Skip to main content

Advertisement

Log in

Syntrophin proteins as Santa Claus: role(s) in cell signal transduction

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Syntrophins are a family of cytoplasmic membrane-associated adaptor proteins, characterized by the presence of a unique domain organization comprised of a C-terminal syntrophin unique (SU) domain and an N-terminal pleckstrin homology (PH) domain that is split by insertion of a PDZ domain. Syntrophins have been recognized as an important component of many signaling events, and they seem to function more like the cell’s own personal ‘Santa Claus’ that serves to ‘gift’ various signaling complexes with precise proteins that they ‘wish for’, and at the same time care enough for the spatial, temporal control of these signaling events, maintaining overall smooth functioning and general happiness of the cell. Syntrophins not only associate various ion channels and signaling proteins to the dystrophin-associated protein complex (DAPC), via a direct interaction with dystrophin protein but also serve as a link between the extracellular matrix and the intracellular downstream targets and cell cytoskeleton by interacting with F-actin. They play an important role in regulating the postsynaptic signal transduction, sarcolemmal localization of nNOS, EphA4 signaling at the neuromuscular junction, and G-protein mediated signaling. In our previous work, we reported a differential expression pattern of alpha-1-syntrophin (SNTA1) protein in esophageal and breast carcinomas. Implicated in several other pathologies, like cardiac dys-functioning, muscular dystrophies, diabetes, etc., these proteins provide a lot of scope for further studies. The present review focuses on the role of syntrophins in membrane targeting and regulation of cellular proteins, while highlighting their relevance in possible development and/or progression of pathologies including cancer which we have recently demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee SH, Sheng M (2000) Development of neuron–neuron synapses. Curr Opin Neurobiol 19(1):125–131

    Article  Google Scholar 

  2. Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    Article  PubMed  CAS  Google Scholar 

  3. Adams ME, Dwyer TM, Dowler LL, White RA, Froehner SC (1995) Mouse alpha 1- and beta 2-syntrophin gene structure, chromosome localization, and homology with a discs large domain. J Biol Chem 270(43):25859–25865

    Article  PubMed  CAS  Google Scholar 

  4. Ahn AH, Yoshida M, Anderson MS, Freener CA, Selig S, Hagiwara Y, Ozawa E, Kunkel LM (1994) Cloning of human basic A1, a distinct 59-kDa dystrophin-associated protein encoded on chromosome 8q23–24. Proc Natl Acad Sci USA 91:4446–4450

    Article  PubMed  CAS  Google Scholar 

  5. Froehner SC, Adams ME, Peters MF, Gee SH (1997) Syntrophins: modular adapter proteins at the neuromuscular junction and the sarcolemma. Soc Gen Physiol Ser 52:197–207

    PubMed  CAS  Google Scholar 

  6. Froehner SC (1984) Peripheral proteins of postsynaptic membranes from torpedo electric organ identified with monoclonal antibodies. J Cell Biol 99:88–96

    Article  PubMed  CAS  Google Scholar 

  7. Ahn AH, Freener CA, Gussoni E, Yoshida M, Ozawa E, Kunkel LM (1996) The three human syntrophin genes are expressed in diverse tissues, have distinct chromosomal location, and each bind to dystrophin and its relatives. J Biol Chem 271:2724–2730

    Article  PubMed  CAS  Google Scholar 

  8. Froehner SC, Murnane AA, Tobler M, Peng HB, Sealock R (1987) A postsynaptic Mr 58,000 (58 K) protein concentrated at acetylcholine receptor-rich sites in Torpedo electroplaques and skeletal muscle. J Cell Biol 104:1633–1646

    Article  PubMed  CAS  Google Scholar 

  9. Kramarcy NR, Vidal A, Froehner SC, Sealock R (1994) Association of utrophin and multiple dystrophin short forms with the mammalian M(r) 58,000 dystrophin-associated protein (syntrophin). J Biol Chem 269:2870–2876

    PubMed  CAS  Google Scholar 

  10. Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  PubMed  CAS  Google Scholar 

  11. Campbell KP, Kahl SD (1989) Association of dystrophin and an integral membrane glycoprotein. Nature 338:259–262

    Article  PubMed  CAS  Google Scholar 

  12. Adams ME, Butler MH, Dwyer TM, Peters MF, Murnane AA, Froehner SC (1993) Two forms of mouse syntrophin, a 58 kd dystrophin-associated protein, differ in primary structure and tissue distribution. Neuron 11:531–540

    Article  PubMed  CAS  Google Scholar 

  13. Yang B, Ibraghimov-Beskrovnaya O, Moomaw CR, Slaughter CA, Campbell KP (1994) Heterogeneity of the 59-kDa dystrophin associated protein revealed by cDNA cloning and expression. J Biol Chem 269:6040–6044

    PubMed  CAS  Google Scholar 

  14. Butler MH, Douville K, Murnane AA, Kramarcy NR, Cohen JB, Sealock R, Froehner SC (1992) Association of the Mr 58,000 postsynaptic protein of electric tissue with Torpedo dystrophin and the Mr 87,000 postsynaptic protein. J Biol Chem 267:6213–6218

    PubMed  CAS  Google Scholar 

  15. Ahn AH, Kunkel LM (1993) The structural and functional diversity of dystrophin. Nat Genet 3:283–291

    Article  PubMed  CAS  Google Scholar 

  16. Piluso G, Mirabella M, Ricci E, Belsito A, Abbondanza C, Servidei S, Puca AA, Tonali P, Puca GA, Nigro V (2000) Gamma-1 and gamma-2-syntrophins, two novel dystrophin-binding proteins localized in neuronal cells. J Biol Chem 275:15851–15860

    Article  PubMed  CAS  Google Scholar 

  17. Ahn AH, Kunkel LM (1995) Syntrophin binds to an alternatively spliced exon of dystrophin. J Cell Biol 128:363–371

    Article  PubMed  CAS  Google Scholar 

  18. Kramarcy NR, Sealock R (2000) Syntrophin isoforms at the neuromuscular junction: developmental time course and differential localization. Mol Cell Neurosci 15:262–274

    Article  PubMed  CAS  Google Scholar 

  19. Peters MF, Adams ME, Froehner SC (1997) Differential association of syntrophin pairs with the dystrophin complex. J Cell Biol 138(1):81–93

    Article  PubMed  CAS  Google Scholar 

  20. Bhat HF, Baba RA, Bashir M, Saeed S, Kirmani D, Wani MM, Wani NA, Wani KA, Khanday FA (2010) Alpha-1-syntrophin protein is differentialy expressed in human cancers. Biomarkers 16:31–36

    Google Scholar 

  21. Alessi A, Bragg AD, Percival JM, Yoo J, Albrecht DE, Froehner SC, Adams ME (2006) γ-Syntrophin scaffolding is spatially and functionally distinct from that of the α/β syntrophins. Exp Cell Res 312:3084–3095

    Article  PubMed  CAS  Google Scholar 

  22. Peters MF, Kramarcy NR, Sealock R, Froehner SC (1994) β-2 syntrophin: localization at the neuromuscular junction in skeletal muscle. Neuro Report 5:1577–1580

    CAS  Google Scholar 

  23. Sealock R, Butler MH, Kramarcy NR, Gao K, Murnane AA, Douville K, Froehner SC (1991) Localization of dystrophin relative to acetylcholine receptor domains in electric tissue and adult and cultured skeletal muscle. J Cell Biol 113:1133–1144

    Article  PubMed  CAS  Google Scholar 

  24. Adams ME, Kramarcy N, Krall SP, Rossi SG, Rotundo RL, Sealock R, Froehner SC (2000) Absence of alpha-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J Cell Biol 150:1385–1398

    Article  PubMed  CAS  Google Scholar 

  25. Way M, Pope B, Cross RA, Kendrick-Jones J, Weeds AG (1992) Expression of the N-terminal domain of dystrophin in E.coli and demonstration of binding to F-actin. FEBS Lett 301:243–245

    Article  PubMed  CAS  Google Scholar 

  26. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84:757–767

    Article  PubMed  CAS  Google Scholar 

  27. Okumura H, Okumura N, Iwamatsu A, Buijs RM, Romijn HJ et al (1999) Interaction of neuronal nitric oxide synthase with alpha-1-syntrophin in rat brain. J Biol Chem 247:11736–11741

    Article  Google Scholar 

  28. Lumeng C, Phelps S, Crawford GE, Walden PD, Barald K, Chamberlain JS (1999) Interactions between beta 2-syntrophin and a family of microtubule-associated serine/threonine kinases. Nat Neurosci 2:611–617

    Article  PubMed  CAS  Google Scholar 

  29. Hogan A, Shepherd L, Chabot J, Quenneville S, Prescott SM, Topham MK, Gee SH (2001) Interaction of gamma 1-syntrophin with diacylglycerol kinase-zeta. Regulation of nuclear localization by PDZ interactions. J Biol Chem 276(28):26526–26533

    Article  PubMed  CAS  Google Scholar 

  30. Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop-a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434

    Article  PubMed  Google Scholar 

  31. Albrecht DE, Froehner SC (2002) Syntrophins and dystrobrevins: defining the dystrophin scaffold at synapses. Neurosignals 11:123–129

    Article  PubMed  CAS  Google Scholar 

  32. Lemmon MA, Ferguson KM (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 350(Part 1):1–18

    Google Scholar 

  33. Musacchio A, Gibson T, Rice P, Thompson J, Saraste M (1993) The PH-domain: a common piece in the structural patchwork of signaling proteins. Trends Biochem Sci 18:343–348

    Article  PubMed  CAS  Google Scholar 

  34. Berg JS, Derfler BH, Pennisi CM, Corey DP, Cheney RE (2000) Myosin-X, a novel myosin with pleckstrin homology domains, associated with regions of dynamic actin. J Cell Sci 113:3439–3451

    PubMed  CAS  Google Scholar 

  35. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  PubMed  CAS  Google Scholar 

  36. Gibson TJ, Hyvonen M, Musacchio A, Saraste M, Birney E (1994) PH domain: the first anniversary. Trends Biochem Sci 19:349–353

    Article  PubMed  CAS  Google Scholar 

  37. Chang JS, Kim SK, Kwon TK, Bae SS, Min DS, Lee YH, Kim SO, Seo JK, Choi JH, Suh PG (2005) Pleckstrin homology domains of phospholipase C-{gamma}1 directly interact with {beta}-tubulin for activation of phospholipase C-{gamma}1 and reciprocal modulation of {beta}-tubulin function in microtubule assembly. J Biol Chem 280:6897–6905

    Article  PubMed  CAS  Google Scholar 

  38. Chang JS, Seok H, Kwon TK, Min DS, Ahn BH, Lee YH, Suh JW, Kim JW, Iwashita S, Omori A, Ichinose S, Numata O, Seo JK, Oh YS, Suh PG (2002) Interaction of elongation factor-1alpha and pleckstrin homology domain of phospholipase C-gamma 1 with activating its activity. J Biol Chem 277:19697–19702

    Article  PubMed  CAS  Google Scholar 

  39. Jing Y, Wenyu W, Weiguang X, Jia-fu L, Marvin EA, Froehner SC, Mingjie Z (2005) Structure of the split PH domain and distinct lipid binding properties of the PH–PDZ supramodule of α-syntrophin. EMBO J 24:3985–3995

    Article  CAS  Google Scholar 

  40. Iwata Y, Pan Y, Yoshida T, Hanada H, Shigekawa M (1998) Bidirectional signaling between sarcoglycans and the integrin adhesion system in cultured L6 Myocytes. FEBS Lett 423:173–177

    Article  PubMed  CAS  Google Scholar 

  41. Newbell BJ, Anderson JT, Jarrett HW (1997) Ca2+-calmodulin binding to mouse α-1 syntrophin: syntrophin is also a Ca2+-binding protein. Biochemistry 36:1295–1305

    Article  PubMed  CAS  Google Scholar 

  42. Oak SA, Jarrett HW (2000) The oligomerization of mouse α-1-syntrophin and self-association of its pleckstrin homology domain 1. Biochemistry 39:8870–8877

    Article  PubMed  CAS  Google Scholar 

  43. Chockalingam PS, Gee SH, Jarrett HW (1999) Pleckstrin homology domain 1 of mouse α-1-syntrophin binds phosphatidylinositol 4,5-bisphosphate. Biochemistry 38:5596–5602

    Article  PubMed  CAS  Google Scholar 

  44. Van-Rossum DB, Patterson RL, Sharma S, Barrow RK, Kornberg M, Gill DL, Snyder SH (2005) Phospholipase C gamma1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434:99–104

    Article  PubMed  CAS  Google Scholar 

  45. Gardiol D (2012) PDZ-containing proteins as targets in human pathologies. FEBS J 279:3529

    Article  PubMed  CAS  Google Scholar 

  46. Feng W, Zhang M (2009) Organization and dynamicsof PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci 10:87–99

    Article  PubMed  CAS  Google Scholar 

  47. Nourry C, Grant SG, Borg JP (2003) PDZ domain proteins: plug and play. Sci STKE2003 RE7

  48. Chimura T, Launey T, Ito M (2011) Evolutionarily conserved bias of amino acid usage refines the definition of PDZ-binding motif. BMC Genomics 12:300

    Article  PubMed  CAS  Google Scholar 

  49. Hillier BJ, Christopherson KS, Prehoda KE, Bredt DS, Lim WA (1999) Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 284:812–815

    Article  PubMed  CAS  Google Scholar 

  50. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R (1996) Crystal structures of a complexed and peptide-free membrane proteinbinding domain: molecular basis of peptide recognition by PDZ. Cell 85:1067–1076

    Article  PubMed  CAS  Google Scholar 

  51. Schultz J, Hoffmuuller U, Krause G, Ashurst J, Macias MJ, Schmieder P, Schneider-Mergener J, Oschkinat H (1998) Specific interactions between the syntrophin PDZ domain and voltage-gated sodium channels. Nature Struct Biol 5:19–24

    Article  PubMed  CAS  Google Scholar 

  52. Wiedemann U, Boisguerin P, Leben R, Leitner D, Kraus G, Moelling K, Volkmer-Engert R, Oschkinat H (2004) Quantification of PDZ domain specificity, prediction of ligand affinity and rational design of super binding peptides. J Mol Biol 343:703–718

    Article  PubMed  CAS  Google Scholar 

  53. Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M (1995) Clustering of Shaker-type K1 channels by direct interaction with the PSD-95/SAP90 family of membrane associated guanylate kinases. Nature 378:85–88

    Article  PubMed  CAS  Google Scholar 

  54. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740

    Article  PubMed  CAS  Google Scholar 

  55. Adams ME, Mueller HA, Froehner SC (2001) In vivo requirement of the {alpha}-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4. J Cell Biol 155:113–122

    Article  PubMed  CAS  Google Scholar 

  56. Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME (2001) Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci USA 98:14108–14113

    Article  PubMed  CAS  Google Scholar 

  57. Gee SH, Madhavan R, Levinson SR, Caldwell JH, Sealock R, Froehner SC (1998) Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J Neurosci 18:128–137

    PubMed  CAS  Google Scholar 

  58. Ou Y, Strege P, Miller SM, Makielski J, Ackerman M, Gibbons SJ, Farrugia G (2003) Syntrophin gamma 2 regulates SCN5A gating by a PDZ domain-mediated interaction. J Biol Chem 278:1915–1923

    Article  PubMed  CAS  Google Scholar 

  59. Connors NC, Adams ME, Froehner SC, Kofuji P (2004) The potassium channel Kir4.1 associates with the dystrophin–glycoprotein complex via alpha-syntrophin in glia. J Biol Chem 279:28387–28392

    Article  PubMed  CAS  Google Scholar 

  60. Leonoudakis D, Conti LR, Anderson S, Radeke CM, McGuire LM, Adams ME, Froehner SC, Yates JR, Vandenberg CA (2004) Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)- associated proteins. J Biol Chem 279:22331–22346

    Article  PubMed  CAS  Google Scholar 

  61. Vandebrouck A, Sabourin J, Rivet J, Balghi H, Sebille S, Kitzis A, Raymond G, Cognard C, Bourmeyster N, Constantin B (2007) Regulation of capacitative calcium entries by α-1-syntrophin: association of TRPC1 with dystrophin complex and the PDZ domain of α-1-syntrophin. FASEB J. 21:608–617

    Article  PubMed  CAS  Google Scholar 

  62. Hasegawa M, Cuenda A, Spillantini MG, Thomas GM, Buee-Scherrer V, Cohen P, Goedert M (1999) Stress-activated protein kinase-3 interacts with the PDZ domain of alpha1-syntrophin. A mechanism for specific substrate recognition. J Biol Chem 274:12626–12631

    Article  PubMed  CAS  Google Scholar 

  63. Buechler C, Boettcher A, Bared SM, Probst MC, Schmitz G (2002) The carboxy terminus of the ATP-binding cassette transporter A1 interacts with a beta-2-syntrophin/utrophin complex. Biochem Biophys Res Commun 293:759–765

    Article  PubMed  CAS  Google Scholar 

  64. Torchio GM, Ermacora MR, Sica MP (2012) Equilibrium unfolding of the PDZ domain of β-2-syntrophin. Biophys J 102(12):2835–2844

    Article  PubMed  CAS  Google Scholar 

  65. Schubert S, Knoch KP, Ouwendijk J, Mohammed S, Bodrov Y, Jager M, Altkruger A, Wegbrod C, Adams ME, Kim Y, Froehner SC, Jensen ON, Kalaidzidis Y, Solimena M (2010) β-2-Syntrophin is a Cdk5 substrate that restrains the motility of insulin secretory granules. PLoS ONE 5(9):e12929

    Article  PubMed  CAS  Google Scholar 

  66. Trejo JA (2005) Internal PDZ ligands: novel endocytic recycling motifs for G protein-coupled receptors. Mol Pharmacol 67:1388–1390

    Article  PubMed  CAS  Google Scholar 

  67. Paasche JD, Attramadal T, Kristiansen K, Oksvold MP, Johansen HK, Huitfeldt HS, Dahl SG, Attramadal H (2005) Subtype-specific sorting of the ETA endothelin receptor by a novel endocytic recycling signal for G protein-coupled receptors. Mol Pharmacol 67:1581–1590

    Article  PubMed  CAS  Google Scholar 

  68. Gage RM, Matveeva EA, Whiteheart SW, Von-Zastrow M (2005) Type I PDZ ligands are sufficient to promote rapid recycling of G-protein coupled receptors independent of binding to NSF. J Biol Chem 280:3305–3313

    Article  PubMed  CAS  Google Scholar 

  69. Heydorn A, Sondergaard BP, Ersboll B, Holst B, Nielson FC, Haft CR, Whistler J, Schwartz TW (2004) A library of 7TM receptor C-terminal tails. J Biol Chem 279:54291–54303

    Article  PubMed  CAS  Google Scholar 

  70. Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB (1994) Crystal structure at 2.2 A resolution of the pleckstrin homology domain from human dynamin. Cell 79:199–209

    Article  PubMed  CAS  Google Scholar 

  71. Fushman D, Cahill S, Lemmon MA, Schlessinger J, Cowburn D (1995) Solution structure of pleckstrin homology domain of dynamin by heteronuclear NMR spectroscopy. Proc Natl Acad Sci USA 92:816–820

    Article  PubMed  CAS  Google Scholar 

  72. Macias MJ, Musacchio A, Ponstingl H, Nilges M, Saraste M, Oschkinat H (1994) Structure of the pleckstrin homology domain from beta-spectrin. Nature 369:675–677

    Article  PubMed  CAS  Google Scholar 

  73. Yoon HS, Hajduk PJ, Petros AM, Olejniczak ET, Meadows RP, Fesik SW (1994) Solution structure of a pleckstrin-homology domain. Nature 369:672–675

    Article  PubMed  CAS  Google Scholar 

  74. Zhao C, Yu DH, Shen R, Feng GS (1999) Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1. J Biol Chem 274:19649–19654

    Article  PubMed  CAS  Google Scholar 

  75. Kachinsky AM, Froehner SC, Milgram SL (1999) A PDZ-containing scaffold related to the dystrophin complex at the basolateral membrane of epithelial cells. J Cell Biol 145:391–402

    Article  PubMed  CAS  Google Scholar 

  76. Suzuki A, Yoshida M, Ozawa E (1995) Mammalian alpha 1- and beta 1-syntrophin bind to the alternative splice-prone region of the dystrophin COOH terminus. J Cell Biol 128:373–381

    Article  PubMed  CAS  Google Scholar 

  77. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contractions. Proc Natl Acad Sci 90:3710–3714

    Article  PubMed  CAS  Google Scholar 

  78. Ambramovici H, Hogan AB, Obagi C, Topham MK, Gee SH (2003) Diacylglycerol kinase-ζ localization in skeletal muscles is regulated by phosphorylation and interaction with syntrophins. Mol Biol Cell 14:4499–4511

    Article  CAS  Google Scholar 

  79. Hogan A, Yakubchyk Y, Josee-Chabot J, Obagi C, Daher E, Maekawa K, Gee SH (2004) The phosphoinositol 3,4-bisphosphate-binding protein TAPP1 interacts with syntrophins and regulates actin cytoskeletal organization. J Biol Chem 51:53717–53724

    Article  CAS  Google Scholar 

  80. Cantley LC (2002) The phosphoinositide 3-kinase Pathway. Science 296:1655–1657

    Article  PubMed  CAS  Google Scholar 

  81. Iwata Y, Sampaolesi M, Shigekawa M, Wakabayashi S (2004) Syntrophin is an actin-binding protein the cellular localization of which is regulated through cytoskeletal reorganization in skeletal muscle cells. Eur J Cell Biol 83:555–565

    Article  PubMed  CAS  Google Scholar 

  82. Topham MK, Bunting M, Zimmerman GA, McIntyre TM, Blackshear PJ, Prescott SM (1998) Protein kinase C regulates the nuclear localization of diacylglycerol kinase-ζ. Nature 394:697–700

    Article  PubMed  CAS  Google Scholar 

  83. Kimber WA, Trinkle-Mulcahy L, Cheung PC, Deak M, Marsden LJ, Kieloch A, Watt S, Javier RT, Gray A, Downes CP, Lucocq JM, Alessi DR (2002) Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem J 361:525–536

    Article  PubMed  CAS  Google Scholar 

  84. Dowler S, Currie RA, Downes CP, Alessi DR (1999) DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochem J 342:7–12

    Article  PubMed  CAS  Google Scholar 

  85. Dowler S, Currie RA, Campbell DG, Deak M, Kular G, Downes CP, Alessi DR (2000) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J 351:19–31

    Article  PubMed  CAS  Google Scholar 

  86. Marshall AJ, Krahn AK, Ma K, Duronio V, Hou S (2002) TAPP1 and TAPP2 Are Targets of Phosphatidylinositol 3-Kinase Signaling in B Cells: sustained Plasma Membrane Recruitment Triggered by the B-Cell Antigen Receptor. Mol Cell Biol 22:5479–5491

    Article  PubMed  CAS  Google Scholar 

  87. Marshall AJ, Niiro H, Lerner CG, Yun TJ, Thomas S, Disteche CM, Clark EA (2000) Dual adapter for phosphotyrosine and 3-phosphotyrosine and 3-phosphoinositide (hDAPP1) (B cell adapter molecule of 32 kDa) (Blymphocyte adapter protein Bam32). J Exp Med 191:1319–1332

    Article  PubMed  CAS  Google Scholar 

  88. Newey SE, Benson MA, Ponting CP, Davies KE, Blake DJ (2000) Alternative splicing of dystrobrevin regulates the stoichiometry of syntrophin binding to the dystrophin protein complex. Curr Biol 10:1295–1298

    Article  PubMed  CAS  Google Scholar 

  89. Buccione R, Orth JD, McNiven MA (2004) Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 5:647–657

    Article  PubMed  CAS  Google Scholar 

  90. Bruno G, Jean-Sebastien R, Andrea AD, Romina B, Christophe B, Patrick R, Hans-Anton L, Thierry P, Hugues A (2006) Cardiac sodium channel Nav1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin. Circ Res 99:407–414

    Article  CAS  Google Scholar 

  91. Frigeri A, Gropper MA, Umenishi F, Kawashima M, Brown D, Verkman AS (1995) Localization of MIWC and GLIP water channel homologs in neuro-muscular, epithelial and glandular tissues. J Cell Sci 108:2993–3002

    PubMed  CAS  Google Scholar 

  92. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    PubMed  CAS  Google Scholar 

  93. Agre P (2006) The aquaporin water channels. Proc Am Thorac Soc 3(1):5–13

    Article  PubMed  CAS  Google Scholar 

  94. Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S (1995) Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol 269:F775–F785

    PubMed  CAS  Google Scholar 

  95. Blake DJ, Hawkes R, Benson MA, Beesley PW (1999) Different dystrophin-like complexes are expressed in neurons and glia. J Cell Biol 147:645–658

    Article  PubMed  CAS  Google Scholar 

  96. Durbeej M, Campbell KP (1999) Biochemical characterization of the epithelial dystroglycan complex. J Biol Chem 274:26609–26616

    Article  PubMed  CAS  Google Scholar 

  97. Tian M, Jacobson C, Gee SH, Campbell KP, Carbonetto S, Jucker M (1996) Dystroglycan in the cerebellum is a laminin alpha 2-chain binding protein at the glial-vascular interface and is expressed in Purkinje cells. Eur J Neurosci 8:2739–2747

    Article  PubMed  CAS  Google Scholar 

  98. Fanning AS, Anderson JM (1999) PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest 103:767–772

    Article  PubMed  CAS  Google Scholar 

  99. Neely JD, Christensen BM, Nielsen S, Agre P (1999) Heterotetrameric composition of aquaporin-4 water channels. Biochemistry 38(34):11156–11163

    Article  PubMed  CAS  Google Scholar 

  100. Poopalasundaram S, Knott C, Shamotienko OG, Foran PG, Dolly O, Ghiani CA, Gallo V, Wilkin GP (2000) Glial heterogeneity in expression of the inwardly rectifying K(+) channel, Kir4.1, in adult rat CNS. Glia 30:362–372

    Article  PubMed  CAS  Google Scholar 

  101. Ishii M, Horio Y, Tada Y, Hibino H, Inanobe A, Ito M, Yamada M, Gotow T, Uchiyama Y, Kurachi Y (1997) Expression and clustered distribution of an inwardly rectifying potassium channel, KAB2/Kir4.1, on mammalian retinal Muller cell membrane: their regulation by insulin and laminin signals. J Neurosci 17:7725–7735

    PubMed  CAS  Google Scholar 

  102. Amedee T, Robert A, Coles JA (1997) Potassium homeostasis and glial energy metabolism. Glia 21:46–55

    Article  PubMed  CAS  Google Scholar 

  103. Kofuji P, Connors NC (2003) Molecular substrates of potassium spatial buffering in glial cells. Mol Neurobiol 28:195–208

    Article  PubMed  CAS  Google Scholar 

  104. Sabourin J, Cognard C, Constantin B (2009) Regulation by scaffolding proteins of canonical transient receptor potential channels in striated muscle. J Muscle Res Cell Motil 30:289–297

    Article  PubMed  CAS  Google Scholar 

  105. Vandebrouck C, Martin D, Colson-Van SM, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibres. J Biol Chem 158:1089–1096

    CAS  Google Scholar 

  106. Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, Truskey GA, Seth M, Yamaguchi N, Meissner G, Shah R, Worley PF, Williams RS, Rosenberg PB (2008) Mice lacking Homer-1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 28:2637–2647

    Article  PubMed  CAS  Google Scholar 

  107. Madhavan R, Massom LR, Jarrett HW (1992) Calmodulin specifically binds three proteins of the dystrophin-glycoprotein complex. Biochem Biophys Res Commun 185:753–759

    Article  PubMed  CAS  Google Scholar 

  108. Cohen P (1997) The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol 7:353–361

    Article  PubMed  CAS  Google Scholar 

  109. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  PubMed  CAS  Google Scholar 

  110. Iglesias T, Cabrera-Poch N, Mitchell MP, Naven TJ, Rozengurt E, Schiavo G (2000) Identification and cloning of Kidins220, a novel neuronal substrate of protein kinase D. J Biol Chem 275:40048–40056

    Article  PubMed  CAS  Google Scholar 

  111. Kong HY, Boulter J, Weber JL, Lai C, Chao MV (2001) An evolutionarily conserved transmembrane protein that is a novel downstream target of neurotrophin and ephrin receptors. J Neurosci 21:176–185

    PubMed  CAS  Google Scholar 

  112. Shuo L, Yu C, Kwok OL, Juan CA, Froehner SC, Marvin E, Adams ME, Moses V, Chao NY (2005) α-1-syntrophin regulates ARMS localization at the neuromuscular junction and enhances EphA 4 signaling in an ARMS-dependent manner. J Cell Biol 169(5):813–824

    Article  CAS  Google Scholar 

  113. Arevalo JC, Yano H, Teng KK, Chao MV (2004) A unique pathway for sustained neurotrophin signaling through an ankyrin-rich membrane-spanning protein. EMBO J 23:2358–2368

    Article  PubMed  CAS  Google Scholar 

  114. Oak SA, Russo K, Petrucci TC, Jarrett HW (2001) Mouse alpha1-syntrophin binding to Grb2: further evidence of a role for syntrophin in cell signaling. Biochemistry 40:11270–11278

    Article  PubMed  CAS  Google Scholar 

  115. Zhou YW, Oak SA, Senogles SE, Jarrett HW (2005) Laminin-R1 globular domains three and four induce heterotrimeric G-protein binding to R-syntrophin’s PDZ domain. Am J Physiol Cell Physiol 288:C377–C388

    Article  PubMed  CAS  Google Scholar 

  116. Madhavan R, Jarrett HW (1995) Interactions between dystrophin glycoprotein complex proteins. Biochemistry 34:12204–12209

    Article  PubMed  CAS  Google Scholar 

  117. Ervasti JM, Campbell KP (1993) A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122:809–823

    Article  PubMed  CAS  Google Scholar 

  118. Jarrett HW, Foster JL (1995) Alternate binding of actin and calmodulin to multiple sites on dystrophin. J Biol Chem 270:5578–5586

    Article  PubMed  CAS  Google Scholar 

  119. Vidal M, Goudreau N, Cornille F, Cussac D, Gincel E, Garbay C (1999) Molecular and cellular analysis of Grb2 SH3 domain mutants: interaction with Sos and dynamin. J Mol Biol 290:717–730

    Article  PubMed  CAS  Google Scholar 

  120. Oak SA, Zhou YW, Jarrett HW (2003) Skeletal muscle signaling pathway through the dystrophin glycoprotein complex and Rac1. J Biol Chem 278:39287–39295

    Article  PubMed  CAS  Google Scholar 

  121. Yang B, Jung D, Rafael JA, Chamberlain JS, Campbell KP (1995) Identification of alpha-syntrophin binding to syntrophin triplet, dystrophin, and utrophin. J Biol Chem 270(10):4975–4978

    Article  PubMed  CAS  Google Scholar 

  122. Khanday FA, Yamamori T, Singh IM, Zhang Z, Bugayenko A, Naqvi A, Santhanum L, Nabi N, Kasuno K, Day BW, Irani K (2006) Rac1 Leads to Phosphorylation-dependent increase in stability of the p66shc adaptor protein: role in Rac1-induced oxidative stress. Mol Biol Cell 17:122–129

    Article  PubMed  CAS  Google Scholar 

  123. Khanday FA, Santhanam L, Kasuno K, Yamamori T, Naqvi A, Dericio J, Bugazenko A, Mattagajasingh I, Disanza A, Scita G, Irani K (2006) SOS-mediated activation of Rac1 by p66shc. J Cell Biol 172:817–822

    Article  PubMed  CAS  Google Scholar 

  124. Reece J, Campbell N (2002) Biology. Benjamin Cummings, San Francisco

    Google Scholar 

  125. Akiko O, Katsuya N, Nobuaki O (2008) Interaction of α-1-syntrophin with multiple isoforms of heterotrimeric G protein a subunits. FEBS J 275:22–33

    Article  CAS  Google Scholar 

  126. Yatani A, Codina J, Imoto Y, Reeves JP, Birnbaumer L, Brown AM (1987) A G-protein directly regulates mammalian cardiac calcium channels. Science 238:1288–1292

    Article  PubMed  CAS  Google Scholar 

  127. Stevens FC (1983) Calmodulin: an introduction. Can J Biochem Cell Biol 61(8):906–910

    Article  PubMed  CAS  Google Scholar 

  128. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10(8):322–328

    Article  PubMed  CAS  Google Scholar 

  129. Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78:915–918

    Article  PubMed  CAS  Google Scholar 

  130. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416(6878):337–339

    Article  PubMed  CAS  Google Scholar 

  131. Sears CE, Bryant SM, Ashley EA, Lygate CA, Rakovic S, Wallis HL, Neubauer S, Terrar DA, Casadei B (2003) Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling. Circ Res 92:e52–e59

    Article  PubMed  CAS  Google Scholar 

  132. Damy T, Ratajczak P, Shah AM, Camors E, Marty I, Hasenfuss G, Marotte F, Samuel JL, Heymes C (2004) Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 363:1365–1367

    Article  PubMed  CAS  Google Scholar 

  133. Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82:743–752

    Article  PubMed  CAS  Google Scholar 

  134. Judith CW, Angel LA, Tamer MA, Cassandra LH, Fiona HS, Aly OZ, Delvac O, Elizabeth JC, Mamta HB, Michael E, Ludwig N (2006) The sarcolemmal calcium pump, α-1-syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem 281:23341–23348

    Article  CAS  Google Scholar 

  135. Xu XZ, Choudhury A, Li X, Montell C (1998) Coordination of an array of signaling proteins through homo- and heteromeric interactions between PDZ domains and target proteins. J Cell Biol 142:545–555

    Article  PubMed  CAS  Google Scholar 

  136. Schuh K, Uldrijan S, Telkamp M, Rothlein N, Neyses L (2001) The plasma membrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase. J Cell Biol 155:201–205

    Article  PubMed  CAS  Google Scholar 

  137. Wang Y, Oram JF (2002) Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of atp-binding cassette transporter a1. J Biol Chem 277:5692–5697

    Article  PubMed  CAS  Google Scholar 

  138. Attie AD, Kastelein JP, Hayden MR (2001) Pivotal role of ABCA1 in reverse cholesterol transport influencing HDL levels and susceptibility to atherosclerosis. J Lipid Res 42:1717–1726

    PubMed  CAS  Google Scholar 

  139. Francis GA, Knopp RH, Oram JF (1995) Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier Disease. J Clin Investig 96:78–87

    Article  PubMed  CAS  Google Scholar 

  140. Remaley AT, Schumacher UK, Stonik JA, Farsi BD, Nazih H, Brewer HB (1997) Decreased reverse cholesterol transport from Tangier disease fibroblasts: acceptor specificity and effect of Brefeldin on lipid efflux. Arterioscler Thromb Vasc Biol 17:1813–1821

    Article  PubMed  CAS  Google Scholar 

  141. Takahashi Y, Smith JD (1999) Cholesterol efflux to apolipoprotein AI involves endocytosis and resecretion in a calcium-dependent pathway. Proc Natl Acad Sci USA 96:11358–11363

    Article  PubMed  CAS  Google Scholar 

  142. Youichi M, Tomohiro O, Shinobu K, Akiko F, Kenya S, Michihiro I, Toshifumi Y, Shin’ichi T, Teruo A, Michinori M, Noriyuki K, Kazumitsu U (2004) α-1-Syntrophin modulates turnover of ABCA1. J Biol Chem 279:15091–15095

    Article  CAS  Google Scholar 

  143. Rigot V, Hamon Y, Chambenoit O, Aliber M, Duverger N, Chimini G (2002) Distinct sites on ABCA1 control distinct steps required for cellular release of phospholipids. J Lipid Res 43:2077–2086

    Article  PubMed  CAS  Google Scholar 

  144. Wang N, Chen W, Linsel-Nitschke P, Martinez LO, Agerholm-Larsen B, Silver DL, Tall AR (2003) A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J Clin Investig 111:99–107

    PubMed  CAS  Google Scholar 

  145. Okuhira K, Fitzgerald ML, Sarracino DA, Manning JJ, Bell SA, Goss JL, Freeman MW (2005) Purification of ATP-binding cassette transporter A1 and associated binding proteins reveals the importance of beta1-syntrophin in cholesterol efflux. J Biol Chem 280(47):39653–39664

    Article  PubMed  CAS  Google Scholar 

  146. Straub V, Campbell KP (1997) Muscular dystrophies and the dystrophin glycoprotein complex. Curr Opin Neurol 10:168–175

    Article  PubMed  CAS  Google Scholar 

  147. Matsumura K, Tome FM, Collin H, Azibi K, Chaouch M, Kaplan JC, Fardeau M, Campbell KP (1992) Deficiency of the 50K dystrophin associated glycoprotein in severe childhood autosomal recessive muscular dystrophy. Nature 359:320–322

    Article  PubMed  CAS  Google Scholar 

  148. Adams ME, Kramarcy N, Fukuda T, Engel AG, Sealock R, Froehner SC (2004) Structural abnormalities at neuromuscular synapses lacking multiple syntrophin isoforms. J Neurosci 24:10302–10309

    Article  PubMed  CAS  Google Scholar 

  149. Compton AG, Cooper ST, Hill PM, Yang N, Froehner SC, North KN (2005) The syntrophin-dystrobrevin sub-complex in human neuromuscular disorders. J Neuropathol Exp Neurol 64(4):350–361

    PubMed  CAS  Google Scholar 

  150. Kim MJ, Hwang SH, Lim JA, Froehner SC, Adams ME, Kim HS (2010) α-Syntrophin modulates myogenin expression in differentiating myoblasts. PLoS ONE 5(12):e15355

    Article  PubMed  CAS  Google Scholar 

  151. Wakayama Y, Inoue, Kojima M, Jimi T, Yamashita S, Kumagai T, Shibuya S, Hara H, Oniki H (2006) Altered alpha1-syntrophin expression in myofibers with Duchenne and Fukuyama muscular dystrophies. Histol Histopathol 21(1):23–34

    PubMed  CAS  Google Scholar 

  152. Nakamori M, Kimura T, Kubota T, Matsumura T, Sumi H, Fujimura H, Takahashi MP, Sakoda S (2008) Aberrantly spliced alpha-dystrobrevin alters alpha-syntrophin binding in myotonic dystrophy type 1. Neurology 70(9):677–685

    Article  PubMed  CAS  Google Scholar 

  153. Alderton JM, Steinhardt RA (2000) Calcium influx through leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. J Biol Chem 275:9452–9460

    Article  PubMed  CAS  Google Scholar 

  154. Wu G, Ai T, Kim JJ, Mohapatra B, Xi Y, Li Z, Abbasi S, Purevjav E, Samani K, Ackerman MJ, Qi M, Moss AJ, Shimizu W, Towbin JA, Cheng J, Vatta M (2008) Alpha-1-syntrophin mutation and the long-QT syndrome: a disease of sodium channel disruption. Circ Arrhythm Electrophysiol 1(3):193–201

    Article  PubMed  CAS  Google Scholar 

  155. Cheng J, Van Norstrand DW, Medeiros-Domingo A, Valdivia C, Tan B, Ye B, Kroboth S, Vatta M, Tester DJ, January CT, Makielski JC, Ackerman MJ (2009) α1-Syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current. Circ Arrhythm Electrophysiol 2:667–676

    Google Scholar 

  156. Lehnart SE, Ackerman MJ, Benson DW, Brugada R, Clancy CE, Donahue JK, George AL, Grant AO, Groft SC, January CT, Lathrop DA. Lederer WJ, Makielski JC, Mohler PJ, Moss A, Jeanne M, Olson TM, Przywara DA, Towbin JA, Wang LH, Marks AR (2007) Inherited arrhythmias: A National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation 116: 2325–2345

    Google Scholar 

  157. Oceandy D, Cartwright EJ, Emerson M, Prehar S, Baudoin FM, Zi M, Alatwi N, Venetucci L, Schuh K, Judith CW, Armesilla AL, Neyses L (2007) Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b. Circulation 115:483–492

    Article  PubMed  CAS  Google Scholar 

  158. Wang Y, Kodani E, Wang J, Zhang SX, Takano H, Tang XL, Bolli R (2004) Cardioprotection during the final stage of the late phase of ischemic preconditioning is mediated by neuronal NO synthase in concert with cyclooxygenase-2. Circ Res 95:84–91

    Article  PubMed  CAS  Google Scholar 

  159. Ueda K, Valdivia C, Medeiros-Domingo A, David J, Tester DJ (2008) Syntrophin mutation associated with long QT syndrome through activation of the nNOS–CN5A macromolecular complex. Proc Natl Acad Sci USA 105(27):9355–9360

    Article  PubMed  CAS  Google Scholar 

  160. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of diabetes epidemic. Nature 414:782–787

    Article  PubMed  CAS  Google Scholar 

  161. Diamond J (2003) The double puzzle of diabetes. Nature 423:599–602

    Article  PubMed  CAS  Google Scholar 

  162. Trajkovski M, Mziaut H, Schubert S, Kalaidzidis Y, Altkruger A, Solimena M (2008) Regulation of insulin granule turnover in pancreatic β-cells by cleaved ICA512. J Biol Chem 283:33719–33729

    Article  PubMed  CAS  Google Scholar 

  163. Ort T, Maksimova E, Dirkx R, Kachinsky AM, Berghs S, Froehner SC, Solimena M (2000) The receptor tyrosine phosphatase-like protein ICA512 binds the PDZ domains of β2-syntrophin and nNOS in pancreatic β-cells. Eur J Cell Biol 79:621–630

    Article  PubMed  CAS  Google Scholar 

  164. Ort T, Voronov S, Guo J, Zawalich K, Freohner SC, Zawalich W, Solimena M (2001) Dephosphorylation of β-2-syntrophin and Ca2+/μ-calpain-mediated cleavage of ICA512 upon stimulation of insulin secretion. EMBO J 20:4013–4023

    Article  PubMed  CAS  Google Scholar 

  165. Zhong H, Minneman KP (1999) Alpha1-adrenoceptor subtypes. Eur J Pharmacol 375:261–276

    Article  PubMed  CAS  Google Scholar 

  166. Hague C, Chen Z, Uberti M, Minneman KP (2003) Alpha1-adrenergic receptor subtypes: non-identical triplets with different dancing partners? Life Sci 74(4):411–418

    Article  PubMed  CAS  Google Scholar 

  167. Zhongjian C, Chris H, Randy AH, Kenneth PM (2006) Syntrophins regulate α_1D-adrenergic receptors through a PDZ domain-mediated interaction. J Biol Chem 281:12414–12420

    Article  CAS  Google Scholar 

  168. McCloskey DT, Rokosh DG, O’Connell TD, Keung EC, Simpson PC, Baker AJ (2002) α1-adrenoceptor subtypes mediate negative inotropy in myocardium from α1A/C-knockout and wild type mice. J Mol Cell Cardiol 34:1007–1017

    Article  PubMed  CAS  Google Scholar 

  169. Tanoue A, Nasa Y, Koshimizu T, Shinoura H, Oshikawa S, Kawai T, Sunada S, Takeo S, Tsujimoto G (2002) The α1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J Chromatogr A 109:765–775

    CAS  Google Scholar 

  170. Tanoue A, Koba M, Miyawaki S, Koshimizu TA, Hosoda C, Oshikawa S, Tsujimoto G (2002) Role of the α1D-adrenergic receptor in the development of salt-induced hypertension. Hypertension 40:101–106

    Article  PubMed  CAS  Google Scholar 

  171. Yamakawa H, Oyama S, Mitsuhashi H, Sasagawa N, Uchino S, Kohsaka S, Ishiura S (2007) Neuroligins 3 and 4X interact with syntrophin-γ2 and the interactions are affected by autism-related mutations. Biochem Biophy Res Commun 355:41–46

    Article  CAS  Google Scholar 

  172. Ichtchenko K, Halta Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Sudhof TC (1995) Neuroligin 1: a splice site-specific ligand for beta-neuroxins. Cell 81:435–443

    Article  PubMed  CAS  Google Scholar 

  173. Graf ER, Zhang X, Jin SX, Linhoff MW, Criag AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via Neuroligins. Cell 119:1013–1026

    Article  PubMed  CAS  Google Scholar 

  174. Dean C, Scholl FG, Choih J, DeMaria S, Berger J, Isacoff E, Scheiffele P (2003) Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 6:708–716

    Article  PubMed  CAS  Google Scholar 

  175. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gilberg IC, Soderstrom H, Giros B, Leboyer M, Gilberg C et al (2003) Mutations of the X-linked genes encoding Neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29

    Article  PubMed  CAS  Google Scholar 

  176. Facciuto F, Cavatorta AL, Valdano MB, Marziali F, Gardiol D (2012) Differential expression of PDZ domain containing proteins in human diseases-challenging topics and novel issues. FEBS J 279:3538–3548

    Article  PubMed  CAS  Google Scholar 

  177. Pim D, Bergant M, Boon SS, Ganti K, Kranjec C, Massimi P, Subbaiah VK, Thomas M, Tomaic V, Banks L (2012) Human papillomaviruses and the specificity of PDZ domain targeting. FEBS J 279:3530–3537

    Article  PubMed  CAS  Google Scholar 

  178. Wiseman SM, Griffith O, Leung S, Masoudi H, Phang PT, Jones SJ, Hakama M (2008) Syntrophin expression predicts colon cancer outcome. Am Assoc Cancer Res

  179. Carinci F, Lo Muzio L, Piattelli A, Rubini C, Chiesa F, Ionna F, Palmieri A, Maiorano E, Pastore A, Laino G, Dolci M, Pezzetti F (2005) Potential markers of tongue tumor progression selected by cDNA microarray. Int J Immunopathol Pharmacol 18(3):513–524

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Department of Biotechnology, Ministry of Science and Technology, Government of India, under the scheme of Development of RNAi Technology No. PR12894/AGR/36/629/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdous A. Khanday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhat, H.F., Adams, M.E. & Khanday, F.A. Syntrophin proteins as Santa Claus: role(s) in cell signal transduction. Cell. Mol. Life Sci. 70, 2533–2554 (2013). https://doi.org/10.1007/s00018-012-1233-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1233-9

Keywords

Navigation