeng ZJ et al (2004) Expressions of cysteine-rich61, connective tissue growth factor and Nov genes in hepatocellular carcinoma and their clinical significance. World J Gastroenterol 10(23):3414–3418PubMedGoogle Scholar
  149. 149.
    Weaver MS, Workman G, Sage EH (2008) The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin beta1 and activation of integrin-linked kinase. J Biol Chem 283(33):22826–22837PubMedCrossRefGoogle Scholar
  150. 150.
    Wang CS et al (2004) Overexpression of SPARC gene in human gastric carcinoma and its clinic-pathologic significance. Br J Cancer 91(11):1924–1930PubMedCrossRefGoogle Scholar
  151. 151.
    Che Y et al (2006) The differential expression of SPARC in esophageal squamous cell carcinoma. Int J Mol Med 17(6):1027–1033PubMedGoogle Scholar
  152. 152.
    Nakayama T et al (2011) Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep 25(4):929–935PubMedCrossRefGoogle Scholar
  153. 153.
    Makrilia N et al (2009) Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest 27(10):1023–1037PubMedCrossRefGoogle Scholar
  154. 154.
    Hannigan GE et al (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379(6560):91–96PubMedCrossRefGoogle Scholar
  155. 155.
    Bravou V et al (2006) ILK over-expression in human colon cancer progression correlates with activation of beta-catenin, down-regulation of E-cadherin and activation of the Akt-FKHR pathway. J Pathol 208(1):91–99PubMedCrossRefGoogle Scholar
  156. 156.
    Ito R et al (2003) Expression of integrin-linked kinase is closely correlated with invasion and metastasis of gastric carcinoma. Virchows Arch 442(2):118–123PubMedGoogle Scholar
  157. 157.
    Chan J et al (2011) Integrin-linked kinase overexpression and its oncogenic role in promoting tumorigenicity of hepatocellular carcinoma. PLoS ONE 6(2):e16984PubMedCrossRefGoogle Scholar
  158. 158.
    Wang WS et al (2004) Overexpression of the thymosin beta-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene 23(39):6666–6671PubMedCrossRefGoogle Scholar
  159. 159.
    Huang HC et al (2007) Thymosin beta4 triggers an epithelial-mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase. Oncogene 26(19):2781–2790PubMedCrossRefGoogle Scholar
  160. 160.
    Tang MC et al (2011) Thymosin beta 4 induces colon cancer cell migration and clinical metastasis via enhancing ILK/IQGAP1/Rac1 signal transduction pathway. Cancer Lett 308(2):162–171PubMedCrossRefGoogle Scholar
  161. 161.
    Albasri A et al (2011) Cten signals through integrin-linked kinase (ILK) and may promote metastasis in colorectal cancer. Oncogene 30(26):2997–3002PubMedCrossRefGoogle Scholar
  162. 162.
    Schwock J, Dhani N, Hedley DW (2010) Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin Ther Targets 14(1):77–94PubMedCrossRefGoogle Scholar
  163. 163.
    Chen JS et al (2010) FAK is involved in invasion and metastasis of hepatocellular carcinoma. Clin Exp Metastasis 27(2):71–82PubMedCrossRefGoogle Scholar
  164. 164.
    Park JH et al (2010) Focal adhesion kinase (FAK) gene amplification and its clinical implications in gastric cancer. Hum Pathol 41(12):1664–1673PubMedCrossRefGoogle Scholar
  165. 165.
    Su JM et al (2002) Expression of focal adhesion kinase and alpha5 and beta1 integrins in carcinomas and its clinical significance. World J Gastroenterol 8(4):613–618PubMedGoogle Scholar
  166. 166.
    Miyazaki T et al (2003) FAK overexpression is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma. Br J Cancer 89(1):140–145PubMedCrossRefGoogle Scholar
  167. 167.
    Chatzizacharias NA et al (2010) Evaluation of the clinical significance of focal adhesion kinase and SRC expression in human pancreatic ductal adenocarcinoma. Pancreas 39(6):930–936PubMedCrossRefGoogle Scholar
  168. 168.
    Furuyama K et al (2006) Clinical significance of focal adhesion kinase in resectable pancreatic cancer. World J Surg 30(2):219–226PubMedCrossRefGoogle Scholar
  169. 169.
    Liu AW et al (2011) ShRNA-targeted MAP4K4 inhibits hepatocellular carcinoma growth. Clin Cancer Res 17(4):710–720PubMedCrossRefGoogle Scholar
  170. 170.
    Hao JM et al (2010) A five-gene signature as a potential predictor of metastasis and survival in colorectal cancer. J Pathol 220(4):475–489PubMedGoogle Scholar
  171. 171.
    Liang JJ et al (2008) Expression of MAP4K4 is associated with worse prognosis in patients with stage II pancreatic ductal adenocarcinoma. Clin Cancer Res 14(21):7043–7049PubMedCrossRefGoogle Scholar
  172. 172.
    Itoh S et al (2007) Role of growth factor receptor bound protein 7 in hepatocellular carcinoma. Mol Cancer Res 5(7):667–673PubMedCrossRefGoogle Scholar
  173. 173.
    Tanaka S et al (2006) Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis. J Natl Cancer Inst 98(7):491–498PubMedCrossRefGoogle Scholar
  174. 174.
    Peng L et al (2009) Secreted LOXL2 is a novel therapeutic target that promotes gastric cancer metastasis via the Src/FAK pathway. Carcinogenesis 30(10):1660–1669PubMedCrossRefGoogle Scholar
  175. 175.
    Wu F et al (2009) Novel role for epidermal growth factor-like domain 7 in metastasis of human hepatocellular carcinoma. Hepatology 50(6):1839–1850PubMedCrossRefGoogle Scholar
  176. 176.
    Wu F et al (2011) Down-regulation of EGFL8: a novel prognostic biomarker for patients with colorectal cancer. Anticancer Res 31(6):2249–2254PubMedGoogle Scholar
  177. 177.
    Parker LH et al (2004) The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 428(6984):754–758PubMedCrossRefGoogle Scholar
  178. 178.
    Fitch MJ et al (2004) Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn 230(2):316–324PubMedCrossRefGoogle Scholar
  179. 179.
    Huang J et al (2010) Genetic and epigenetic silencing of SCARA5 may contribute to human hepatocellular carcinoma by activating FAK signaling. J Clin Invest 120(1):223–241PubMedCrossRefGoogle Scholar
  180. 180.
    Chen M et al (2010) Genetic variations of the PI3K-AKT-mTOR pathway and clinical outcome in muscle invasive and metastatic bladder cancer patients. Carcinogenesis 31(8):1387–1391PubMedCrossRefGoogle Scholar
  181. 181.
    Jiang BH, Liu LZ (2008) PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta 1784(1):150–158PubMedCrossRefGoogle Scholar
  182. 182.
    Jiang BH, Liu LZ (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65PubMedCrossRefGoogle Scholar
  183. 183.
    Bi J et al (2009) Overexpression of YKL-40 is an independent prognostic marker in gastric cancer. Hum Pathol 40(12):1790–1797PubMedCrossRefGoogle Scholar
  184. 184.
    Zhu CB et al (2012) Elevated serum YKL-40 level predicts poor prognosis in hepatocellular carcinoma after surgery. Ann Surg Oncol 19(3):817–825PubMedCrossRefGoogle Scholar
  185. 185.
    Zhang XW et al (2010) BMI1 and Mel-18 oppositely regulate carcinogenesis and progression of gastric cancer. Mol Cancer 9:40PubMedCrossRefGoogle Scholar
  186. 186.
    Yoshioka A et al (2008) The activation of Akt during preoperative chemotherapy for esophageal cancer correlates with poor prognosis. Oncol Rep 19(5):1099–1107PubMedGoogle Scholar
  187. 187.
    Yu G et al (2009) Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of Chinese patients with gastric cancer. Clin Cancer Res 15(5):1821–1829PubMedCrossRefGoogle Scholar
  188. 188.
    Kasajima A et al (2011) mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer 18(1):181–192PubMedCrossRefGoogle Scholar
  189. 189.
    An JY et al (2010) Prognostic role of p-mTOR expression in cancer tissues and metastatic lymph nodes in pT2b gastric cancer. Int J Cancer 126(12):2904–2913PubMedGoogle Scholar
  190. 190.
    Zhang YJ et al (2009) mTOR signaling pathway is a target for the treatment of colorectal cancer. Ann Surg Oncol 16(9):2617–2628PubMedCrossRefGoogle Scholar
  191. 191.
    Liao WT et al (2011) HOXB7 as a prognostic factor and mediator of colorectal cancer progression. Clin Cancer Res 17(11):3569–3578PubMedCrossRefGoogle Scholar
  192. 192.
    Nguyen Kovochich A et al (2012) HOXB7 promotes invasion and predicts survival in pancreatic adenocarcinoma. Cancer 119(3):529–539Google Scholar
  193. 193.
    Song W et al (2010) Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci 101(7):1754–1760PubMedCrossRefGoogle Scholar
  194. 194.
    Liu WL et al (2010) Prognostic relevance of Bmi-1 expression and autoantibodies in esophageal squamous cell carcinoma. BMC Cancer 10:467PubMedCrossRefGoogle Scholar
  195. 195.
    Wang H et al (2008) Increased polycomb-group oncogene Bmi-1 expression correlates with poor prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol 134(5):535–541PubMedCrossRefGoogle Scholar
  196. 196.
    Sasaki M et al (2008) The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest 88(8):873–882PubMedCrossRefGoogle Scholar
  197. 197.
    Pang R et al (2010) A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6(6):603–615PubMedCrossRefGoogle Scholar
  198. 198.
    Iinuma H et al (2011) Clinical significance of circulating tumor cells, including cancer stem-like cells, in peripheral blood for recurrence and prognosis in patients with Dukes’ stage B and C colorectal cancer. J Clin Oncol 29(12):1547–1555PubMedCrossRefGoogle Scholar
  199. 199.
    Lin EH et al (2007) Elevated circulating endothelial progenitor marker CD133 messenger RNA levels predict colon cancer recurrence. Cancer 110(3):534–542PubMedCrossRefGoogle Scholar
  200. 200.
    Mehra N et al (2006) Progenitor marker CD133 mRNA is elevated in peripheral blood of cancer patients with bone metastases. Clin Cancer Res 12(16):4859–4866PubMedCrossRefGoogle Scholar
  201. 201.
    Yu JW et al (2010) Expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocacinoma. J Exp Clin Cancer Res 29:141PubMedCrossRefGoogle Scholar
  202. 202.
    Hou Y et al (2011) The critical role of CD133(+)CD44(+/high) tumor cells in hematogenous metastasis of liver cancers. Cell Res 22(1):259–272Google Scholar
  203. 203.
    Kure S et al (2012) Expression of cancer stem cell markers in pancreatic intraepithelial neoplasias and pancreatic ductal adenocarcinomas. Int J Oncol  41(4):1314–1324Google Scholar
  204. 204.
    Maeda S et al (2008) CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J Cancer 98(8):1389–1397PubMedCrossRefGoogle Scholar
  205. 205.
    Yang XR et al (2009) CD24 is a novel predictor for poor prognosis of hepatocellular carcinoma after surgery. Clin Cancer Res 15(17):5518–5527PubMedCrossRefGoogle Scholar
  206. 206.
    Darwish NS et al (2004) Prognostic significance of CD24 expression in gastric carcinoma. Cancer Res Treat 36(5):298–302PubMedCrossRefGoogle Scholar
  207. 207.
    Lee TK et al (2011) CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 9(1):50–63PubMedCrossRefGoogle Scholar
  208. 208.
    Ikenaga N et al (2010) Characterization of CD24 expression in intraductal papillary mucinous neoplasms and ductal carcinoma of the pancreas. Hum Pathol 41(10):1466–1474PubMedCrossRefGoogle Scholar
  209. 209.
    Chen T et al (2011) Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res 22(1):248–258Google Scholar
  210. 210.
    Han ME et al (2011) Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cell Mol Life Sci 68(21):3589–3605PubMedCrossRefGoogle Scholar
  211. 211.
    Yokoyama S, Yamaue H (2002) Prediction of distant metastasis by using reverse transcriptase-polymerase chain reaction for epithelial and variant CD44 mRNA in the peripheral blood of patients with colorectal cancer. Arch Surg 137(9):1069–1073PubMedCrossRefGoogle Scholar
  212. 212.
    Bunger S et al (2012) Pancreatic carcinoma cell lines reflect frequency and variability of cancer stem cell markers in clinical tissue. Eur Surg Res 49(2):88–98PubMedCrossRefGoogle Scholar
  213. 213.
    Wang Y et al (2012) Cancer stem cell marker ALDH1 expression is associated with lymph node metastasis and poor survival in esophageal squamous cell carcinoma: a study from high incidence area of northern China. Dis Esophagus 25(6):560–565PubMedCrossRefGoogle Scholar
  214. 214.
    Minato T et al (2012) Aldehyde dehydrogenase 1 expression is associated with poor prognosis in patients with esophageal squamous cell carcinoma. Ann Surg Oncol 20(1):209–217Google Scholar
  215. 215.
    Wakamatsu Y et al (2012) Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. Pathol Int 62(2):112–119PubMedCrossRefGoogle Scholar
  216. 216.
    Chen XQ, He JR, Wang HY (2012) Decreased expression of ALDH1L1 is associated with a poor prognosis in hepatocellular carcinoma. Med Oncol 29(3):1843–1849PubMedCrossRefGoogle Scholar
  217. 217.
    Hessman CJ et al (2012) Loss of expression of the cancer stem cell marker aldehyde dehydrogenase 1 correlates with advanced-stage colorectal cancer. Am J Surg 203(5):649–653PubMedCrossRefGoogle Scholar
  218. 218.
    Kahlert C et al (2011) Low expression of aldehyde dehydrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer. BMC Cancer 11:275PubMedCrossRefGoogle Scholar
  219. 219.
    Yang XR et al (2010) High expression levels of putative hepatic stem/progenitor cell biomarkers related to tumour angiogenesis and poor prognosis of hepatocellular carcinoma. Gut 59(7):953–962PubMedCrossRefGoogle Scholar
  220. 220.
    Lorusso G, Ruegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130(6):1091–1103PubMedCrossRefGoogle Scholar
  221. 221.
    Liang JF et al (2010) Relationship and prognostic significance of SPARC and VEGF protein expression in colon cancer. J Exp Clin Cancer Res 29:71PubMedCrossRefGoogle Scholar
  222. 222.
    Yoshimura T et al (2011) Lymphovascular invasion of colorectal cancer is correlated to SPARC expression in the tumor stromal microenvironment. Epigenetics 6(8):1001–1011PubMedCrossRefGoogle Scholar
  223. 223.
    Infante JR et al (2007) Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 25(3):319–325PubMedCrossRefGoogle Scholar
  224. 224.
    Imano M et al (2011) Osteopontin induced by macrophages contribute to metachronous liver metastases in colorectal cancer. Am Surg 77(11):1515–1520PubMedGoogle Scholar
  225. 225.
    Wang JM et al (1993) A monoclonal antibody detects heterogeneity in vascular endothelium of tumours and normal tissues. Int J Cancer 54(3):363–370PubMedCrossRefGoogle Scholar
  226. 226.
    Bellone G et al (2007) Transforming growth factor-beta binding receptor endoglin (CD105) expression in esophageal cancer and in adjacent nontumorous esophagus as prognostic predictor of recurrence. Ann Surg Oncol 14(11):3232–3242PubMedCrossRefGoogle Scholar
  227. 227.
    Ding S et al (2006) Comparative evaluation of microvessel density determined by CD34 or CD105 in benign and malignant gastric lesions. Hum Pathol 37(7):861–866PubMedCrossRefGoogle Scholar
  228. 228.
    Yang LY et al (2006) Correlation between CD105 expression and postoperative recurrence and metastasis of hepatocellular carcinoma. BMC Cancer 6:110PubMedCrossRefGoogle Scholar
  229. 229.
    Ho JW et al (2005) Clinicopathological and prognostic implications of endoglin (CD105) expression in hepatocellular carcinoma and its adjacent non-tumorous liver. World J Gastroenterol 11(2):176–181PubMedGoogle Scholar
  230. 230.
    Romani AA et al (2006) The risk of developing metastatic disease in colorectal cancer is related to CD105-positive vessel count. J Surg Oncol 93(6):446–455PubMedCrossRefGoogle Scholar
  231. 231.
    Saad RS et al (2004) Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in colorectal cancer. Mod Pathol 17(2):197–203PubMedCrossRefGoogle Scholar
  232. 232.
    Koyama Y et al (2010) Overexpression of endoglin (CD105) is associated with recurrence in radically resected gastric cancer. Exp Ther Med 1(4):627–633PubMedGoogle Scholar
  233. 233.
    Budhu A et al (2006) Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10(2):99–111PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Lui Ng
    • 1
  • Ronnie Tung Ping Poon
    • 1
    • 2
  • Roberta Pang
    • 1
    • 2
  1. 1.Department of SurgeryThe University of Hong KongHong Kong SARChina
  2. 2.Centre for Cancer ResearchThe University of Hong KongHong KongChina

Personalised recommendations