Cellular and Molecular Life Sciences

, Volume 70, Issue 19, pp 3571–3589 | Cite as

O death where is thy sting? Immunologic tolerance to apoptotic self

  • Buvana Ravishankar
  • Tracy L. McGahaEmail author


In higher organisms, innate scavenging cells maintain physiologic homeostasis by removal of the billions of apoptotic cells generated on a daily basis. Apoptotic cell removal requires efficient recognition and uptake by professional and non-professional phagocytic cells, which are governed by an array of soluble and apoptotic cell-integral signals resulting in immunologically silent clearance. While apoptosis is associated with profound suppression of adaptive and innate inflammatory immunity, we have only begun to scratch the surface in understanding how immunologic tolerance to apoptotic self manifest at either the molecular or cellular level. In the last 10 years, data has emerged implicating professional phagocytes, most notably stromal macrophages and CD8α+CD103+ dendritic cells, as critical in initiation of the regulatory cascade that will ultimately lead to long-term whole-animal immune tolerance. Importantly, recent work by our lab and others has shown that alterations in apoptotic cell perception by the innate immune system either by removal of critical phagocytic sentinels in secondary lymphoid organs or blockage of immunosuppressive pathways leads to pronounced inflammation with a breakdown of tolerance towards self. This challenges the paradigm that apoptotic cells are inherently immunosuppressive, suggesting that apoptotic cell tolerance is a “context-dependent” event.


Tolerance Macrophage Apoptosis Indoleamine 2,3 dioxygenase Marginal zone Autoimmunity 


  1. 1.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257PubMedCrossRefGoogle Scholar
  2. 2.
    Elliott MR, Ravichandran KS (2010) Clearance of apoptotic cells: implications in health and disease. J Cell Biol 189(7):1059–1070. doi: 10.1083/jcb.201004096 PubMedCrossRefGoogle Scholar
  3. 3.
    Platt N, Suzuki H, Kodama T, Gordon S (2000) Apoptotic thymocyte clearance in scavenger receptor class A-deficient mice is apparently normal. J Immunol 164(9):4861–4867PubMedGoogle Scholar
  4. 4.
    Clancy RM, Neufing PJ, Zheng P, O’Mahony M, Nimmerjahn F, Gordon TP, Buyon JP (2006) Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block. J Clin Invest 116(9):2413–2422. doi: 10.1172/JCI27803 PubMedGoogle Scholar
  5. 5.
    Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N (1998) Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188(7):1359–1368PubMedCrossRefGoogle Scholar
  6. 6.
    Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392(6671):86–89. doi: 10.1038/32183 PubMedCrossRefGoogle Scholar
  7. 7.
    Jinushi M, Nakazaki Y, Dougan M, Carrasco DR, Mihm M, Dranoff G (2007) MFG-E8-mediated uptake of apoptotic cells by APCs links the pro- and antiinflammatory activities of GM-CSF. J Clin Invest 117(7):1902–1913. doi: 10.1172/JCI30966 PubMedCrossRefGoogle Scholar
  8. 8.
    Eguchi M, Kikuchi Y (2010) Binding of Salmonella-specific antibody facilitates specific T cell responses via augmentation of bacterial uptake and induction of apoptosis in macrophages. J Infect Dis 201(1):62–70. doi: 10.1086/648615 PubMedCrossRefGoogle Scholar
  9. 9.
    Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, Melino G (2005) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12(Suppl 2):1463–1467. doi: 10.1038/sj.cdd.4401724 PubMedCrossRefGoogle Scholar
  10. 10.
    Bratton DL, Henson PM (2011) Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol 32(8):350–357. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  11. 11.
    Parnaik R, Raff MC, Scholes J (2000) Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol 10(14):857–860PubMedCrossRefGoogle Scholar
  12. 12.
    Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S, Xu Y, Autenrieth IB, Schulze-Osthoff K, Belka C, Stuhler G, Wesselborg S (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113(6):717–730PubMedCrossRefGoogle Scholar
  13. 13.
    Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IE, Melville L, Melrose LA, Ogden CA, Nibbs R, Graham G, Combadiere C, Gregory CD (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112(13):5026–5036. doi: 10.1182/blood-2008-06-162404 PubMedCrossRefGoogle Scholar
  14. 14.
    Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286. doi: 10.1038/nature08296 PubMedCrossRefGoogle Scholar
  15. 15.
    Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, Barbour SE, Milstien S, Spiegel S (2008) Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. Faseb J 22(8):2629–2638. doi: 10.1096/fj.08-107169 PubMedCrossRefGoogle Scholar
  16. 16.
    Devitt A, Gregory CD (2004) Measurement of apoptotic cell clearance in vitro. Methods Mol Biol 282:207–221. doi: 10.1385/1-59259-812-9:207 PubMedGoogle Scholar
  17. 17.
    Ravichandran KS (2010) Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 207(9):1807–1817. doi: 10.1084/jem.20101157 PubMedCrossRefGoogle Scholar
  18. 18.
    Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417(6885):182–187. doi: 10.1038/417182a PubMedCrossRefGoogle Scholar
  19. 19.
    Ziegenfuss JS, Biswas R, Avery MA, Hong K, Sheehan AE, Yeung YG, Stanley ER, Freeman MR (2008) Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling. Nature 453(7197):935–939. doi: 10.1038/nature06901 PubMedCrossRefGoogle Scholar
  20. 20.
    McGaha TL, Chen Y, Ravishankar B, van Rooijen N, Karlsson MC (2011) Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen. Blood 117(20):5403–5412. doi: 10.1182/blood-2010-11-320028 PubMedCrossRefGoogle Scholar
  21. 21.
    Wermeling F, Karlsson MC, McGaha TL (2009) An anatomical view on macrophages in tolerance. Autoimmun Rev 9(1):49–52. doi: 10.1016/j.autrev.2009.03.004 PubMedCrossRefGoogle Scholar
  22. 22.
    Lauber K, Blumenthal SG, Waibel M, Wesselborg S (2004) Clearance of apoptotic cells: getting rid of the corpses. Mol Cell 14(3):277–287PubMedCrossRefGoogle Scholar
  23. 23.
    Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148(7):2207–2216PubMedGoogle Scholar
  24. 24.
    Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405(6782):85–90. doi: 10.1038/35011084 PubMedCrossRefGoogle Scholar
  25. 25.
    Hoffmann PR, deCathelineau AM, Ogden CA, Leverrier Y, Bratton DL, Daleke DL, Ridley AJ, Fadok VA, Henson PM (2001) Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J Cell Biol 155(4):649–659. doi: 10.1083/jcb.200108080 PubMedCrossRefGoogle Scholar
  26. 26.
    Balasubramanian K, Schroit AJ (2003) Aminophospholipid asymmetry: a matter of life and death. Annu Rev Physiol 65:701–734. doi: 10.1146/annurev.physiol.65.092101.142459 PubMedCrossRefGoogle Scholar
  27. 27.
    Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182(5):1545–1556PubMedCrossRefGoogle Scholar
  28. 28.
    Borisenko GG, Matsura T, Liu SX, Tyurin VA, Jianfei J, Serinkan FB, Kagan VE (2003) Macrophage recognition of externalized phosphatidylserine and phagocytosis of apoptotic Jurkat cells–existence of a threshold. Arch Biochem Biophys 413(1):41–52PubMedCrossRefGoogle Scholar
  29. 29.
    Dillon SR, Constantinescu A, Schlissel MS (2001) Annexin V binds to positively selected B cells. J Immunol 166(1):58–71PubMedGoogle Scholar
  30. 30.
    Dillon SR, Mancini M, Rosen A, Schlissel MS (2000) Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation. J Immunol 164(3):1322–1332PubMedGoogle Scholar
  31. 31.
    Frasch SC, Berry KZ, Fernandez-Boyanapalli R, Jin HS, Leslie C, Henson PM, Murphy RC, Bratton DL (2008) NADPH oxidase-dependent generation of lysophosphatidylserine enhances clearance of activated and dying neutrophils via G2A. J Biol Chem 283(48):33736–33749. doi: 10.1074/jbc.M807047200 PubMedCrossRefGoogle Scholar
  32. 32.
    Frasch SC, Henson PM, Nagaosa K, Fessler MB, Borregaard N, Bratton DL (2004) Phospholipid flip-flop and phospholipid scramblase 1 (PLSCR1) co-localize to uropod rafts in formylated Met-Leu-Phe-stimulated neutrophils. J Biol Chem 279(17):17625–17633. doi: 10.1074/jbc.M313414200 PubMedCrossRefGoogle Scholar
  33. 33.
    Wolf A, Schmitz C, Bottger A (2007) Changing story of the receptor for phosphatidylserine-dependent clearance of apoptotic cells. EMBO Rep 8(5):465–469. doi: 10.1038/sj.embor.7400956 PubMedCrossRefGoogle Scholar
  34. 34.
    Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450(7168):435–439. doi: 10.1038/nature06307 PubMedCrossRefGoogle Scholar
  35. 35.
    Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450(7168):430–434. doi: 10.1038/nature06329 PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez-Manzanet R, Sanjuan MA, Wu HY, Quintana FJ, Xiao S, Anderson AC, Weiner HL, Green DR, Kuchroo VK (2010) T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc Natl Acad Sci USA 107(19):8706–8711. doi: 10.1073/pnas.0910359107 PubMedCrossRefGoogle Scholar
  37. 37.
    Wong K, Valdez PA, Tan C, Yeh S, Hongo JA, Ouyang W (2010) Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. Proc Natl Acad Sci USA 107(19):8712–8717. doi: 10.1073/pnas.0910929107 PubMedCrossRefGoogle Scholar
  38. 38.
    Park D, Hochreiter-Hufford A, Ravichandran KS (2009) The phosphatidylserine receptor TIM-4 does not mediate direct signaling. Curr Biol 19(4):346–351. doi: 10.1016/j.cub.2009.01.042 PubMedCrossRefGoogle Scholar
  39. 39.
    Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, Nagata S (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304(5674):1147–1150. doi: 10.1126/science.1094359 PubMedCrossRefGoogle Scholar
  40. 40.
    Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, Earp HS, Matsushima GK (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411(6834):207–211. doi: 10.1038/35075603 PubMedCrossRefGoogle Scholar
  41. 41.
    Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G (2007) TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131(6):1124–1136. doi: 10.1016/j.cell.2007.10.034 PubMedCrossRefGoogle Scholar
  42. 42.
    Cohen PL, Caricchio R, Abraham V, Camenisch TD, Jennette JC, Roubey RA, Earp HS, Matsushima G, Reap EA (2002) Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 196(1):135–140PubMedCrossRefGoogle Scholar
  43. 43.
    Segawa K, Suzuki J, Nagata S (2011) Constitutive exposure of phosphatidylserine on viable cells. Proc Natl Acad Sci USA 108(48):19246–19251. doi: 10.1073/pnas.1114799108 PubMedCrossRefGoogle Scholar
  44. 44.
    Park YJ, Liu G, Lorne EF, Zhao X, Wang J, Tsuruta Y, Zmijewski J, Abraham E (2008) PAI-1 inhibits neutrophil efferocytosis. Proc Natl Acad Sci USA 105(33):11784–11789. doi: 10.1073/pnas.0801394105 PubMedCrossRefGoogle Scholar
  45. 45.
    Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123(2):321–334. doi: 10.1016/j.cell.2005.08.032 PubMedCrossRefGoogle Scholar
  46. 46.
    Brown S, Heinisch I, Ross E, Shaw K, Buckley CD, Savill J (2002) Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418(6894):200–203. doi: 10.1038/nature00811 PubMedCrossRefGoogle Scholar
  47. 47.
    Elomaa O, Kangas M, Sahlberg C, Tuukkanen J, Sormunen R, Liakka A, Thesleff I, Kraal G, Tryggvason K (1995) Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80(4):603–609PubMedCrossRefGoogle Scholar
  48. 48.
    Wermeling F, Chen Y, Pikkarainen T, Scheynius A, Winqvist O, Izui S, Ravetch JV, Tryggvason K, Karlsson MC (2007) Class A scavenger receptors regulate tolerance against apoptotic cells, and autoantibodies against these receptors are predictive of systemic lupus. J Exp Med 204(10):2259–2265. doi: 10.1084/jem.20070600 PubMedCrossRefGoogle Scholar
  49. 49.
    Boullier A, Friedman P, Harkewicz R, Hartvigsen K, Green SR, Almazan F, Dennis EA, Steinberg D, Witztum JL, Quehenberger O (2005) Phosphocholine as a pattern recognition ligand for CD36. J Lipid Res 46(5):969–976. doi: 10.1194/jlr.M400496-JLR200 PubMedCrossRefGoogle Scholar
  50. 50.
    Toda S, Hanayama R, Nagata S (2012) Two-step engulfment of apoptotic cells. Mol Cell Biol 32(1):118–125. doi: 10.1128/MCB.05993-11 PubMedCrossRefGoogle Scholar
  51. 51.
    Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K, Walk SF, Nemergut ME, Macara IG, Francis R, Schedl T, Qin Y, Van Aelst L, Hengartner MO, Ravichandran KS (2001) CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107(1):27–41PubMedCrossRefGoogle Scholar
  52. 52.
    Krysko DV, Denecker G, Festjens N, Gabriels S, Parthoens E, D’Herde K, Vandenabeele P (2006) Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death Differ 13(12):2011–2022. doi: 10.1038/sj.cdd.4401900 PubMedCrossRefGoogle Scholar
  53. 53.
    Erwig LP, McPhilips KA, Wynes MW, Ivetic A, Ridley AJ, Henson PM (2006) Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc Natl Acad Sci USA 103(34):12825–12830. doi: 10.1073/pnas.0605331103 PubMedCrossRefGoogle Scholar
  54. 54.
    Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304(5673):1014–1018. doi: 10.1126/science.1096158 PubMedCrossRefGoogle Scholar
  55. 55.
    Blander JM, Medzhitov R (2006) Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440(7085):808–812. doi: 10.1038/nature04596 PubMedCrossRefGoogle Scholar
  56. 56.
    Peng Y, Elkon KB (2011) Autoimmunity in MFG-E8-deficient mice is associated with altered trafficking and enhanced cross-presentation of apoptotic cell antigens. J Clin Invest 121(6):2221–2241. doi: 10.1172/JCI43254 PubMedCrossRefGoogle Scholar
  57. 57.
    Evans CJ, Aguilera RJ (2003) DNase II: genes, enzymes and function. Gene 322:1–15PubMedCrossRefGoogle Scholar
  58. 58.
    Kawane K, Fukuyama H, Kondoh G, Takeda J, Ohsawa Y, Uchiyama Y, Nagata S (2001) Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292(5521):1546–1549. doi: 10.1126/science.292.5521.1546 PubMedCrossRefGoogle Scholar
  59. 59.
    Kawane K, Ohtani M, Miwa K, Kizawa T, Kanbara Y, Yoshioka Y, Yoshikawa H, Nagata S (2006) Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443(7114):998–1002. doi: 10.1038/nature05245 PubMedCrossRefGoogle Scholar
  60. 60.
    Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, Otsu K (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485(7397):251–255. doi: 10.1038/nature10992 PubMedCrossRefGoogle Scholar
  61. 61.
    Okabe Y, Kawane K, Akira S, Taniguchi T, Nagata S (2005) Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J Exp Med 202(10):1333–1339. doi: 10.1084/jem.20051654 PubMedCrossRefGoogle Scholar
  62. 62.
    Gall A, Treuting P, Elkon KB, Loo YM, Gale M Jr, Barber GN, Stetson DB (2012) Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36(1):120–131. doi: 10.1016/j.immuni.2011.11.018 PubMedCrossRefGoogle Scholar
  63. 63.
    Waldmann H (2008) Tolerance can be infectious. Nat Immunol 9(9):1001–1003. doi: 10.1038/ni0908-1001 PubMedCrossRefGoogle Scholar
  64. 64.
    Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101(4):890–898. doi: 10.1172/JCI1112 PubMedCrossRefGoogle Scholar
  65. 65.
    Huynh ML, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 109(1):41–50. doi: 10.1172/JCI11638 PubMedGoogle Scholar
  66. 66.
    Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390(6658):350–351. doi: 10.1038/37022 PubMedCrossRefGoogle Scholar
  67. 67.
    Ravishankar B, Liu H, Shinde R, Chandler P, Baban B, Tanaka M, Munn DH, Mellor AL, Karlsson MC, McGaha TL (2012) Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. Proc Natl Acad Sci USA 109(10):3909–3914. doi: 10.1073/pnas.1117736109 PubMedCrossRefGoogle Scholar
  68. 68.
    Griffith TS, Yu X, Herndon JM, Green DR, Ferguson TA (1996) CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 5(1):7–16PubMedCrossRefGoogle Scholar
  69. 69.
    Ferguson TA, Herndon J, Elzey B, Griffith TS, Schoenberger S, Green DR (2002) Uptake of apoptotic antigen-coupled cells by lymphoid dendritic cells and cross-priming of CD8(+) T cells produce active immune unresponsiveness. J Immunol 168(11):5589–5595PubMedGoogle Scholar
  70. 70.
    Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5(8):606–616. doi: 10.1038/nri1669 PubMedCrossRefGoogle Scholar
  71. 71.
    Kraal G, Schornagel K, Streeter PR, Holzmann B, Butcher EC (1995) Expression of the mucosal vascular addressin, MAdCAM-1, on sinus-lining cells in the spleen. Am J Pathol 147(3):763–771PubMedGoogle Scholar
  72. 72.
    Tanaka H, Hataba Y, Saito S, Fukushima O, Miyasaka M (1996) Phenotypic characteristics and significance of reticular meshwork surrounding splenic white pulp of mice. J Electron Microsc (Tokyo) 45(5):407–416CrossRefGoogle Scholar
  73. 73.
    Girkontaite I, Sakk V, Wagner M, Borggrefe T, Tedford K, Chun J, Fischer KD (2004) The sphingosine-1-phosphate (S1P) lysophospholipid receptor S1P3 regulates MAdCAM-1+ endothelial cells in splenic marginal sinus organization. J Exp Med 200(11):1491–1501. doi: 10.1084/jem.20041483 PubMedCrossRefGoogle Scholar
  74. 74.
    Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159. doi: 10.1146/annurev.immunol.23.021704.115628 PubMedCrossRefGoogle Scholar
  75. 75.
    Kraal G, Mebius R (2006) New insights into the cell biology of the marginal zone of the spleen. Int Rev Cytol 250:175–215. doi: 10.1016/S0074-7696(06)50005-1 PubMedCrossRefGoogle Scholar
  76. 76.
    Geijtenbeek TB, Groot PC, Nolte MA, van Vliet SJ, Gangaram-Panday ST, van Duijnhoven GC, Kraal G, van Oosterhout AJ, van Kooyk Y (2002) Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood 100(8):2908–2916. doi: 10.1182/blood-2002-04-1044 PubMedCrossRefGoogle Scholar
  77. 77.
    Hughes DA, Fraser IP, Gordon S (1995) Murine macrophage scavenger receptor: in vivo expression and function as receptor for macrophage adhesion in lymphoid and non-lymphoid organs. Eur J Immunol 25(2):466–473. doi: 10.1002/eji.1830250224 PubMedCrossRefGoogle Scholar
  78. 78.
    Kraal G, van der Laan LJ, Elomaa O, Tryggvason K (2000) The macrophage receptor MARCO. Microbes Infect 2(3):313–316PubMedCrossRefGoogle Scholar
  79. 79.
    Kraal G, Janse M (1986) Marginal metallophilic cells of the mouse spleen identified by a monoclonal antibody. Immunology 58(4):665–669PubMedGoogle Scholar
  80. 80.
    Miyake Y, Asano K, Kaise H, Uemura M, Nakayama M, Tanaka M (2007) Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell-associated antigens. J Clin Invest 117(8):2268–2278. doi: 10.1172/JCI31990 PubMedCrossRefGoogle Scholar
  81. 81.
    Karlsson MC, Guinamard R, Bolland S, Sankala M, Steinman RM, Ravetch JV (2003) Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J Exp Med 198(2):333–340. doi: 10.1084/jem.20030684 PubMedCrossRefGoogle Scholar
  82. 82.
    Uderhardt S, Herrmann M, Oskolkova OV, Aschermann S, Bicker W, Ipseiz N, Sarter K, Frey B, Rothe T, Voll R, Nimmerjahn F, Bochkov VN, Schett G, Kronke G (2012) 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity 36(5):834–846. doi: 10.1016/j.immuni.2012.03.010 PubMedCrossRefGoogle Scholar
  83. 83.
    Kim S, Elkon KB, Ma X (2004) Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 21(5):643–653. doi: 10.1016/j.immuni.2004.09.009 PubMedCrossRefGoogle Scholar
  84. 84.
    Lemke G, Rothlin CV (2008) Immunobiology of the TAM receptors. Nat Rev Immunol 8(5):327–336. doi: 10.1038/nri2303 PubMedCrossRefGoogle Scholar
  85. 85.
    Sen P, Wallet MA, Yi Z, Huang Y, Henderson M, Mathews CE, Earp HS, Matsushima G, Baldwin AS Jr, Tisch RM (2007) Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-kappaB activation in dendritic cells. Blood 109(2):653–660. doi: 10.1182/blood-2006-04-017368 PubMedCrossRefGoogle Scholar
  86. 86.
    Lu Q, Lemke G (2001) Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293(5528):306–311. doi: 10.1126/science.1061663 PubMedCrossRefGoogle Scholar
  87. 87.
    Popovic PJ, Zeh HJ 3rd, Ochoa JB (2007) Arginine and immunity. J Nutr 137(6 Suppl 2):1681S–1686SPubMedGoogle Scholar
  88. 88.
    Johann AM, Barra V, Kuhn AM, Weigert A, von Knethen A, Brune B (2007) Apoptotic cells induce arginase II in macrophages, thereby attenuating NO production. Faseb J 21(11):2704–2712. doi: 10.1096/fj.06-7815com PubMedCrossRefGoogle Scholar
  89. 89.
    Barra V, Kuhn AM, von Knethen A, Weigert A, Brune B (2011) Apoptotic cell-derived factors induce arginase II expression in murine macrophages by activating ERK5/CREB. Cell Mol Life Sci 68(10):1815–1827. doi: 10.1007/s00018-010-0537-x PubMedCrossRefGoogle Scholar
  90. 90.
    McGaha TL, Huang L, Lemos H, Metz R, Mautino M, Prendergast GC, Mellor AL (2012) Amino acid catabolism: a pivotal regulator of innate and adaptive immunity. Immunol Rev 249(1):135–157. doi: 10.1111/j.1600-065X.2012.01149.x PubMedCrossRefGoogle Scholar
  91. 91.
    Williams CA, Harry RA, McLeod JD (2008) Apoptotic cells induce dendritic cell-mediated suppression via interferon-gamma-induced IDO. Immunology 124(1):89–101. doi: 10.1111/j.1365-2567.2007.02743.x PubMedCrossRefGoogle Scholar
  92. 92.
    Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22(5):633–642. doi: 10.1016/j.immuni.2005.03.013 PubMedCrossRefGoogle Scholar
  93. 93.
    Sharma MD, Hou DY, Liu Y, Koni PA, Metz R, Chandler P, Mellor AL, He Y, Munn DH (2009) Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113(24):6102–6111. doi: 10.1182/blood-2008-12-195354 PubMedCrossRefGoogle Scholar
  94. 94.
    Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, Azuma M, Blazar BR, Mellor AL, Munn DH (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117(9):2570–2582. doi: 10.1172/JCI31911 PubMedCrossRefGoogle Scholar
  95. 95.
    Sundrud MS, Koralov SB, Feuerer M, Calado DP, Kozhaya AE, Rhule-Smith A, Lefebvre RE, Unutmaz D, Mazitschek R, Waldner H, Whitman M, Keller T, Rao A (2009) Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 324(5932):1334–1338. doi: 10.1126/science.1172638 PubMedCrossRefGoogle Scholar
  96. 96.
    McGaha T, Kodera T, Phelps R, Spiera H, Pines M, Bona C (2002) Effect of halofuginone on the development of tight skin (TSK) syndrome. Autoimmunity 35(4):277–282PubMedCrossRefGoogle Scholar
  97. 97.
    Hayashi T, Mo JH, Gong X, Rossetto C, Jang A, Beck L, Elliott GI, Kufareva I, Abagyan R, Broide DH, Lee J, Raz E (2007) 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci USA 104(47):18619–18624. doi: 10.1073/pnas.0709261104 PubMedCrossRefGoogle Scholar
  98. 98.
    Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA 107(46):19961–19966. doi: 10.1073/pnas.1014465107 PubMedCrossRefGoogle Scholar
  99. 99.
    Esser C, Rannug A, Stockinger B (2009) The aryl hydrocarbon receptor in immunity. Trends Immunol 30(9):447–454. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  100. 100.
    Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185(6):3190–3198. doi: 10.4049/jimmunol.0903670 PubMedCrossRefGoogle Scholar
  101. 101.
    Vogel CF, Goth SR, Dong B, Pessah IN, Matsumura F (2008) Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun 375(3):331–335. doi: 10.1016/j.bbrc.2008.07.156 PubMedCrossRefGoogle Scholar
  102. 102.
    Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, Cheong C, Liu K, Lee HW, Park CG, Steinman RM, Nussenzweig MC (2007) Differential antigen processing by dendritic cell subsets in vivo. Science 315(5808):107–111. doi: 10.1126/science.1136080 PubMedCrossRefGoogle Scholar
  103. 103.
    den Haan JM, Lehar SM, Bevan MJ (2000) CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192(12):1685–1696CrossRefGoogle Scholar
  104. 104.
    Ohnmacht C, Pullner A, King SB, Drexler I, Meier S, Brocker T, Voehringer D (2009) Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206(3):549–559. doi: 10.1084/jem.20082394 PubMedCrossRefGoogle Scholar
  105. 105.
    Iyoda T, Shimoyama S, Liu K, Omatsu Y, Akiyama Y, Maeda Y, Takahara K, Steinman RM, Inaba K (2002) The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 195(10):1289–1302PubMedCrossRefGoogle Scholar
  106. 106.
    Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM (2002) Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 196(8):1091–1097PubMedCrossRefGoogle Scholar
  107. 107.
    Qiu CH, Miyake Y, Kaise H, Kitamura H, Ohara O, Tanaka M (2009) Novel subset of CD8{alpha}+ dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J Immunol 182(7):4127–4136. doi: 10.4049/jimmunol.0803364 PubMedCrossRefGoogle Scholar
  108. 108.
    Pooley JL, Heath WR, Shortman K (2001) Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol 166(9):5327–5330PubMedGoogle Scholar
  109. 109.
    Yamazaki S, Dudziak D, Heidkamp GF, Fiorese C, Bonito AJ, Inaba K, Nussenzweig MC, Steinman RM (2008) CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J Immunol 181(10):6923–6933PubMedGoogle Scholar
  110. 110.
    Inaba K, Turley S, Yamaide F, Iyoda T, Mahnke K, Inaba M, Pack M, Subklewe M, Sauter B, Sheff D, Albert M, Bhardwaj N, Mellman I, Steinman RM (1998) Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med 188(11):2163–2173PubMedCrossRefGoogle Scholar
  111. 111.
    Griffith TS, Kazama H, VanOosten RL, Earle JK Jr, Herndon JM, Green DR, Ferguson TA (2007) Apoptotic cells induce tolerance by generating helpless CD8+ T cells that produce TRAIL. J Immunol 178(5):2679–2687PubMedGoogle Scholar
  112. 112.
    Janssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD, Griffith TS, Green DR, Schoenberger SP (2005) CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434(7029):88–93. doi: 10.1038/nature03337 PubMedCrossRefGoogle Scholar
  113. 113.
    Kranich J, Krautler NJ, Heinen E, Polymenidou M, Bridel C, Schildknecht A, Huber C, Kosco-Vilbois MH, Zinkernagel R, Miele G, Aguzzi A (2008) Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8. J Exp Med 205(6):1293–1302. doi: 10.1084/jem.20071019 PubMedCrossRefGoogle Scholar
  114. 114.
    Rahman ZS, Shao WH, Khan TN, Zhen Y, Cohen PL (2010) Impaired apoptotic cell clearance in the germinal center by Mer-deficient tingible body macrophages leads to enhanced antibody-forming cell and germinal center responses. J Immunol 185(10):5859–5868. doi: 10.4049/jimmunol.1001187 PubMedCrossRefGoogle Scholar
  115. 115.
    Shao WH, Zhen Y, Eisenberg RA, Cohen PL (2009) The Mer receptor tyrosine kinase is expressed on discrete macrophage subpopulations and mainly uses Gas6 as its ligand for uptake of apoptotic cells. Clin Immunol 133(1):138–144. doi: 10.1016/j.clim.2009.06.002 PubMedCrossRefGoogle Scholar
  116. 116.
    Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900. doi: 10.1146/annurev.immunol.23.021704.115742 PubMedCrossRefGoogle Scholar
  117. 117.
    Bendelac A, Rivera MN, Park SH, Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535–562. doi: 10.1146/annurev.immunol.15.1.535 PubMedCrossRefGoogle Scholar
  118. 118.
    Facciotti F, Ramanjaneyulu GS, Lepore M, Sansano S, Cavallari M, Kistowska M, Forss-Petter S, Ni G, Colone A, Singhal A, Berger J, Xia C, Mori L, De Libero G (2012) Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat Immunol 13(5):474–480. doi: 10.1038/ni.2245 PubMedCrossRefGoogle Scholar
  119. 119.
    Esteban LM, Tsoutsman T, Jordan MA, Roach D, Poulton LD, Brooks A, Naidenko OV, Sidobre S, Godfrey DI, Baxter AG (2003) Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J Immunol 171(6):2873–2878PubMedGoogle Scholar
  120. 120.
    Wither J, Cai YC, Lim S, McKenzie T, Roslin N, Claudio JO, Cooper GS, Hudson TJ, Paterson AD, Greenwood CM, Gladman D, Pope J, Pineau CA, Smith CD, Hanly JG, Peschken C, Boire G, Fortin PR (2008) Reduced proportions of natural killer T cells are present in the relatives of lupus patients and are associated with autoimmunity. Arthritis Res Ther 10(5):R108. doi: 10.1186/ar2505 PubMedCrossRefGoogle Scholar
  121. 121.
    Wu L, Van Kaer L (2009) Natural killer T cells and autoimmune disease. Curr Mol Med 9(1):4–14PubMedCrossRefGoogle Scholar
  122. 122.
    Yang JQ, Wen X, Liu H, Folayan G, Dong X, Zhou M, Van Kaer L, Singh RR (2007) Examining the role of CD1d and natural killer T cells in the development of nephritis in a genetically susceptible lupus model. Arthritis Rheum 56(4):1219–1233. doi: 10.1002/art.22490 PubMedCrossRefGoogle Scholar
  123. 123.
    Caielli S, Sorini C, Falcone M (2011) The dangerous liaison between iNKT cells and dendritic cells: does it prevent or promote autoimmune diseases? Autoimmunity 44(1):11–22. doi: 10.3109/08916931003782130 PubMedCrossRefGoogle Scholar
  124. 124.
    Roelofs-Haarhuis K, Wu X, Gleichmann E (2004) Oral tolerance to nickel requires CD4+ invariant NKT cells for the infectious spread of tolerance and the induction of specific regulatory T cells. J Immunol 173(2):1043–1050PubMedGoogle Scholar
  125. 125.
    Caielli S, Conforti-Andreoni C, Di Pietro C, Usuelli V, Badami E, Malosio ML, Falcone M (2010) On/off TLR signaling decides proinflammatory or tolerogenic dendritic cell maturation upon CD1d-mediated interaction with invariant NKT cells. J Immunol 185(12):7317–7329. doi: 10.4049/jimmunol.1000400 PubMedCrossRefGoogle Scholar
  126. 126.
    Pillai AB, George TI, Dutt S, Strober S (2009) Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+ CD25+ Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood 113(18):4458–4467. doi: 10.1182/blood-2008-06-165506 PubMedCrossRefGoogle Scholar
  127. 127.
    Hua J, Liang S, Ma X, Webb TJ, Potter JP, Li Z (2011) The interaction between regulatory T cells and NKT cells in the liver: a CD1d bridge links innate and adaptive immunity. PLoS ONE 6(11):e27038. doi: 10.1371/journal.pone.0027038 PubMedCrossRefGoogle Scholar
  128. 128.
    Hegde S, Lockridge JL, Becker YA, Ma S, Kenney SC, Gumperz JE (2011) Human NKT cells direct the differentiation of myeloid APCs that regulate T cell responses via expression of programmed cell death ligands. J Autoimmun 37(1):28–38. doi: 10.1016/j.jaut.2011.03.001 PubMedCrossRefGoogle Scholar
  129. 129.
    Wermeling F, Lind SM, Jordo ED, Cardell SL, Karlsson MC (2010) Invariant NKT cells limit activation of autoreactive CD1d-positive B cells. J Exp Med 207(5):943–952. doi: 10.1084/jem.20091314 PubMedCrossRefGoogle Scholar
  130. 130.
    Brennan PJ, Tatituri RV, Brigl M, Kim EY, Tuli A, Sanderson JP, Gadola SD, Hsu FF, Besra GS, Brenner MB (2011) Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat Immunol 12(12):1202–1211. doi: 10.1038/ni.2143 PubMedCrossRefGoogle Scholar
  131. 131.
    Miles K, Heaney J, Sibinska Z, Salter D, Savill J, Gray D, Gray M (2012) A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction with DNA complexes expressed on apoptotic cells. Proc Natl Acad Sci USA 109(3):887–892. doi: 10.1073/pnas.1109173109 PubMedCrossRefGoogle Scholar
  132. 132.
    Qian Y, Wang H, Clarke SH (2004) Impaired clearance of apoptotic cells induces the activation of autoreactive anti-Sm marginal zone and B-1 B cells. J Immunol 172(1):625–635PubMedGoogle Scholar
  133. 133.
    Ehrenstein MR, Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10(11):778–786. doi: 10.1038/nri2849 PubMedCrossRefGoogle Scholar
  134. 134.
    Quartier P, Potter PK, Ehrenstein MR, Walport MJ, Botto M (2005) Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol 35(1):252–260. doi: 10.1002/eji.200425497 PubMedCrossRefGoogle Scholar
  135. 135.
    Ogden CA, Kowalewski R, Peng Y, Montenegro V, Elkon KB (2005) IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38(4):259–264PubMedCrossRefGoogle Scholar
  136. 136.
    Lumsden AB, Henderson JM, Kutner MH (1988) Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology 8(2):232–236PubMedCrossRefGoogle Scholar
  137. 137.
    Catala M, Anton A, Portoles MT (1999) Characterization of the simultaneous binding of Escherichia coli endotoxin to Kupffer and endothelial liver cells by flow cytometry. Cytometry 36(2):123–130PubMedCrossRefGoogle Scholar
  138. 138.
    Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163. doi: 10.1146/annurev.immunol.021908.132629 PubMedCrossRefGoogle Scholar
  139. 139.
    O’Connell PJ, Morelli AE, Logar AJ, Thomson AW (2000) Phenotypic and functional characterization of mouse hepatic CD8 alpha+ lymphoid-related dendritic cells. J Immunol 165(2):795–803PubMedGoogle Scholar
  140. 140.
    Pillarisetty VG, Katz SC, Bleier JI, Shah AB, Dematteo RP (2005) Natural killer dendritic cells have both antigen presenting and lytic function and in response to CpG produce IFN-gamma via autocrine IL-12. J Immunol 174(5):2612–2618PubMedGoogle Scholar
  141. 141.
    Abe M, Tokita D, Raimondi G, Thomson AW (2006) Endotoxin modulates the capacity of CpG-activated liver myeloid DC to direct Th1-type responses. Eur J Immunol 36(9):2483–2493. doi: 10.1002/eji.200535767 PubMedCrossRefGoogle Scholar
  142. 142.
    Averill L, Lee WM, Karandikar NJ (2007) Differential dysfunction in dendritic cell subsets during chronic HCV infection. Clin Immunol 123(1):40–49. doi: 10.1016/j.clim.2006.12.001 PubMedCrossRefGoogle Scholar
  143. 143.
    De Creus A, Abe M, Lau AH, Hackstein H, Raimondi G, Thomson AW (2005) Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J Immunol 174(4):2037–2045PubMedGoogle Scholar
  144. 144.
    Callery MP, Mangino MJ, Flye MW (1991) Arginine-specific suppression of mixed lymphocyte culture reactivity by Kupffer cells–a basis of portal venous tolerance. Transplantation 51(5):1076–1080PubMedCrossRefGoogle Scholar
  145. 145.
    Terpstra V, van Berkel TJ (2000) Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood 95(6):2157–2163PubMedGoogle Scholar
  146. 146.
    Shi J, Gilbert GE, Kokubo Y, Ohashi T (2001) Role of the liver in regulating numbers of circulating neutrophils. Blood 98(4):1226–1230PubMedCrossRefGoogle Scholar
  147. 147.
    Crispe IN, Dao T, Klugewitz K, Mehal WZ, Metz DP (2000) The liver as a site of T-cell apoptosis: graveyard, or killing field? Immunol Rev 174:47–62PubMedCrossRefGoogle Scholar
  148. 148.
    John B, Crispe IN (2004) Passive and active mechanisms trap activated CD8+ T cells in the liver. J Immunol 172(9):5222–5229PubMedGoogle Scholar
  149. 149.
    Wang Y, Gao Y, Yuan X, Xia W, Luo Y, Sun E, Chen ZK (2008) The liver mediates apoptotic cell-induced immune regulation. Scand J Immunol 68(3):297–305. doi: 10.1111/j.1365-3083.2008.02141.x PubMedCrossRefGoogle Scholar
  150. 150.
    Zhang M, Xu S, Han Y, Cao X (2011) Apoptotic cells attenuate fulminant hepatitis by priming Kupffer cells to produce interleukin-10 through membrane-bound TGF-beta. Hepatology 53(1):306–316. doi: 10.1002/hep.24029 PubMedCrossRefGoogle Scholar
  151. 151.
    Forouhar F, Anderson JL, Mowat CG, Vorobiev SM, Hussain A, Abashidze M, Bruckmann C, Thackray SJ, Seetharaman J, Tucker T, Xiao R, Ma LC, Zhao L, Acton TB, Montelione GT, Chapman SK, Tong L (2007) Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase. Proc Natl Acad Sci USA 104(2):473–478. doi: 10.1073/pnas.0610007104 PubMedCrossRefGoogle Scholar
  152. 152.
    Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478(7368):197–203. doi: 10.1038/nature10491 PubMedCrossRefGoogle Scholar
  153. 153.
    Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frederick R, De Plaen E, Uyttenhove C, Wouters J, Masereel B, Van den Eynde BJ (2012) Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci USA 109(7):2497–2502. doi: 10.1073/pnas.1113873109 PubMedCrossRefGoogle Scholar
  154. 154.
    Sumpter TL, Dangi A, Matta BM, Huang C, Stolz DB, Vodovotz Y, Thomson AW, Gandhi CR (2012) Hepatic Stellate Cells Undermine the Allostimulatory Function of Liver Myeloid Dendritic Cells via STAT3-Dependent Induction of IDO. J Immunol 189(8):3848–3858. doi: 10.4049/jimmunol.1200819 PubMedCrossRefGoogle Scholar
  155. 155.
    Yang HR, Chou HS, Gu X, Wang L, Brown KE, Fung JJ, Lu L, Qian S (2009) Mechanistic insights into immunomodulation by hepatic stellate cells in mice: a critical role of interferon-gamma signaling. Hepatology 50(6):1981–1991. doi: 10.1002/hep.23202 PubMedCrossRefGoogle Scholar
  156. 156.
    Dangi A, Sumpter TL, Kimura S, Stolz DB, Murase N, Raimondi G, Vodovotz Y, Huang C, Thomson AW, Gandhi CR (2012) Selective expansion of allogeneic regulatory T cells by hepatic stellate cells: role of endotoxin and implications for allograft tolerance. J Immunol 188(8):3667–3677. doi: 10.4049/jimmunol.1102460 PubMedCrossRefGoogle Scholar
  157. 157.
    Miller SD, Wetzig RP, Claman HN (1979) The induction of cell-mediated immunity and tolerance with protein antigens coupled to syngeneic lymphoid cells. J Exp Med 149(3):758–773PubMedCrossRefGoogle Scholar
  158. 158.
    Luo X, Pothoven KL, McCarthy D, DeGutes M, Martin A, Getts DR, Xia G, He J, Zhang X, Kaufman DB, Miller SD (2008) ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proc Natl Acad Sci USA 105(38):14527–14532. doi: 10.1073/pnas.0805204105 PubMedCrossRefGoogle Scholar
  159. 159.
    Turley DM, Miller SD (2007) Peripheral tolerance induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J Immunol 178(4):2212–2220PubMedGoogle Scholar
  160. 160.
    Getts DR, Turley DM, Smith CE, Harp CT, McCarthy D, Feeney EM, Getts MT, Martin AJ, Luo X, Terry RL, King NJ, Miller SD (2011) Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10-producing splenic macrophages and maintained by T regulatory cells. J Immunol 187(5):2405–2417. doi: 10.4049/jimmunol.1004175 PubMedCrossRefGoogle Scholar
  161. 161.
    Song PS, Tapley KJ Jr (1979) Photochemistry and photobiology of psoralens. Photochem Photobiol 29(6):1177–1197PubMedCrossRefGoogle Scholar
  162. 162.
    Edelson R, Berger C, Gasparro F, Jegasothy B, Heald P, Wintroub B, Vonderheid E, Knobler R, Wolff K, Plewig G et al (1987) Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. Preliminary results. N Engl J Med 316(6):297–303. doi: 10.1056/NEJM198702053160603 PubMedCrossRefGoogle Scholar
  163. 163.
    Peritt D (2006) Potential mechanisms of photopheresis in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 12(1 Suppl 2):7–12. doi: 10.1016/j.bbmt.2005.11.005 PubMedCrossRefGoogle Scholar
  164. 164.
    Sanford KW, Balogun RA (2012) Extracorporeal photopheresis: clinical use so far. J Clin Apher 27(3):126–131. doi: 10.1002/jca.21217 PubMedCrossRefGoogle Scholar
  165. 165.
    Scarisbrick JJ, Taylor P, Holtick U, Makar Y, Douglas K, Berlin G, Juvonen E, Marshall S (2008) U.K. consensus statement on the use of extracorporeal photopheresis for treatment of cutaneous T-cell lymphoma and chronic graft-versus-host disease. Br J Dermatol 158(4):659–678. doi: 10.1111/j.1365-2133.2007.08415.x Google Scholar
  166. 166.
    Jonson CO, Pihl M, Nyholm C, Cilio CM, Ludvigsson J, Faresjo M (2008) Regulatory T cell-associated activity in photopheresis-induced immune tolerance in recent onset type 1 diabetes children. Clin Exp Immunol 153(2):174–181. doi: 10.1111/j.1365-2249.2008.03625.x PubMedCrossRefGoogle Scholar
  167. 167.
    Reinisch W, Nahavandi H, Santella R, Zhang Y, Gasche C, Moser G, Waldhor T, Gangl A, Vogelsang H, Knobler R (2001) Extracorporeal photochemotherapy in patients with steroid-dependent Crohn’s disease: a prospective pilot study. Aliment Pharmacol Ther 15(9):1313–1322PubMedCrossRefGoogle Scholar
  168. 168.
    Knobler RM, French LE, Kim Y, Bisaccia E, Graninger W, Nahavandi H, Strobl FJ, Keystone E, Mehlmauer M, Rook AH, Braverman I (2006) A randomized, double-blind, placebo-controlled trial of photopheresis in systemic sclerosis. J Am Acad Dermatol 54(5):793–799. doi: 10.1016/j.jaad.2005.11.1091 PubMedCrossRefGoogle Scholar
  169. 169.
    Mathur K, Morris S, Deighan C, Green R, Douglas KW (2008) Extracorporeal photopheresis improves nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: three case reports and review of literature. J Clin Apher 23(4):144–150. doi: 10.1002/jca.20170 PubMedCrossRefGoogle Scholar
  170. 170.
    Ward DM (2011) Extracorporeal photopheresis: how, when, and why. J Clin Apher 26(5):276–285. doi: 10.1002/jca.20300 PubMedCrossRefGoogle Scholar
  171. 171.
    Gatza E, Rogers CE, Clouthier SG, Lowler KP, Tawara I, Liu C, Reddy P, Ferrara JL (2008) Extracorporeal photopheresis reverses experimental graft-versus-host disease through regulatory T cells. Blood 112(4):1515–1521. doi: 10.1182/blood-2007-11-125542 PubMedCrossRefGoogle Scholar
  172. 172.
    Maeda A, Schwarz A, Bullinger A, Morita A, Peritt D, Schwarz T (2008) Experimental extracorporeal photopheresis inhibits the sensitization and effector phases of contact hypersensitivity via two mechanisms: generation of IL-10 and induction of regulatory T cells. J Immunol 181(9):5956–5962PubMedGoogle Scholar
  173. 173.
    Rao V, Saunes M, Jorstad S, Moen T (2009) Cutaneous T cell lymphoma and graft-versus-host disease: a comparison of in vivo effects of extracorporeal photochemotherapy on Foxp3+ regulatory T cells. Clin Immunol 133(3):303–313. doi: 10.1016/j.clim.2009.08.016 PubMedCrossRefGoogle Scholar
  174. 174.
    Gjerdrum LM, Woetmann A, Odum N, Burton CM, Rossen K, Skovgaard GL, Ryder LP, Ralfkiaer E (2007) FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia 21(12):2512–2518. doi: 10.1038/sj.leu.2404913 PubMedCrossRefGoogle Scholar
  175. 175.
    Huang L, Lemos HP, Li L, Li M, Chandler PR, Baban B, McGaha TL, Ravishankar B, Lee JR, Munn DH, Mellor AL (2012) Engineering DNA nanoparticles as immunomodulatory reagents that activate regulatory T cells. J Immunol 188(10):4913–4920. doi: 10.4049/jimmunol.1103668 PubMedCrossRefGoogle Scholar
  176. 176.
    Zhong D, Jiao Y, Zhang Y, Zhang W, Li N, Zuo Q, Wang Q, Xue W, Liu Z (2012) Effects of the gene carrier polyethyleneimines on structure and function of blood components. Biomaterials. doi: 10.1016/j.biomaterials.2012.09.060 Google Scholar
  177. 177.
    Nimesh S (2012) Polyethylenimine as a promising vector for targeted siRNA delivery. Curr Clin Pharmacol 7(2):121–130PubMedCrossRefGoogle Scholar
  178. 178.
    Tiera MJ, Shi Q, Winnik FM, Fernandes JC (2011) Polycation-based gene therapy: current knowledge and new perspectives. Curr Gene Ther 11(4):288–306PubMedCrossRefGoogle Scholar
  179. 179.
    Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924. doi: 10.1038/nn1715 PubMedCrossRefGoogle Scholar
  180. 180.
    Combadiere C, Potteaux S, Gao JL, Esposito B, Casanova S, Lee EJ, Debre P, Tedgui A, Murphy PM, Mallat Z (2003) Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107(7):1009–1016PubMedCrossRefGoogle Scholar
  181. 181.
    Shao WH, Zhen Y, Rosenbaum J, Eisenberg RA, McGaha TL, Birkenbach M, Cohen PL (2010) A protective role of Mer receptor tyrosine kinase in nephrotoxic serum-induced nephritis. Clin Immunol 136(2):236–244. doi: 10.1016/j.clim.2010.04.002 PubMedCrossRefGoogle Scholar
  182. 182.
    Thorp E, Cui D, Schrijvers DM, Kuriakose G, Tabas I (2008) Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler Thromb Vasc Biol 28(8):1421–1428. doi: 10.1161/ATVBAHA.108.167197 PubMedCrossRefGoogle Scholar
  183. 183.
    Nandrot EF, Anand M, Almeida D, Atabai K, Sheppard D, Finnemann SC (2007) Essential role for MFG-E8 as ligand for alphavbeta5 integrin in diurnal retinal phagocytosis. Proc Natl Acad Sci USA 104(29):12005–12010. doi: 10.1073/pnas.0704756104 PubMedCrossRefGoogle Scholar
  184. 184.
    Fuller AD, Van Eldik LJ (2008) MFG-E8 regulates microglial phagocytosis of apoptotic neurons. J Neuroimmune Pharmacol 3(4):246–256. doi: 10.1007/s11481-008-9118-2 PubMedCrossRefGoogle Scholar
  185. 185.
    Ekman C, Jonsen A, Sturfelt G, Bengtsson AA, Dahlback B (2011) Plasma concentrations of Gas6 and sAxl correlate with disease activity in systemic lupus erythematosus. Rheumatology (Oxford) 50(6):1064–1069. doi: 10.1093/rheumatology/keq459 CrossRefGoogle Scholar
  186. 186.
    Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19(1):56–59. doi: 10.1038/ng0598-56 PubMedCrossRefGoogle Scholar
  187. 187.
    Shimazaki A, Kawamura Y, Kanazawa A, Sekine A, Saito S, Tsunoda T, Koya D, Babazono T, Tanaka Y, Matsuda M, Kawai K, Iiizumi T, Imanishi M, Shinosaki T, Yanagimoto T, Ikeda M, Omachi S, Kashiwagi A, Kaku K, Iwamoto Y, Kawamori R, Kikkawa R, Nakajima M, Nakamura Y, Maeda S (2005) Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes 54(4):1171–1178PubMedCrossRefGoogle Scholar
  188. 188.
    Ag N, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, Deniz J, Ramirez C, Diaz M, Gallardo G, de Galarreta CR, Salazar J, Lopez F, Edwards P, Parks J, Andujar M, Tontonoz P, Castrillo A (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31(2):245–258. doi: 10.1016/j.immuni.2009.06.018 CrossRefGoogle Scholar
  189. 189.
    Mukundan L, Odegaard JI, Morel CR, Heredia JE, Mwangi JW, Ricardo-Gonzalez RR, Goh YP, Eagle AR, Dunn SE, Awakuni JU, Nguyen KD, Steinman L, Michie SA, Chawla A (2009) PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat Med 15(11):1266–1272. doi: 10.1038/nm.2048 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer CenterGeorgia Regents UniversityAugustaUSA
  2. 2.Section of Nephrology, Department of Medicine, Medical College of GeorgiaGeorgia Regents UniversityAugustaUSA

Personalised recommendations