Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 21, pp 3989–4008 | Cite as

Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition

  • Feng Wang
  • Christopher B. Marshall
  • Mitsuhiko IkuraEmail author
Review

Abstract

In eukaryotic cells, gene transcription is regulated by sequence-specific DNA-binding transcription factors that recognize promoter and enhancer elements near the transcriptional start site. Some coactivators promote transcription by connecting transcription factors to the basal transcriptional machinery. The highly conserved coactivators CREB-binding protein (CBP) and its paralog, E1A-binding protein (p300), each have four separate transactivation domains (TADs) that interact with the TADs of a number of DNA-binding transcription activators as well as general transcription factors (GTFs), thus mediating recruitment of basal transcription machinery to the promoter. Most promoters comprise multiple activator-binding sites, and many activators contain tandem TADs, thus multivalent interactions may stabilize CBP/p300 at the promoter, and intrinsically disordered regions in CBP/p300 and many activators may confer adaptability to these multivalent complexes. CBP/p300 contains a catalytic histone acetyltransferase (HAT) domain, which remodels chromatin to ‘relax’ its superstructure and enables transcription of proximal genes. The HAT activity of CBP/p300 also acetylates some transcription factors (e.g., p53), hence modulating the function of key transcriptional regulators. Through these numerous interactions, CBP/p300 has been implicated in complex physiological and pathological processes, and, in response to different signals, can drive cells towards proliferation or apoptosis. Dysregulation of the transcriptional and epigenetic functions of CBP/p300 is associated with leukemia and other types of cancer, thus it has been recognized as a potential anti-cancer drug target. In this review, we focus on recent exciting findings in the structural mechanisms of CBP/p300 involving multivalent and dynamic interactions with binding partners, which may pave new avenues for anti-cancer drug development.

Keywords

Transcriptional coactivator Transcription factors CBP/p300 Protein–protein interaction Histone acetyltransferase (HAT) Cancer 

Notes

Acknowledgments

This work is supported by the Canadian Institutes of Health Research (CIHR) to M.I., who also holds a Canada Research Chair in Cancer Structural Biology. We thank Drs. Peter Wright, Robert Roeder, and Steven Smith for helpful discussions.

References

  1. 1.
    Guarente L (1995) Transcriptional coactivators in yeast and beyond. Trends Biochem Sci 20(12):517–521. doi: S0968-0004(00)89120-3 PubMedGoogle Scholar
  2. 2.
    Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41(3):105–178. doi: 10.1080/10409230600648736 PubMedGoogle Scholar
  3. 3.
    Ptashne M, Gann A (1997) Transcriptional activation by recruitment. Nature 386(6625):569–577. doi: 10.1038/386569a0 PubMedGoogle Scholar
  4. 4.
    Workman JL, Roeder RG (1987) Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51(4):613–622. doi: 0092-8674(87)90130-9 PubMedGoogle Scholar
  5. 5.
    Horikoshi M, Hai T, Lin YS, Green MR, Roeder RG (1988) Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54(7):1033–1042. doi: 0092-8674(88)90118-3 PubMedGoogle Scholar
  6. 6.
    Zhou J, Zwicker J, Szymanski P, Levine M, Tjian R (1998) TAFII mutations disrupt Dorsal activation in the Drosophila embryo. Proc Natl Acad Sci USA 95(23):13483–13488PubMedGoogle Scholar
  7. 7.
    Meisterernst M, Roeder RG (1991) Family of proteins that interact with TFIID and regulate promoter activity. Cell 67(3):557–567. doi: 0092-8674(91)90530-C PubMedGoogle Scholar
  8. 8.
    Dynlacht BD, Hoey T, Tjian R (1991) Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66(3):563–576. doi: 0092-8674(81)90019-2 PubMedGoogle Scholar
  9. 9.
    Kim YJ, Bjorklund S, Li Y, Sayre MH, Kornberg RD (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77(4):599–608. doi: 0092-8674(94)90221-6 PubMedGoogle Scholar
  10. 10.
    Bednar J, Horowitz RA, Grigoryev SA, Carruthers LM, Hansen JC, Koster AJ, Woodcock CL (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci USA 95(24):14173–14178PubMedGoogle Scholar
  11. 11.
    Naar AM, Lemon BD, Tjian R (2001) Transcriptional coactivator complexes. Annu Rev Biochem 70:475–501. doi: 10.1146/annurev.biochem.70.1.475 PubMedGoogle Scholar
  12. 12.
    Spiegelman BM, Heinrich R (2004) Biological control through regulated transcriptional coactivators. Cell 119(2):157–167. doi: 10.1016/j.cell.2004.09.037 PubMedGoogle Scholar
  13. 13.
    Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384(6610):641–643. doi: 10.1038/384641a0 PubMedGoogle Scholar
  14. 14.
    Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87(5):953–959. doi: S0092-8674(00)82001-2 PubMedGoogle Scholar
  15. 15.
    Shiama N (1997) The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 7(6):230–236. doi: 10.1016/S0962-8924(97)01048-9 PubMedGoogle Scholar
  16. 16.
    Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68(6):1145–1155. doi: 10.1016/j.bcp.2004.03.045 PubMedGoogle Scholar
  17. 17.
    Whyte P, Williamson NM, Harlow E (1989) Cellular targets for transformation by the adenovirus E1A proteins. Cell 56(1):67–75. doi: 0092-8674(89)90984-7 PubMedGoogle Scholar
  18. 18.
    Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM (1994) Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8(8):869–884PubMedGoogle Scholar
  19. 19.
    Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365(6449):855–859. doi: 10.1038/365855a0 PubMedGoogle Scholar
  20. 20.
    Kwok RP, Lundblad JR, Chrivia JC, Richards JP, Bachinger HP, Brennan RG, Roberts SG, Green MR, Goodman RH (1994) Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370(6486):223–226. doi: 10.1038/370223a0 PubMedGoogle Scholar
  21. 21.
    Arias J, Alberts AS, Brindle P, Claret FX, Smeal T, Karin M, Feramisco J, Montminy M (1994) Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370(6486):226–229. doi: 10.1038/370226a0 PubMedGoogle Scholar
  22. 22.
    Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM (1999) Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev 13(1):64–75PubMedGoogle Scholar
  23. 23.
    De Guzman RN, Liu HY, Martinez-Yamout M, Dyson HJ, Wright PE (2000) Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP. J Mol Biol 303(2):243–253. doi: 10.1006/jmbi.2000.4141 PubMedGoogle Scholar
  24. 24.
    Parker D, Ferreri K, Nakajima T, LaMorte VJ, Evans R, Koerber SC, Hoeger C, Montminy MR (1996) Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol Cell Biol 16(2):694–703PubMedGoogle Scholar
  25. 25.
    Albanese C, D’Amico M, Reutens AT, Fu M, Watanabe G, Lee RJ, Kitsis RN, Henglein B, Avantaggiati M, Somasundaram K, Thimmapaya B, Pestell RG (1999) Activation of the cyclin D1 gene by the E1A-associated protein p300 through AP-1 inhibits cellular apoptosis. J Biol Chem 274(48):34186–34195PubMedGoogle Scholar
  26. 26.
    Lin CH, Hare BJ, Wagner G, Harrison SC, Maniatis T, Fraenkel E (2001) A small domain of CBP/p300 binds diverse proteins: solution structure and functional studies. Mol Cell 8(3):581–590. doi: S1097-2765(01)00333-1 PubMedGoogle Scholar
  27. 27.
    Demarest SJ, Martinez-Yamout M, Chung J, Chen H, Xu W, Dyson HJ, Evans RM, Wright PE (2002) Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415(6871):549–553. doi: 10.1038/415549a PubMedGoogle Scholar
  28. 28.
    Ragvin A, Valvatne H, Erdal S, Arskog V, Tufteland KR, Breen K, AM OY, Eberharter A, Gibson TJ, Becker PB, Aasland R (2004) Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300. J Mol Biol 337(4):773–788. doi: 10.1016/j.jmb.2004.01.051 PubMedGoogle Scholar
  29. 29.
    Iyer NG, Ozdag H, Caldas C (2004) p300/CBP and cancer. Oncogene 23(24):4225–4231. doi: 10.1038/sj.onc.1207118 PubMedGoogle Scholar
  30. 30.
    Vervoorts J, Luscher-Firzlaff JM, Rottmann S, Lilischkis R, Walsemann G, Dohmann K, Austen M, Luscher B (2003) Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep 4(5):484–490. doi: 10.1038/sj.embor.embor821 PubMedGoogle Scholar
  31. 31.
    Dai P, Akimaru H, Tanaka Y, Hou DX, Yasukawa T, Kanei-Ishii C, Takahashi T, Ishii S (1996) CBP as a transcriptional coactivator of c-Myb. Genes Dev 10(5):528–540PubMedGoogle Scholar
  32. 32.
    Bannister AJ, Oehler T, Wilhelm D, Angel P, Kouzarides T (1995) Stimulation of c-Jun activity by CBP: c-Jun residues Ser63/73 are required for CBP induced stimulation in vivo and CBP binding in vitro. Oncogene 11(12):2509–2514PubMedGoogle Scholar
  33. 33.
    Bannister AJ, Kouzarides T (1995) CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J 14(19):4758–4762PubMedGoogle Scholar
  34. 34.
    Patel D, Huang SM, Baglia LA, McCance DJ (1999) The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J 18(18):5061–5072. doi: 10.1093/emboj/18.18.5061 PubMedGoogle Scholar
  35. 35.
    Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS, Kelly K (1997) Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89(7):1175–1184. doi: S0092-8674(00)80304-9 PubMedGoogle Scholar
  36. 36.
    Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM (1997) Binding and modulation of p53 by p300/CBP coactivators. Nature 387(6635):823–827. doi: 10.1038/42981 PubMedGoogle Scholar
  37. 37.
    Nasrin N, Ogg S, Cahill CM, Biggs W, Nui S, Dore J, Calvo D, Shi Y, Ruvkun G, Alexander-Bridges MC (2000) DAF-16 recruits the CREB-binding protein coactivator complex to the insulin-like growth factor binding protein 1 promoter in HepG2 cells. Proc Natl Acad Sci USA 97(19):10412–10417. doi: 10.1073/pnas.190326997 PubMedGoogle Scholar
  38. 38.
    So CW, Cleary ML (2002) MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol 22(18):6542–6552PubMedGoogle Scholar
  39. 39.
    So CW, Cleary ML (2003) Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood 101(2):633–639. doi: 10.1182/blood-2002-06-1785 PubMedGoogle Scholar
  40. 40.
    Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE Jr (1996) Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci USA 93(26):15092–15096PubMedGoogle Scholar
  41. 41.
    Bhattacharya S, Eckner R, Grossman S, Oldread E, Arany Z, D’Andrea A, Livingston DM (1996) Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature 383(6598):344–347. doi: 10.1038/383344a0 PubMedGoogle Scholar
  42. 42.
    Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA, Bunn HF, Livingston DM (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 93(23):12969–12973PubMedGoogle Scholar
  43. 43.
    Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 17(22):6573–6586. doi: 10.1093/emboj/17.22.6573 PubMedGoogle Scholar
  44. 44.
    Pao GM, Janknecht R, Ruffner H, Hunter T, Verma IM (2000) CBP/p300 interact with and function as transcriptional coactivators of BRCA1. Proc Natl Acad Sci USA 97(3):1020–1025PubMedGoogle Scholar
  45. 45.
    Janknecht R, Nordheim A (1996) MAP kinase-dependent transcriptional coactivation by Elk-1 and its cofactor CBP. Biochem Biophys Res Commun 228(3):831–837. doi: 10.1006/bbrc.1996.1740 PubMedGoogle Scholar
  46. 46.
    Feng XH, Zhang Y, Wu RY, Derynck R (1998) The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev 12(14):2153–2163PubMedGoogle Scholar
  47. 47.
    Kitabayashi I, Yokoyama A, Shimizu K, Ohki M (1998) Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. EMBO J 17(11):2994–3004. doi: 10.1093/emboj/17.11.2994 PubMedGoogle Scholar
  48. 48.
    Ait-Si-Ali S, Polesskaya A, Filleur S, Ferreira R, Duquet A, Robin P, Vervish A, Trouche D, Cabon F, Harel-Bellan A (2000) CBP/p300 histone acetyl-transferase activity is important for the G1/S transition. Oncogene 19(20):2430–2437. doi: 10.1038/sj.onc.1203562 PubMedGoogle Scholar
  49. 49.
    Denis CM, Chitayat S, Plevin MJ, Wang F, Thompson P, Liu S, Spencer HL, Ikura M, Lebrun DP, Smith SP (2012) Structural basis of CBP/p300 recruitment in leukemia induction by E2A-PBX1. Blood 120(19):3968–3977. doi: 10.1182/blood-2012-02-411397 Google Scholar
  50. 50.
    Teufel DP, Freund SM, Bycroft M, Fersht AR (2007) Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci USA 104(17):7009–7014. doi: 10.1073/pnas.0702010104 PubMedGoogle Scholar
  51. 51.
    Wang F, Marshall CB, Yamamoto K, Li GY, Gasmi-Seabrook GM, Okada H, Mak TW, Ikura M (2012) Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment. Proc Natl Acad Sci USA 109(16):6078–6083. doi: 10.1073/pnas.1119073109 PubMedGoogle Scholar
  52. 52.
    Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM (1996) Role of CBP/P300 in nuclear receptor signalling. Nature 383(6595):99–103. doi: 10.1038/383099a0 PubMedGoogle Scholar
  53. 53.
    Fronsdal K, Engedal N, Slagsvold T, Saatcioglu F (1998) CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1. J Biol Chem 273(48):31853–31859PubMedGoogle Scholar
  54. 54.
    Hanstein B, Eckner R, DiRenzo J, Halachmi S, Liu H, Searcy B, Kurokawa R, Brown M (1996) p300 is a component of an estrogen receptor coactivator complex. Proc Natl Acad Sci USA 93(21):11540–11545PubMedGoogle Scholar
  55. 55.
    Kee BL, Arias J, Montminy MR (1996) Adaptor-mediated recruitment of RNA polymerase II to a signal-dependent activator. J Biol Chem 271(5):2373–2375PubMedGoogle Scholar
  56. 56.
    Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD, Montminy M (1997) RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90(6):1107–1112. doi: S0092-8674(00)80376-1 PubMedGoogle Scholar
  57. 57.
    Cho H, Orphanides G, Sun X, Yang XJ, Ogryzko V, Lees E, Nakatani Y, Reinberg D (1998) A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol 18(9):5355–5363PubMedGoogle Scholar
  58. 58.
    Kim TK, Kim TH, Maniatis T (1998) Efficient recruitment of TFIIB and CBP-RNA polymerase II holoenzyme by an interferon-beta enhanceosome in vitro. Proc Natl Acad Sci USA 95(21):12191–12196PubMedGoogle Scholar
  59. 59.
    Swope DL, Mueller CL, Chrivia JC (1996) CREB-binding protein activates transcription through multiple domains. J Biol Chem 271(45):28138–28145PubMedGoogle Scholar
  60. 60.
    Felzien LK, Farrell S, Betts JC, Mosavin R, Nabel GJ (1999) Specificity of cyclin E-Cdk2, TFIIB, and E1A interactions with a common domain of the p300 coactivator. Mol Cell Biol 19(6):4241–4246PubMedGoogle Scholar
  61. 61.
    Imhof A, Yang XJ, Ogryzko VV, Nakatani Y, Wolffe AP, Ge H (1997) Acetylation of general transcription factors by histone acetyltransferases. Curr Biol 7(9):689–692. doi: S0960-9822(06)00296-X PubMedGoogle Scholar
  62. 62.
    Nagy Z, Tora L (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26(37):5341–5357. doi: 10.1038/sj.onc.1210604 PubMedGoogle Scholar
  63. 63.
    Zeng L, Zhang Q, Gerona-Navarro G, Moshkina N, Zhou MM (2008) Structural basis of site-specific histone recognition by the bromodomains of human coactivators PCAF and CBP/p300. Structure 16(4):643–652. doi: 10.1016/j.str.2008.01.010 PubMedGoogle Scholar
  64. 64.
    Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SY, Ge K (2011) Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30(2):249–262. doi: 10.1038/emboj.2010.318 PubMedGoogle Scholar
  65. 65.
    Blanco JC, Minucci S, Lu J, Yang XJ, Walker KK, Chen H, Evans RM, Nakatani Y, Ozato K (1998) The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev 12(11):1638–1651PubMedGoogle Scholar
  66. 66.
    Paulson M, Press C, Smith E, Tanese N, Levy DE (2002) IFN-Stimulated transcription through a TBP-free acetyltransferase complex escapes viral shutoff. Nat Cell Biol 4(2):140–147. doi: 10.1038/ncb747 PubMedGoogle Scholar
  67. 67.
    Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382(6589):319–324. doi: 10.1038/382319a0 PubMedGoogle Scholar
  68. 68.
    Hosoda H, Kato K, Asano H, Ito M, Kato H, Iwamoto T, Suzuki A, Masushige S, Kida S (2009) CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription. Mol Brain 2:34. doi: 10.1186/1756-6606-2-34 PubMedGoogle Scholar
  69. 69.
    Xu W, Edmondson DG, Roth SY (1998) Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol Cell Biol 18(10):5659–5669PubMedGoogle Scholar
  70. 70.
    Kahata K, Hayashi M, Asaka M, Hellman U, Kitagawa H, Yanagisawa J, Kato S, Imamura T, Miyazono K (2004) Regulation of transforming growth factor-beta and bone morphogenetic protein signalling by transcriptional coactivator GCN5. Genes Cells 9(2):143–151. doi: 706 PubMedGoogle Scholar
  71. 71.
    Phan HM, Xu AW, Coco C, Srajer G, Wyszomierski S, Evrard YA, Eckner R, Dent SY (2005) GCN5 and p300 share essential functions during early embryogenesis. Dev Dyn 233(4):1337–1347. doi: 10.1002/dvdy.20445 PubMedGoogle Scholar
  72. 72.
    Michael LF, Asahara H, Shulman AI, Kraus WL, Montminy M (2000) The phosphorylation status of a cyclic AMP-responsive activator is modulated via a chromatin-dependent mechanism. Mol Cell Biol 20(5):1596–1603PubMedGoogle Scholar
  73. 73.
    Radhakrishnan I, Perez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE (1997) Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator: coactivator interactions. Cell 91(6):741–752. doi: S0092-8674(00)80463-8 PubMedGoogle Scholar
  74. 74.
    Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447(7147):1021–1025. doi: 10.1038/nature05858 PubMedGoogle Scholar
  75. 75.
    Solt I, Magyar C, Simon I, Tompa P, Fuxreiter M (2006) Phosphorylation-induced transient intrinsic structure in the kinase-inducible domain of CREB facilitates its recognition by the KIX domain of CBP. Proteins 64(3):749–757. doi: 10.1002/prot.21032 PubMedGoogle Scholar
  76. 76.
    Turjanski AG, Gutkind JS, Best RB, Hummer G (2008) Binding-induced folding of a natively unstructured transcription factor. PLoS Comput Biol 4(4):e1000060. doi: 10.1371/journal.pcbi.1000060 PubMedGoogle Scholar
  77. 77.
    Zor T, Mayr BM, Dyson HJ, Montminy MR, Wright PE (2002) Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators. J Biol Chem 277(44):42241–42248. doi: 10.1074/jbc.M207361200 PubMedGoogle Scholar
  78. 78.
    Zor T, De Guzman RN, Dyson HJ, Wright PE (2004) Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb. J Mol Biol 337(3):521–534. doi: 10.1016/j.jmb.2004.01.038 PubMedGoogle Scholar
  79. 79.
    Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE (2002) Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J Biol Chem 277(45):43168–43174. doi: 10.1074/jbc.M207660200 PubMedGoogle Scholar
  80. 80.
    De Guzman RN, Goto NK, Dyson HJ, Wright PE (2006) Structural basis for cooperative transcription factor binding to the CBP coactivator. J Mol Biol 355(5):1005–1013. doi: 10.1016/j.jmb.2005.09.059 PubMedGoogle Scholar
  81. 81.
    Steegenga WT, van Laar T, Riteco N, Mandarino A, Shvarts A, van der Eb AJ, Jochemsen AG (1996) Adenovirus E1A proteins inhibit activation of transcription by p53. Mol Cell Biol 16(5):2101–2109PubMedGoogle Scholar
  82. 82.
    Scolnick DM, Chehab NH, Stavridi ES, Lien MC, Caruso L, Moran E, Berger SL, Halazonetis TD (1997) CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein. Cancer Res 57(17):3693–3696PubMedGoogle Scholar
  83. 83.
    Wang F, Marshall CB, Li GY, Yamamoto K, Mak TW, Ikura M (2009) Synergistic interplay between promoter recognition and CBP/p300 coactivator recruitment by FOXO3a. ACS Chem Biol 4(12):1017–1027. doi: 10.1021/cb900190u PubMedGoogle Scholar
  84. 84.
    Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE (2009) Mapping the interactions of the p53 transactivation domain with the KIX domain of CBP. Biochemistry 48(10):2115–2124. doi: 10.1021/bi802055v PubMedGoogle Scholar
  85. 85.
    Cook PR, Polakowski N, Lemasson I (2011) HTLV-1 HBZ protein deregulates interactions between cellular factors and the KIX domain of p300/CBP. J Mol Biol 409(3):384–398. doi: 10.1016/j.jmb.2011.04.003 PubMedGoogle Scholar
  86. 86.
    Campbell KM, Lumb KJ (2002) Structurally distinct modes of recognition of the KIX domain of CBP by Jun and CREB. Biochemistry 41(47):13956–13964. doi: bi026222m PubMedGoogle Scholar
  87. 87.
    Lee YH, Bedford MT, Stallcup MR (2011) Regulated recruitment of tumor suppressor BRCA1 to the p21 gene by coactivator methylation. Genes Dev 25(2):176–188. doi: 10.1101/gad.1975811 PubMedGoogle Scholar
  88. 88.
    Bayly R, Chuen L, Currie RA, Hyndman BD, Casselman R, Blobel GA, LeBrun DP (2004) E2A-PBX1 interacts directly with the KIX domain of CBP/p300 in the induction of proliferation in primary hematopoietic cells. J Biol Chem 279(53):55362–55371. doi: 10.1074/jbc.M408654200 PubMedGoogle Scholar
  89. 89.
    Hyndman BD, Thompson P, Bayly R, Cote GP (1819) Lebrun DP (2012) E2A proteins enhance the histone acetyltransferase activity of the transcriptional co-activators CBP and p300. Biochim Biophys Acta 5:446–453. doi: 10.1016/j.bbagrm.2012.02.009 Google Scholar
  90. 90.
    Ramirez JA, Nyborg JK (2007) Molecular characterization of HTLV-1 Tax interaction with the KIX domain of CBP/p300. J Mol Biol 372(4):958–969. doi: 10.1016/j.jmb.2007.06.062 PubMedGoogle Scholar
  91. 91.
    Oliner JD, Andresen JM, Hansen SK, Zhou S, Tjian R (1996) SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein. Genes Dev 10(22):2903–2911PubMedGoogle Scholar
  92. 92.
    Plevin MJ, Mills MM, Ikura M (2005) The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci 30(2):66–69. doi: 10.1016/j.tibs.2004.12.001 PubMedGoogle Scholar
  93. 93.
    De Guzman RN, Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE (2005) CBP/p300 TAZ1 domain forms a structured scaffold for ligand binding. Biochemistry 44(2):490–497. doi: 10.1021/bi048161t PubMedGoogle Scholar
  94. 94.
    Legge GB, Martinez-Yamout MA, Hambly DM, Trinh T, Lee BM, Dyson HJ, Wright PE (2004) ZZ domain of CBP: an unusual zinc finger fold in a protein interaction module. J Mol Biol 343(4):1081–1093. doi: 10.1016/j.jmb.2004.08.087 PubMedGoogle Scholar
  95. 95.
    Miller M, Dauter Z, Cherry S, Tropea JE, Wlodawer A (2009) Structure of the Taz2 domain of p300: insights into ligand binding. Acta Crystallogr D Biol Crystallogr 65(Pt 12):1301–1308. doi: 10.1107/S0907444909040153 PubMedGoogle Scholar
  96. 96.
    Kalkhoven E, Teunissen H, Houweling A, Verrijzer CP, Zantema A (2002) The PHD type zinc finger is an integral part of the CBP acetyltransferase domain. Mol Cell Biol 22(7):1961–1970PubMedGoogle Scholar
  97. 97.
    Zeng L, Yap KL, Ivanov AV, Wang X, Mujtaba S, Plotnikova O, Rauscher FJ 3rd, Zhou MM (2008) Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing. Nat Struct Mol Biol 15(6):626–633. doi: 10.1038/nsmb.1416 PubMedGoogle Scholar
  98. 98.
    Lallous N, Legrand P, McEwen AG, Ramon-Maiques S, Samama JP, Birck C (2011) The PHD finger of human UHRF1 reveals a new subgroup of unmethylated histone H3 tail readers. PLoS ONE 6(11):e27599. doi: 10.1371/journal.pone.0027599 PubMedGoogle Scholar
  99. 99.
    Ruas JL, Poellinger L, Pereira T (2005) Role of CBP in regulating HIF-1-mediated activation of transcription. J Cell Sci 118(Pt 2):301–311. doi: 10.1242/jcs.01617 PubMedGoogle Scholar
  100. 100.
    Ferreon JC, Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE (2009) Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Proc Natl Acad Sci USA 106(16):6591–6596. doi: 10.1073/pnas.0811023106 PubMedGoogle Scholar
  101. 101.
    Feng H, Jenkins LM, Durell SR, Hayashi R, Mazur SJ, Cherry S, Tropea JE, Miller M, Wlodawer A, Appella E, Bai Y (2009) Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure 17(2):202–210. doi: 10.1016/j.str.2008.12.009 PubMedGoogle Scholar
  102. 102.
    Jenkins LM, Yamaguchi H, Hayashi R, Cherry S, Tropea JE, Miller M, Wlodawer A, Appella E, Mazur SJ (2009) Two distinct motifs within the p53 transactivation domain bind to the Taz2 domain of p300 and are differentially affected by phosphorylation. Biochemistry 48(6):1244–1255. doi: 10.1021/bi801716h PubMedGoogle Scholar
  103. 103.
    Arai M, Ferreon JC, Wright PE (2012) Quantitative analysis of multisite protein-ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP. J Am Chem Soc 134(8):3792–3803. doi: 10.1021/ja209936u PubMedGoogle Scholar
  104. 104.
    Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE (2002) Structural basis for Hif-1 alpha/CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci USA 99(8):5271–5276. doi: 10.1073/pnas.082121399 PubMedGoogle Scholar
  105. 105.
    Yin Z, Haynie J, Yang X, Han B, Kiatchoosakun S, Restivo J, Yuan S, Prabhakar NR, Herrup K, Conlon RA, Hoit BD, Watanabe M, Yang YC (2002) The essential role of Cited2, a negative regulator for HIF-1alpha, in heart development and neurulation. Proc Natl Acad Sci USA 99(16):10488–10493. doi: 10.1073/pnas.162371799 PubMedGoogle Scholar
  106. 106.
    De Guzman RN, Martinez-Yamout MA, Dyson HJ, Wright PE (2004) Interaction of the TAZ1 domain of the CREB-binding protein with the activation domain of CITED2: regulation by competition between intrinsically unstructured ligands for non-identical binding sites. J Biol Chem 279(4):3042–3049. doi: 10.1074/jbc.M310348200 PubMedGoogle Scholar
  107. 107.
    Freedman SJ, Sun ZY, Kung AL, France DS, Wagner G, Eck MJ (2003) Structural basis for negative regulation of hypoxia-inducible factor-1alpha by CITED2. Nat Struct Biol 10(7):504–512. doi: 10.1038/nsb936 PubMedGoogle Scholar
  108. 108.
    O’Connor MJ, Zimmermann H, Nielsen S, Bernard HU, Kouzarides T (1999) Characterization of an E1A-CBP interaction defines a novel transcriptional adapter motif (TRAM) in CBP/p300. J Virol 73(5):3574–3581PubMedGoogle Scholar
  109. 109.
    Kurokawa R, Kalafus D, Ogliastro MH, Kioussi C, Xu L, Torchia J, Rosenfeld MG, Glass CK (1998) Differential use of CREB binding protein-coactivator complexes. Science 279(5351):700–703PubMedGoogle Scholar
  110. 110.
    Fax P, Lipinski KS, Esche H, Brockmann D (2000) cAMP-independent activation of the adenovirus type 12 E2 promoter correlates with the recruitment of CREB-1/ATF-1, E1A(12S), and CBP to the E2-CRE. J Biol Chem 275(12):8911–8920PubMedGoogle Scholar
  111. 111.
    Ferreon JC, Martinez-Yamout MA, Dyson HJ, Wright PE (2009) Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proc Natl Acad Sci USA 106(32):13260–13265. doi: 10.1073/pnas.0906770106 PubMedGoogle Scholar
  112. 112.
    Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE (2009) Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains. EMBO J 28(7):948–958. doi: 10.1038/emboj.2009.30 PubMedGoogle Scholar
  113. 113.
    McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27(1):40–47. doi: S0968-0004(01)02031-X PubMedGoogle Scholar
  114. 114.
    Sartorelli V, Huang J, Hamamori Y, Kedes L (1997) Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol 17(2):1010–1026PubMedGoogle Scholar
  115. 115.
    Youn HD, Chatila TA, Liu JO (2000) Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J 19(16):4323–4331. doi: 10.1093/emboj/19.16.4323 PubMedGoogle Scholar
  116. 116.
    Slepak TI, Webster KA, Zang J, Prentice H, O’Dowd A, Hicks MN, Bishopric NH (2001) Control of cardiac-specific transcription by p300 through myocyte enhancer factor-2D. J Biol Chem 276(10):7575–7585. doi: 10.1074/jbc.M004625200 PubMedGoogle Scholar
  117. 117.
    He J, Ye J, Cai Y, Riquelme C, Liu JO, Liu X, Han A, Chen L (2011) Structure of p300 bound to MEF2 on DNA reveals a mechanism of enhanceosome assembly. Nucleic Acids Res 39(10):4464–4474. doi: 10.1093/nar/gkr030 PubMedGoogle Scholar
  118. 118.
    Qin BY, Liu C, Srinath H, Lam SS, Correia JJ, Derynck R, Lin K (2005) Crystal structure of IRF-3 in complex with CBP. Structure 13(9):1269–1277. doi: 10.1016/j.str.2005.06.011 PubMedGoogle Scholar
  119. 119.
    Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE (2010) Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry 49(46):9964–9971. doi: 10.1021/bi1012996 PubMedGoogle Scholar
  120. 120.
    Chen D, Huang SM, Stallcup MR (2000) Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem 275(52):40810–40816. doi: 10.1074/jbc.M005459200 PubMedGoogle Scholar
  121. 121.
    Demarest SJ, Deechongkit S, Dyson HJ, Evans RM, Wright PE (2004) Packing, specificity, and mutability at the binding interface between the p160 coactivator and CREB-binding protein. Protein Sci 13(1):203–210. doi: 10.1110/ps.03366504 PubMedGoogle Scholar
  122. 122.
    Kjaergaard M, Teilum K, Poulsen FM (2010) Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP. Proc Natl Acad Sci USA 107(28):12535–12540. doi: 10.1073/pnas.1001693107 PubMedGoogle Scholar
  123. 123.
    Hammes GG, Chang YC, Oas TG (2009) Conformational selection or induced fit: a flux description of reaction mechanism. Proc Natl Acad Sci USA 106(33):13737–13741. doi: 10.1073/pnas.0907195106 PubMedGoogle Scholar
  124. 124.
    Moras D, Gronemeyer H (1998) The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol 10(3):384–391. doi: S0955-0674(98)80015-X PubMedGoogle Scholar
  125. 125.
    Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387(6634):733–736. doi: 10.1038/42750 PubMedGoogle Scholar
  126. 126.
    Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208. doi: 10.1038/nrm1589 PubMedGoogle Scholar
  127. 127.
    Mittag T, Kay LE, Forman-Kay JD (2010) Protein dynamics and conformational disorder in molecular recognition. J Mol Recognit 23(2):105–116. doi: 10.1002/jmr.961 PubMedGoogle Scholar
  128. 128.
    Lee CW, Ferreon JC, Ferreon AC, Arai M, Wright PE (2010) Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proc Natl Acad Sci USA 107(45):19290–19295. doi: 10.1073/pnas.1013078107 PubMedGoogle Scholar
  129. 129.
    Mas C, Lussier-Price M, Soni S, Morse T, Arseneault G, Di Lello P, Lafrance-Vanasse J, Bieker JJ, Omichinski JG (2011) Structural and functional characterization of an atypical activation domain in erythroid Kruppel-like factor (EKLF). Proc Natl Acad Sci USA 108(26):10484–10489. doi: 10.1073/pnas.1017029108 PubMedGoogle Scholar
  130. 130.
    Wang F, Marshall CB, Yamamoto K, Li GY, Plevin MJ, You H, Mak TW, Ikura M (2008) Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. J Mol Biol 384(3):590–603. doi: 10.1016/j.jmb.2008.09.025 PubMedGoogle Scholar
  131. 131.
    You H, Yamamoto K, Mak TW (2006) Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. Proc Natl Acad Sci USA 103(24):9051–9056. doi: 10.1073/pnas.0600889103 PubMedGoogle Scholar
  132. 132.
    Renault VM, Thekkat PU, Hoang KL, White JL, Brady CA, Kenzelmann Broz D, Venturelli OS, Johnson TM, Oskoui PR, Xuan Z, Santo EE, Zhang MQ, Vogel H, Attardi LD, Brunet A (2011) The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene 30(29):3207–3221. doi: 10.1038/onc.2011.35 PubMedGoogle Scholar
  133. 133.
    Shuai K (2000) Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19(21):2638–2644. doi: 10.1038/sj.onc.1203522 PubMedGoogle Scholar
  134. 134.
    Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117(2):211–223. doi: S0092867404002983 PubMedGoogle Scholar
  135. 135.
    Gotea V, Visel A, Westlund JM, Nobrega MA, Pennacchio LA, Ovcharenko I (2010) Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Genome Res 20(5):565–577. doi: gr.10.1101/gr.104471.109 PubMedGoogle Scholar
  136. 136.
    Bakker WJ, Harris IS, Mak TW (2007) FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell 28(6):941–953. doi: 10.1016/j.molcel.2007.10.035 PubMedGoogle Scholar
  137. 137.
    Emerling BM, Weinberg F, Liu JL, Mak TW, Chandel NS (2008) PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). Proc Natl Acad Sci USA 105(7):2622–2627. doi: 10.1073/pnas.0706790105 PubMedGoogle Scholar
  138. 138.
    Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 6(5):1917–1932. doi: 10.1021/pr060394e PubMedGoogle Scholar
  139. 139.
    Sun P, Enslen H, Myung PS, Maurer RA (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev 8(21):2527–2539PubMedGoogle Scholar
  140. 140.
    Shi Y, Venkataraman SL, Dodson GE, Mabb AM, LeBlanc S, Tibbetts RS (2004) Direct regulation of CREB transcriptional activity by ATM in response to genotoxic stress. Proc Natl Acad Sci USA 101(16):5898–5903. doi: 10.1073/pnas.0307718101 PubMedGoogle Scholar
  141. 141.
    Shanware NP, Trinh AT, Williams LM, Tibbetts RS (2007) Coregulated ataxia telangiectasia-mutated and casein kinase sites modulate cAMP-response element-binding protein-coactivator interactions in response to DNA damage. J Biol Chem 282(9):6283–6291. doi: 10.1074/jbc.M610674200 PubMedGoogle Scholar
  142. 142.
    Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12(3):141–151. doi: 10.1038/nrm3072 PubMedGoogle Scholar
  143. 143.
    Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN (1998) Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 273(49):33048–33053PubMedGoogle Scholar
  144. 144.
    Teufel DP, Bycroft M, Fersht AR (2009) Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene 28(20):2112–2118. doi: 10.1038/onc.2009.71 PubMedGoogle Scholar
  145. 145.
    Cho H, Ahn DR, Park H, Yang EG (2007) Modulation of p300 binding by posttranslational modifications of the C-terminal activation domain of hypoxia-inducible factor-1alpha. FEBS Lett 581(8):1542–1548. doi: 10.1016/j.febslet.2007.03.015 PubMedGoogle Scholar
  146. 146.
    Zanger K, Cohen LE, Hashimoto K, Radovick S, Wondisford FE (1999) A novel mechanism for cyclic adenosine 3′,5′-monophosphate regulation of gene expression by CREB-binding protein. Mol Endocrinol 13(2):268–275PubMedGoogle Scholar
  147. 147.
    Zhou XY, Shibusawa N, Naik K, Porras D, Temple K, Ou H, Kaihara K, Roe MW, Brady MJ, Wondisford FE (2004) Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med 10(6):633–637. doi: 10.1038/nm1050 PubMedGoogle Scholar
  148. 148.
    Zanger K, Radovick S, Wondisford FE (2001) CREB binding protein recruitment to the transcription complex requires growth factor-dependent phosphorylation of its GF box. Mol Cell 7(3):551–558. doi: S1097-2765(01)00202-7 PubMedGoogle Scholar
  149. 149.
    Banerjee T, Chakravarti D (2011) A peek into the complex realm of histone phosphorylation. Mol Cell Biol 31(24):4858–4873. doi: 10.1128/MCB.05631-11 PubMedGoogle Scholar
  150. 150.
    Cheung P, Lau P (2005) Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol 19(3):563–573. doi: 10.1210/me.2004-0496 PubMedGoogle Scholar
  151. 151.
    Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol Cell 29(6):653–663. doi: 10.1016/j.molcel.2008.02.014 PubMedGoogle Scholar
  152. 152.
    Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100(23):13225–13230. doi: 10.1073/pnas.1735528100 PubMedGoogle Scholar
  153. 153.
    Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100. doi: 10.1146/annurev.biochem.76.052705.162114 PubMedGoogle Scholar
  154. 154.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080. doi: 10.1126/science.1063127 PubMedGoogle Scholar
  155. 155.
    Wang GG, Allis CD, Chi P (2007) Chromatin remodeling and cancer, Part I: covalent histone modifications. Trends Mol Med 13(9):363–372. doi: 10.1016/j.molmed.2007.07.003 PubMedGoogle Scholar
  156. 156.
    Gorisch SM, Wachsmuth M, Toth KF, Lichter P, Rippe K (2005) Histone acetylation increases chromatin accessibility. J Cell Sci 118(Pt 24):5825–5834. doi: 10.1242/jcs.02689 PubMedGoogle Scholar
  157. 157.
    Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y (1999) Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem 274(3):1189–1192PubMedGoogle Scholar
  158. 158.
    Das C, Lucia MS, Hansen KC, Tyler JK (2009) CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459(7243):113–117. doi: 10.1038/nature07861 PubMedGoogle Scholar
  159. 159.
    Liu X, Wang L, Zhao K, Thompson PR, Hwang Y, Marmorstein R, Cole PA (2008) The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451(7180):846–850. doi: 10.1038/nature06546 PubMedGoogle Scholar
  160. 160.
    Wang L, Tang Y, Cole PA, Marmorstein R (2008) Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol 18(6):741–747. doi: 10.1016/j.sbi.2008.09.004 PubMedGoogle Scholar
  161. 161.
    Chakravarti D, Ogryzko V, Kao HY, Nash A, Chen H, Nakatani Y, Evans RM (1999) A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96(3):393–403. doi: S0092-8674(00)80552-8 PubMedGoogle Scholar
  162. 162.
    MacLellan WR, Xiao G, Abdellatif M, Schneider MD (2000) A novel Rb- and p300-binding protein inhibits transactivation by MyoD. Mol Cell Biol 20(23):8903–8915PubMedGoogle Scholar
  163. 163.
    Miyake S, Sellers WR, Safran M, Li X, Zhao W, Grossman SR, Gan J, DeCaprio JA, Adams PD, Kaelin WG Jr (2000) Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle. Mol Cell Biol 20(23):8889–8902PubMedGoogle Scholar
  164. 164.
    Liu R, Lei JX, Luo C, Lan X, Chi L, Deng P, Lei S, Ghribi O, Liu QY (2012) Increased EID1 nuclear translocation impairs synaptic plasticity and memory function associated with pathogenesis of Alzheimer’s disease. Neurobiol Dis 45(3):902–912. doi: 10.1016/j.nbd.2011.12.007 PubMedGoogle Scholar
  165. 165.
    Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sachchidanand, Sanchez R, Zeleznik-Le NJ, Ronai Z, Zhou MM (2004) Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 13(2):251–263. doi: S1097276503005288 PubMedGoogle Scholar
  166. 166.
    Gu W, Shi XL, Roeder RG (1997) Synergistic activation of transcription by CBP and p53. Nature 387(6635):819–823. doi: 10.1038/42972 PubMedGoogle Scholar
  167. 167.
    Ma K, Chan JK, Zhu G, Wu Z (2005) Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol Cell Biol 25(9):3575–3582. doi: 10.1128/MCB.25.9.3575-3582.2005 PubMedGoogle Scholar
  168. 168.
    Tu AW, Luo K (2007) Acetylation of Smad2 by the co-activator p300 regulates activin and transforming growth factor beta response. J Biol Chem 282(29):21187–21196. doi: 10.1074/jbc.M700085200 PubMedGoogle Scholar
  169. 169.
    Lu Q, Hutchins AE, Doyle CM, Lundblad JR, Kwok RP (2003) Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. J Biol Chem 278(18):15727–15734. doi: 10.1074/jbc.M300546200 PubMedGoogle Scholar
  170. 170.
    Hyndman BD, Thompson P, Denis CM, Chitayat S, Bayly R, Smith SP (1819) Lebrun DP (2012) Mapping acetylation sites in E2A identifies a conserved lysine residue in activation domain 1 that promotes CBP/p300 recruitment and transcriptional activation. Biochim Biophys Acta 5:375–381. doi: 10.1016/j.bbagrm.2011.11.013 Google Scholar
  171. 171.
    van der Heide LP, Smidt MP (2005) Regulation of FoxO activity by CBP/p300-mediated acetylation. Trends Biochem Sci 30(2):81–86. doi: 10.1016/j.tibs.2004.12.002 PubMedGoogle Scholar
  172. 172.
    Perrot V, Rechler MM (2005) The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol 19(9):2283–2298. doi: 10.1210/me.2004-0292 PubMedGoogle Scholar
  173. 173.
    Waltzer L, Bienz M (1998) Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395(6701):521–525. doi: 10.1038/26785 PubMedGoogle Scholar
  174. 174.
    Rubinstein JH, Taybi H (1963) Broad thumbs and toes and facial abnormalities. A possible mental retardation syndrome. Am J Dis Child 105:588–608PubMedGoogle Scholar
  175. 175.
    Blough RI, Petrij F, Dauwerse JG, Milatovich-Cherry A, Weiss L, Saal HM, Rubinstein JH (2000) Variation in microdeletions of the cyclic AMP-responsive element-binding protein gene at chromosome band 16p13.3 in the Rubinstein-Taybi syndrome. Am J Med Genet 90(1):29–34. doi: 10.1002/(SICI)1096-8628(20000103)90:1<29:AID-AJMG6>3.0.CO;2-Z PubMedGoogle Scholar
  176. 176.
    Petrij F, Dorsman JC, Dauwerse HG, Giles RH, Peeters T, Hennekam RC, Breuning MH, Peters DJ (2000) Rubinstein-Taybi syndrome caused by a De Novo reciprocal translocation t(2;16)(q36.3;p13.3). Am J Med Genet 92(1):47–52. doi: 10.1002/(SICI)1096-8628(20000501)92:1<47:AID-AJMG8>3.0.CO;2-H PubMedGoogle Scholar
  177. 177.
    Kung AL, Rebel VI, Bronson RT, Ch’ng LE, Sieff CA, Livingston DM, Yao TP (2000) Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 14(3):272–277PubMedGoogle Scholar
  178. 178.
    Kimbrel EA, Lemieux ME, Xia X, Davis TN, Rebel VI, Kung AL (2009) Systematic in vivo structure-function analysis of p300 in hematopoiesis. Blood 114(23):4804–4812. doi: 10.1182/blood-2009-04-217794 PubMedGoogle Scholar
  179. 179.
    Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, Johnson NA, Severson TM, Chiu R, Field M, Jackman S, Krzywinski M, Scott DW, Trinh DL, Tamura-Wells J, Li S, Firme MR, Rogic S, Griffith M, Chan S, Yakovenko O, Meyer IM, Zhao EY, Smailus D, Moksa M, Chittaranjan S, Rimsza L, Brooks-Wilson A, Spinelli JJ, Ben-Neriah S, Meissner B, Woolcock B, Boyle M, McDonald H, Tam A, Zhao Y, Delaney A, Zeng T, Tse K, Butterfield Y, Birol I, Holt R, Schein J, Horsman DE, Moore R, Jones SJ, Connors JM, Hirst M, Gascoyne RD, Marra MA (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476(7360):298–303. doi: 10.1038/nature10351 PubMedGoogle Scholar
  180. 180.
    Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dube I, Frischauf AM, Horsman D, Mitelman F, Volinia S, Watmore AE, Housman DE (1996) The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14(1):33–41. doi: 10.1038/ng0996-33 PubMedGoogle Scholar
  181. 181.
    Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pebusque MJ (2000) MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer 28(2):138–144. doi: 10.1002/(SICI)1098-2264(200006)28:2<138:AID-GCC2>3.0.CO;2-2 PubMedGoogle Scholar
  182. 182.
    Satake N, Ishida Y, Otoh Y, Hinohara S, Kobayashi H, Sakashita A, Maseki N, Kaneko Y (1997) Novel MLL-CBP fusion transcript in therapy-related chronic myelomonocytic leukemia with a t(11;16)(q23;p13) chromosome translocation. Genes Chromosomes Cancer 20(1):60–63. doi: 10.1002/(SICI)1098-2264(199709)20:1<60:AID-GCC9>3.0.CO;2-7 PubMedGoogle Scholar
  183. 183.
    Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B, Housman D, Doggett NA, Rowley JD, Zeleznik-Le NJ (1997) MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci USA 94(16):8732–8737PubMedGoogle Scholar
  184. 184.
    Rowley JD, Reshmi S, Sobulo O, Musvee T, Anastasi J, Raimondi S, Schneider NR, Barredo JC, Cantu ES, Schlegelberger B, Behm F, Doggett NA, Borrow J, Zeleznik-Le N (1997) All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood 90(2):535–541PubMedGoogle Scholar
  185. 185.
    Taki T, Sako M, Tsuchida M, Hayashi Y (1997) The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood 89(11):3945–3950PubMedGoogle Scholar
  186. 186.
    Lavau C, Du C, Thirman M, Zeleznik-Le N (2000) Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J 19(17):4655–4664. doi: 10.1093/emboj/19.17.4655 PubMedGoogle Scholar
  187. 187.
    Debes JD, Sebo TJ, Lohse CM, Murphy LM, Haugen DA, Tindall DJ (2003) p300 in prostate cancer proliferation and progression. Cancer Res 63(22):7638–7640PubMedGoogle Scholar
  188. 188.
    Ianculescu I, Wu DY, Siegmund KD, Stallcup MR (2012) Selective roles for cAMP response element-binding protein binding protein and p300 protein as coregulators for androgen-regulated gene expression in advanced prostate cancer cells. J Biol Chem 287(6):4000–4013. doi: 10.1074/jbc.M111.300194 PubMedGoogle Scholar
  189. 189.
    Ionov Y, Matsui S, Cowell JK (2004) A role for p300/CREB binding protein genes in promoting cancer progression in colon cancer cell lines with microsatellite instability. Proc Natl Acad Sci USA 101(5):1273–1278. doi: 10.1073/pnas.0307276101 PubMedGoogle Scholar
  190. 190.
    Takeuchi A, Shiota M, Tatsugami K, Yokomizo A, Tanaka S, Kuroiwa K, Eto M, Naito S (2012) p300 mediates cellular resistance to doxorubicin in bladder cancer. Mol Med Rep 5(1):173–176. doi: 10.3892/mmr.2011.593 PubMedGoogle Scholar
  191. 191.
    Hao S, He W, Li Y, Ding H, Hou Y, Nie J, Hou FF, Kahn M, Liu Y (2011) Targeted inhibition of beta-catenin/CBP signaling ameliorates renal interstitial fibrosis. J Am Soc Nephrol 22(9):1642–1653. doi: 10.1681/ASN.2010101079 PubMedGoogle Scholar
  192. 192.
    Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, Nguyen C, Flodby P, Zhong Q, Krishnaveni MS, Liebler JM, Minoo P, Crandall ED, Borok Z (2012) Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem 287(10):7026–7038. doi: 10.1074/jbc.M111.276311 PubMedGoogle Scholar
  193. 193.
    Kim YM, Ma H, Oehler VG, Gang EJ, Nguyen C, Masiello D, Liu H, Zhao Y, Radich J, Kahn M (2011) The gamma catenin/CBP complex maintains survivin transcription in beta-catenin deficient/depleted cancer cells. Curr Cancer Drug Targets 11(2):213–225. doi: EPub-Abstract-CCDT-97 PubMedGoogle Scholar
  194. 194.
    Marzio G, Tyagi M, Gutierrez MI, Giacca M (1998) HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci USA 95(23):13519–13524PubMedGoogle Scholar
  195. 195.
    Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S (2010) CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 107(52):22687–22692. doi: 10.1073/pnas.1012851108 PubMedGoogle Scholar
  196. 196.
    Stanojevic V, Habener JF, Thomas MK (2004) Pancreas duodenum homeobox-1 transcriptional activation requires interactions with p300. Endocrinology 145(6):2918–2928. doi: 10.1210/en.2003-1188 PubMedGoogle Scholar
  197. 197.
    Chen G, Zhu J, Lv T, Wu G, Sun H, Huang X, Tian J (2009) Spatiotemporal expression of histone acetyltransferases, p300 and CBP, in developing embryonic hearts. J Biomed Sci 16:24. doi: 10.1186/1423-0127-16-24 PubMedGoogle Scholar
  198. 198.
    Wei JQ, Shehadeh LA, Mitrani JM, Pessanha M, Slepak TI, Webster KA, Bishopric NH (2008) Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 118(9):934–946. doi: 10.1161/CIRCULATIONAHA.107.760488 PubMedGoogle Scholar
  199. 199.
    Lee LW, Mapp AK (2010) Transcriptional switches: chemical approaches to gene regulation. J Biol Chem 285(15):11033–11038. doi: 10.1074/jbc.R109.075044 PubMedGoogle Scholar
  200. 200.
    Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK (2004) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279(49):51163–51171. doi: 10.1074/jbc.M409024200 PubMedGoogle Scholar
  201. 201.
    Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12(3):332–347. doi: BSP/CDT/E-Pub/00185 PubMedGoogle Scholar
  202. 202.
    Mantelingu K, Reddy BA, Swaminathan V, Kishore AH, Siddappa NB, Kumar GV, Nagashankar G, Natesh N, Roy S, Sadhale PP, Ranga U, Narayana C, Kundu TK (2007) Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol 14(6):645–657. doi: 10.1016/j.chembiol.2007.04.011 PubMedGoogle Scholar
  203. 203.
    Arif M, Pradhan SK, Thanuja GR, Vedamurthy BM, Agrawal S, Dasgupta D, Kundu TK (2009) Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J Med Chem 52(2):267–277. doi: 10.1021/jm800657z PubMedGoogle Scholar
  204. 204.
    Santer FR, Hoschele PP, Oh SJ, Erb HH, Bouchal J, Cavarretta IT, Parson W, Meyers DJ, Cole PA, Culig Z (2011) Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Ther 10(9):1644–1655. doi: 10.1158/1535-7163.MCT-11-0182 PubMedGoogle Scholar
  205. 205.
    Filippakopoulos P, Knapp S (2012) The bromodomain interaction module. FEBS Lett 586(17):2692–2704. doi: 10.1016/j.febslet.2012.04.045 PubMedGoogle Scholar
  206. 206.
    Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S (2012) Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149(1):214–231. doi: 10.1016/j.cell.2012.02.013 PubMedGoogle Scholar
  207. 207.
    Chen J, Ghazawi FM, Li Q (2010) Interplay of bromodomain and histone acetylation in the regulation of p300-dependent genes. Epigenetics 5(6):509–515. doi: 12224 PubMedGoogle Scholar
  208. 208.
    Borah JC, Mujtaba S, Karakikes I, Zeng L, Muller M, Patel J, Moshkina N, Morohashi K, Zhang W, Gerona-Navarro G, Hajjar RJ, Zhou MM (2011) A small molecule binding to the coactivator CREB-binding protein blocks apoptosis in cardiomyocytes. Chem Biol 18(4):531–541. doi: 10.1016/j.chembiol.2010.12.021 PubMedGoogle Scholar
  209. 209.
    Hewings DS, Wang M, Philpott M, Fedorov O, Uttarkar S, Filippakopoulos P, Picaud S, Vuppusetty C, Marsden B, Knapp S, Conway SJ, Heightman TD (2011) 3,5-dimethylisoxazoles act as acetyl-lysine-mimetic bromodomain ligands. J Med Chem 54(19):6761–6770. doi: 10.1021/jm200640v PubMedGoogle Scholar
  210. 210.
    Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA, Vieira A, Cornell-Kennon S, Lee J, Wang B, Wang J, Memmert K, Naegeli HU, Petersen F, Eck MJ, Bair KW, Wood AW, Livingston DM (2004) Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell 6(1):33–43. doi: 10.1016/j.ccr.2004.06.009 PubMedGoogle Scholar
  211. 211.
    Block KM, Wang H, Szabo LZ, Polaske NW, Henchey LK, Dubey R, Kushal S, Laszlo CF, Makhoul J, Song Z, Meuillet EJ, Olenyuk BZ (2009) Direct inhibition of hypoxia-inducible transcription factor complex with designed dimeric epidithiodiketopiperazine. J Am Chem Soc 131(50):18078–18088. doi: 10.1021/ja807601b PubMedGoogle Scholar
  212. 212.
    Best JL, Amezcua CA, Mayr B, Flechner L, Murawsky CM, Emerson B, Zor T, Gardner KH, Montminy M (2004) Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. Proc Natl Acad Sci USA 101(51):17622–17627. doi: 10.1073/pnas.0406374101 PubMedGoogle Scholar
  213. 213.
    Li BX, Xiao X (2009) Discovery of a small-molecule inhibitor of the KIX-KID interaction. ChemBioChem 10(17):2721–2724. doi: 10.1002/cbic.200900552 PubMedGoogle Scholar
  214. 214.
    Buhrlage SJ, Bates CA, Rowe SP, Minter AR, Brennan BB, Majmudar CY, Wemmer DE, Al-Hashimi H, Mapp AK (2009) Amphipathic small molecules mimic the binding mode and function of endogenous transcription factors. ACS Chem Biol 4(5):335–344. doi: 10.1021/cb900028j PubMedGoogle Scholar
  215. 215.
    Majmudar CY, Hojfeldt JW, Arevang CJ, Pomerantz WC, Gagnon JK, Schultz PJ, Cesa LC, Doss CH, Rowe SP, Vasquez V, Tamayo-Castillo G, Cierpicki T, Brooks CL 3rd, Sherman DH, Mapp AK (2012) Sekikaic Acid and Lobaric Acid Target a Dynamic Interface of the Coactivator CBP/p300. Angew Chem Int Ed Engl 51(45):11258–11262. doi: 10.1002/anie.201206815 PubMedGoogle Scholar
  216. 216.
    Yin S, Kaluz S, Devi NS, Jabbar AA, de Noronha RG, Mun J, Zhang Z, Boreddy PR, Wang W, Wang Z, Abbruscato T, Chen Z, Olson JJ, Zhang R, Goodman M, Nicolaou KC, Van Meir EG (2012) Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signaling by disrupting HIF-1alpha interaction with co-factors p300/CBP. Clin Cancer Res. doi: 10.1158/1078-0432.CCR-12-0861 Google Scholar
  217. 217.
    Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645. doi: 10.1016/j.jmb.2004.02.002 PubMedGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Feng Wang
    • 1
    • 2
    • 3
  • Christopher B. Marshall
    • 1
    • 2
  • Mitsuhiko Ikura
    • 1
    • 2
    Email author
  1. 1.Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  2. 2.Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
  3. 3.Department of BiochemistryVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations