Cellular and Molecular Life Sciences

, Volume 70, Issue 16, pp 2859–2872 | Cite as

LOX-1 in atherosclerosis: biological functions and pharmacological modifiers

  • Suowen XuEmail author
  • Sayoko Ogura
  • Jiawei Chen
  • Peter J. Little
  • Joel Moss
  • Peiqing LiuEmail author


Lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1, also known as OLR-1), is a class E scavenger receptor that mediates the uptake of oxLDL by vascular cells. LOX-1 is involved in endothelial dysfunction, monocyte adhesion, the proliferation, migration, and apoptosis of smooth muscle cells, foam cell formation, platelet activation, as well as plaque instability; all of these events are critical in the pathogenesis of atherosclerosis. These LOX-1-dependent biological processes contribute to plaque instability and the ultimate clinical sequelae of plaque rupture and life-threatening tissue ischemia. Administration of anti-LOX-1 antibodies inhibits atherosclerosis by decreasing these cellular events. Over the past decade, multiple drugs including naturally occurring antioxidants, statins, antiinflammatory agents, antihypertensive and antihyperglycemic drugs have been demonstrated to inhibit vascular LOX-1 expression and activity. Therefore, LOX-1 represents an attractive therapeutic target for the treatment of human atherosclerotic diseases. This review aims to integrate the current understanding of LOX-1 signaling, regulation of LOX-1 by vasculoprotective drugs, and the importance of LOX-1 in the pathogenesis of atherosclerosis.


Atherosclerosis Oxidized LDL LOX-1 Soluble LOX-1 Review 



This work was supported by grants from the National Natural Science Foundation of China (No. 81072641); NSFC-CIHR CHINA-CANADA Joint Health Research Initiative Proposal (No. 30811120434); National Science and Technology Major Project of China “Key New Drug Creation and Manufacturing Program” (No. 2009ZX09102-152, 2011ZX09401-307); Team Item of Natural Science Foundation of Guangdong Province (No. S2011030003190); Major Project of Guangdong Province (No. 2008A030201013, No. 2012A080201007); Major Project of Department of Education of Guangdong Province (No. CXZD1006). General work in this area has also been supported by grants from the National Health and Medical Research Council of Australia, National Heart Foundation of Australia and Diabetes Australia Research Trust. Suowen Xu received the “New Investigator Award” from Ministry of Education of China. We gratefully acknowledge the contributions of investigators dedicated to the LOX-1 field, and apologize to those investigators whose work we could not cite owing to space limitations.

Conflict of interest

None declared.


  1. 1.
    Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126PubMedCrossRefGoogle Scholar
  2. 2.
    Little PJ, Osman N, O’Brien KD (2008) Hyperelongated biglycan: the surreptitious initiator of atherosclerosis. Curr Opin Lipidol 19(5):448–454PubMedCrossRefGoogle Scholar
  3. 3.
    Burch ML, Zheng W, Little PJ (2011) Smad linker region phosphorylation in the regulation of extracellular matrix synthesis. Cell Mol Life Sci 68(1):97–107PubMedCrossRefGoogle Scholar
  4. 4.
    Ballinger ML, Nigro J, Frontanilla KV, Dart AM, Little PJ (2004) Regulation of glycosaminoglycan structure and atherogenesis. Cell Mol Life Sci 61(11):1296–1306PubMedCrossRefGoogle Scholar
  5. 5.
    Little PJ, Chait A, Bobik A (2011) Cellular and cytokine-based inflammatory processes as novel therapeutic targets for the prevention and treatment of atherosclerosis. Pharmacol Ther 131(3):255–268PubMedCrossRefGoogle Scholar
  6. 6.
    Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320(14):915–924PubMedCrossRefGoogle Scholar
  7. 7.
    Yamada Y, Doi T, Hamakubo T, Kodama T (1998) Scavenger receptor family proteins: roles for atherosclerosis, host defence and disorders of the central nervous system. Cell Mol Life Sci 54(7):628-640Google Scholar
  8. 8.
    Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, Tanaka T, Miwa S, Katsura Y, Kita T, Masaki T (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386(6620):73–77PubMedCrossRefGoogle Scholar
  9. 9.
    Sawamura T, Kakino A, Fujita Y (2012) LOX-1: a multiligand receptor at the crossroads of response to danger signals. Curr Opin Lipidol 23(5):439–445PubMedCrossRefGoogle Scholar
  10. 10.
    Draude G, Hrboticky N, Lorenz RL (1999) The expression of the lectin-like oxidized low-density lipoprotein receptor (LOX-1) on human vascular smooth muscle cells and monocytes and its down-regulation by lovastatin. Biochem Pharmacol 57(4):383–386PubMedCrossRefGoogle Scholar
  11. 11.
    Iwai-Kanai E, Hasegawa K, Sawamura T, Fujita M, Yanazume T, Toyokuni S, Adachi S, Kihara Y, Sasayama S (2001) Activation of lectin-like oxidized low-density lipoprotein receptor-1 induces apoptosis in cultured neonatal rat cardiac myocytes. Circulation 104(24):2948–2954PubMedCrossRefGoogle Scholar
  12. 12.
    Hu C, Dandapat A, Sun L, Marwali MR, Inoue N, Sugawara F, Inoue K, Kawase Y, Jishage K, Suzuki H, Hermonat PL, Sawamura T, Mehta JL (2008) Modulation of angiotensin II-mediated hypertension and cardiac remodeling by lectin-like oxidized low-density lipoprotein receptor-1 deletion. Hypertension 52(3):556–562PubMedCrossRefGoogle Scholar
  13. 13.
    Chui PC, Guan HP, Lehrke M, Lazar MA (2005) PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. J Clin Invest 115(8):2244–2256PubMedCrossRefGoogle Scholar
  14. 14.
    Dieudonne A, Torres D, Blanchard S, Taront S, Jeannin P, Delneste Y, Pichavant M, Trottein F, Gosset P (2012) Scavenger receptors in human airway epithelial cells: role in response to double-stranded RNA. PLoS ONE 7(8):e41952PubMedCrossRefGoogle Scholar
  15. 15.
    Parlato S, Romagnoli G, Spadaro F, Canini I, Sirabella P, Borghi P, Ramoni C, Filesi I, Biocca S, Gabriele L, Belardelli F (2010) LOX-1 as a natural IFN-alpha-mediated signal for apoptotic cell uptake and antigen presentation in dendritic cells. Blood 115(8):1554–1563PubMedCrossRefGoogle Scholar
  16. 16.
    Chen M, Kakutani M, Naruko T, Ueda M, Narumiya S, Masaki T, Sawamura T (2001) Activation-dependent surface expression of LOX-1 in human platelets. Biochem Biophys Res Commun 282(1):153–158PubMedCrossRefGoogle Scholar
  17. 17.
    Kataoka H, Kume N, Miyamoto S, Minami M, Moriwaki H, Murase T, Sawamura T, Masaki T, Hashimoto N, Kita T (1999) Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation 99(24):3110–3117PubMedCrossRefGoogle Scholar
  18. 18.
    Yoshimoto R, Fujita Y, Kakino A, Iwamoto S, Takaya T, Sawamura T (2011) The discovery of LOX-1, its ligands and clinical significance. Cardiovasc Drugs Ther 25(5):379–391PubMedCrossRefGoogle Scholar
  19. 19.
    Xu S, Liu Z, Huang Y, Le K, Tang F, Huang H, Ogura S, Little P, Shen X, Liu P (2012) Tanshinone II-A inhibits oxidized LDL-induced LOX-1 expression in macrophages by reducing intracellular superoxide radical generation and NF-κB activation. Transl Res 160(2):114–124PubMedCrossRefGoogle Scholar
  20. 20.
    Chen M, Masaki T, Sawamura T (2002) LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 95(1):89–100PubMedCrossRefGoogle Scholar
  21. 21.
    Pirillo A, Reduzzi A, Ferri N, Kuhn H, Corsini A, Catapano AL (2011) Upregulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) by 15-lipoxygenase-modified LDL in endothelial cells. Atherosclerosis 214(2):331–337PubMedCrossRefGoogle Scholar
  22. 22.
    Shiu SW, Tan KC, Wong Y, Leng L, Bucala R (2009) Glycoxidized LDL increases lectin-like oxidized low-density lipoprotein receptor-1 in diabetes mellitus. Atherosclerosis 203(2):522–527PubMedCrossRefGoogle Scholar
  23. 23.
    Ogura S, Kakino A, Sato Y, Fujita Y, Iwamoto S, Otsui K, Yoshimoto R, Sawamura T (2009) Lox-1: the multifunctional receptor underlying cardiovascular dysfunction. Circ J 73(11):1993–1999PubMedCrossRefGoogle Scholar
  24. 24.
    Kume N, Kita T (2001) Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in atherogenesis. Trends Cardiovasc Med 11(1):22–25PubMedCrossRefGoogle Scholar
  25. 25.
    Qian Y, Zhang X, Zhou L, Yun X, Xie J, Xu J, Ruan Y, Ren S (2012) Site-specific N-glycosylation identification of recombinant human lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). Glycoconj J 29(5–6):399–409PubMedCrossRefGoogle Scholar
  26. 26.
    Inoue K, Arai Y, Kurihara H, Kita T, Sawamura T (2005) Overexpression of lectin-like oxidized low-density lipoprotein receptor-1 induces intramyocardial vasculopathy in apolipoprotein E-null mice. Circ Res 97(2):176–184PubMedCrossRefGoogle Scholar
  27. 27.
    White SJ, Sala-Newby GB, Newby AC (2011) Overexpression of scavenger receptor LOX-1 in endothelial cells promotes atherogenesis in the ApoE(−/−) mouse model. Cardiovasc Pathol 20(6):369–373PubMedCrossRefGoogle Scholar
  28. 28.
    Mehta JL, Sanada N, Hu CP, Chen J, Dandapat A, Sugawara F, Satoh H, Inoue K, Kawase Y, Jishage K, Suzuki H, Takeya M, Schnackenberg L, Beger R, Hermonat PL, Thomas M, Sawamura T (2007) Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res 100(11):1634–1642PubMedCrossRefGoogle Scholar
  29. 29.
    Ishigaki Y, Katagiri H, Gao J, Yamada T, Imai J, Uno K, Hasegawa Y, Kaneko K, Ogihara T, Ishihara H, Sato Y, Takikawa K, Nishimichi N, Matsuda H, Sawamura T, Oka Y (2008) Impact of plasma oxidized low-density lipoprotein removal on atherosclerosis. Circulation 118(1):75–83PubMedCrossRefGoogle Scholar
  30. 30.
    Li H, Meininger CJ, Hawker JR Jr, Haynes TE, Kepka-Lenhart D, Mistry SK, Morris SM Jr, Wu G (2001) Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am J Physiol Endocrinol Metab 280(1):E75–E82PubMedGoogle Scholar
  31. 31.
    Ryoo S, Bhunia A, Chang F, Shoukas A, Berkowitz DE, Romer LH (2011) OxLDL-dependent activation of arginase II is dependent on the LOX-1 receptor and downstream RhoA signaling. Atherosclerosis 214(2):279–287PubMedCrossRefGoogle Scholar
  32. 32.
    Shi Y, Cosentino F, Camici GG, Akhmedov A, Vanhoutte PM, Tanner FC, Luscher TF (2011) Oxidized low-density lipoprotein activates p66Shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase C-beta, and c-Jun N-terminal kinase kinase in human endothelial cells. Arterioscler Thromb Vasc Biol 31(9):2090–2097PubMedCrossRefGoogle Scholar
  33. 33.
    Xu X, Gao X, Potter BJ, Cao JM, Zhang C (2007) Anti-LOX-1 rescues endothelial function in coronary arterioles in atherosclerotic ApoE knockout mice. Arterioscler Thromb Vasc Biol 27(4):871–877PubMedCrossRefGoogle Scholar
  34. 34.
    Eichhorn B, Muller G, Leuner A, Sawamura T, Ravens U, Morawietz H (2009) Impaired vascular function in small resistance arteries of LOX-1 overexpressing mice on high-fat diet. Cardiovasc Res 82(3):493–502PubMedCrossRefGoogle Scholar
  35. 35.
    Sugimoto K, Ishibashi T, Sawamura T, Inoue N, Kamioka M, Uekita H, Ohkawara H, Sakamoto T, Sakamoto N, Okamoto Y, Takuwa Y, Kakino A, Fujita Y, Tanaka T, Teramoto T, Maruyama Y, Takeishi Y (2009) LOX-1-MT1-MMP axis is crucial for RhoA and Rac1 activation induced by oxidized low-density lipoprotein in endothelial cells. Cardiovasc Res 84(1):127–136PubMedCrossRefGoogle Scholar
  36. 36.
    Besler C, Heinrich K, Rohrer L, Doerries C, Riwanto M, Shih DM, Chroni A, Yonekawa K, Stein S, Schaefer N, Mueller M, Akhmedov A, Daniil G, Manes C, Templin C, Wyss C, Maier W, Tanner FC, Matter CM, Corti R, Furlong C, Lusis AJ, von Eckardstein A, Fogelman AM, Luscher TF, Landmesser U (2011) Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Invest 121(7):2693–2708PubMedCrossRefGoogle Scholar
  37. 37.
    Braunersreuther V, Mach F (2006) Leukocyte recruitment in atherosclerosis: potential targets for therapeutic approaches? Cell Mol Life Sci 63(18):2079–2088PubMedCrossRefGoogle Scholar
  38. 38.
    Li D, Mehta JL (2000) Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation 101(25):2889–2895PubMedCrossRefGoogle Scholar
  39. 39.
    Honjo M, Nakamura K, Yamashiro K, Kiryu J, Tanihara H, McEvoy LM, Honda Y, Butcher EC, Masaki T, Sawamura T (2003) Lectin-like oxidized LDL receptor-1 is a cell-adhesion molecule involved in endotoxin-induced inflammation. Proc Natl Acad Sci USA 100(3):1274–1279PubMedCrossRefGoogle Scholar
  40. 40.
    Chen JW, Zhou SB, Tan ZM (2010) Aspirin and pravastatin reduce lectin-like oxidized low-density lipoprotein receptor-1 expression, adhesion molecules and oxidative stress in human coronary artery endothelial cells. Chin Med J (Engl) 123(12):1553–1556Google Scholar
  41. 41.
    Li DY, Chen HJ, Mehta JL (2001) Statins inhibit oxidized-LDL-mediated LOX-1 expression, uptake of oxidized-LDL and reduction in PKB phosphorylation. Cardiovasc Res 52(1):130–135PubMedCrossRefGoogle Scholar
  42. 42.
    Chen J, Mehta JL, Haider N, Zhang X, Narula J, Li D (2004) Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circ Res 94(3):370–376PubMedCrossRefGoogle Scholar
  43. 43.
    Li D, Mehta JL (2009) Intracellular signaling of LOX-1 in endothelial cell apoptosis. Circ Res 104(5):566–568PubMedCrossRefGoogle Scholar
  44. 44.
    Lu J, Yang JH, Burns AR, Chen HH, Tang D, Walterscheid JP, Suzuki S, Yang CY, Sawamura T, Chen CH (2009) Mediation of electronegative low-density lipoprotein signaling by LOX-1: a possible mechanism of endothelial apoptosis. Circ Res 104(5):619–627PubMedCrossRefGoogle Scholar
  45. 45.
    Khaidakov M, Wang X, Mehta JL (2011) Potential involvement of LOX-1 in functional consequences of endothelial senescence. PLoS ONE 6(6):e20964PubMedCrossRefGoogle Scholar
  46. 46.
    Eto H, Miyata M, Kume N, Minami M, Itabe H, Orihara K, Hamasaki S, Biro S, Otsuji Y, Kita T, Tei C (2006) Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury. Biochem Biophys Res Commun 341(2):591–598PubMedCrossRefGoogle Scholar
  47. 47.
    Hinagata J, Kakutani M, Fujii T, Naruko T, Inoue N, Fujita Y, Mehta JL, Ueda M, Sawamura T (2006) Oxidized LDL receptor LOX-1 is involved in neointimal hyperplasia after balloon arterial injury in a rat model. Cardiovasc Res 69(1):263–271PubMedCrossRefGoogle Scholar
  48. 48.
    Hu C, Dandapat A, Sun L, Chen J, Marwali MR, Romeo F, Sawamura T, Mehta JL (2008) LOX-1 deletion decreases collagen accumulation in atherosclerotic plaque in low-density lipoprotein receptor knockout mice fed a high-cholesterol diet. Cardiovasc Res 79(2):287–293PubMedCrossRefGoogle Scholar
  49. 49.
    Moriwaki H, Kume N, Kataoka H, Murase T, Nishi E, Sawamura T, Masaki T, Kita T (1998) Expression of lectin-like oxidized low-density lipoprotein receptor-1 in human and murine macrophages: upregulated expression by TNF-alpha. FEBS Lett 440(1–2):29–32PubMedCrossRefGoogle Scholar
  50. 50.
    Yoshida H, Kondratenko N, Green S, Steinberg D, Quehenberger O (1998) Identification of the lectin-like receptor for oxidized low-density lipoprotein in human macrophages and its potential role as a scavenger receptor. Biochem J 334:9–13PubMedGoogle Scholar
  51. 51.
    Schaeffer DF, Riazy M, Parhar KS, Chen JH, Duronio V, Sawamura T, Steinbrecher UP (2009) LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma. J Lipid Res 50(8):1676–1684PubMedCrossRefGoogle Scholar
  52. 52.
    Ishiyama J, Taguchi R, Yamamoto A, Murakami K (2010) Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells. Atherosclerosis 209(1):118–124PubMedCrossRefGoogle Scholar
  53. 53.
    Li L, Sawamura T, Renier G (2004) Glucose enhances human macrophage LOX-1 expression: role for LOX-1 in glucose-induced macrophage foam cell formation. Circ Res 94(7):892–901PubMedCrossRefGoogle Scholar
  54. 54.
    Li D, Liu L, Chen H, Sawamura T, Ranganathan S, Mehta JL (2003) LOX-1 mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells. Circulation 107(4):612–617PubMedCrossRefGoogle Scholar
  55. 55.
    Li L, Renier G (2009) The oral anti-diabetic agent, gliclazide, inhibits oxidized LDL-mediated LOX-1 expression, metalloproteinase-9 secretion and apoptosis in human aortic endothelial cells. Atherosclerosis 204(1):40–46PubMedCrossRefGoogle Scholar
  56. 56.
    Clarke MC, Figg N, Maguire JJ, Davenport AP, Goddard M, Littlewood TD, Bennett MR (2006) Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med 12(9):1075–1080PubMedCrossRefGoogle Scholar
  57. 57.
    Hsieh CC, Yen MH, Yen CH, Lau YT (2001) Oxidized low-density lipoprotein induces apoptosis via generation of reactive oxygen species in vascular smooth muscle cells. Cardiovasc Res 49(1):135–145PubMedCrossRefGoogle Scholar
  58. 58.
    Kume N, Kita T (2004) Apoptosis of vascular cells by oxidized LDL: involvement of caspases and LOX-1 and its implication in atherosclerotic plaque rupture. Circ Res 94(3):269–270PubMedCrossRefGoogle Scholar
  59. 59.
    Kataoka H, Kume N, Miyamoto S, Minami M, Morimoto M, Hayashida K, Hashimoto N, Kita T (2001) Oxidized LDL modulates Bax/Bcl-2 through the lectinlike Ox-LDL receptor-1 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21(6):955–960PubMedCrossRefGoogle Scholar
  60. 60.
    Hu C, Dandapat A, Sun L, Khan JA, Liu Y, Hermonat PL, Mehta JL (2008) Regulation of TGFbeta1-mediated collagen formation by LOX-1: studies based on forced overexpression of TGFbeta1 in wild-type and lox-1 knock-out mouse cardiac fibroblasts. J Biol Chem 283(16):10226–10231PubMedCrossRefGoogle Scholar
  61. 61.
    Marwali MR, Hu CP, Mohandas B, Dandapat A, Deonikar P, Chen J, Cawich I, Sawamura T, Kavdia M, Mehta JL (2007) Modulation of ADP-induced platelet activation by aspirin and pravastatin: role of lectin-like oxidized low-density lipoprotein receptor-1, nitric oxide, oxidative stress, and inside-out integrin signaling. J Pharmacol Exp Ther 322(3):1324–1332PubMedCrossRefGoogle Scholar
  62. 62.
    Kakutani M, Masaki T, Sawamura T (2000) A platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1. Proc Natl Acad Sci USA 97(1):360–364PubMedCrossRefGoogle Scholar
  63. 63.
    Sakurai K, Cominacini L, Garbin U, Fratta Pasini A, Sasaki N, Takuwa Y, Masaki T, Sawamura T (2004) Induction of endothelin-1 production in endothelial cells via co-operative action between CD40 and lectin-like oxidized LDL receptor (LOX-1). J Cardiovasc Pharmacol 44(Suppl 1):S173–S180PubMedCrossRefGoogle Scholar
  64. 64.
    Cominacini L, Fratta Pasini A, Garbin U, Pastorino A, Rigoni A, Nava C, Davoli A, Lo Cascio V, Sawamura T (2003) The platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells. J Am Coll Cardiol 41(3):499–507PubMedCrossRefGoogle Scholar
  65. 65.
    Tanigawa H, Miura S, Matsuo Y, Fujino M, Sawamura T, Saku K (2006) Dominant-negative lox-1 blocks homodimerization of wild-type lox-1-induced cell proliferation through extracellular signal regulated kinase 1/2 activation. Hypertension 48(2):294–300PubMedCrossRefGoogle Scholar
  66. 66.
    Li D, Yang B, Mehta JL (1998) Ox-LDL induces apoptosis in human coronary artery endothelial cells: role of PKC, PTK, bcl-2, and Fas. Am J Physiol 275(2 Pt 2):H568–H576PubMedGoogle Scholar
  67. 67.
    Sun Y, Chen X (2011) Ox-LDL-induced LOX-1 expression in vascular smooth muscle cells: role of reactive oxygen species. Fundam Clin Pharmacol 25(5):572–579PubMedCrossRefGoogle Scholar
  68. 68.
    Stein S, Lohmann C, Schafer N, Hofmann J, Rohrer L, Besler C, Rothgiesser KM, Becher B, Hottiger MO, Boren J, McBurney MW, Landmesser U, Luscher TF, Matter CM (2010) SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. Eur Heart J 31(18):2301–2309PubMedCrossRefGoogle Scholar
  69. 69.
    Thum T, Borlak J (2008) LOX-1 receptor blockade abrogates oxLDL-induced oxidative DNA damage and prevents activation of the transcriptional repressor Oct-1 in human coronary arterial endothelium. J Biol Chem 283(28):19456–19464PubMedCrossRefGoogle Scholar
  70. 70.
    Chen J, Liu Y, Liu H, Hermonat PL, Mehta JL (2006) Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) transcriptional regulation by Oct-1 in human endothelial cells: implications for atherosclerosis. Biochem J 393:255–265PubMedCrossRefGoogle Scholar
  71. 71.
    Li L, Sawamura T, Renier G (2003) Glucose enhances endothelial LOX-1 expression: role for LOX-1 in glucose-induced human monocyte adhesion to endothelium. Diabetes 52(7):1843–1850PubMedCrossRefGoogle Scholar
  72. 72.
    Khaidakov M, Mitra S, Kang BY, Wang X, Kadlubar S, Novelli G, Raj V, Winters M, Carter WC, Mehta JL (2011) Oxidized LDL receptor 1 (OLR1) as a possible link between obesity, dyslipidemia and cancer. PLoS ONE 6(5):e20277PubMedCrossRefGoogle Scholar
  73. 73.
    Cominacini L, Rigoni A, Pasini AF, Garbin U, Davoli A, Campagnola M, Pastorino AM, Lo Cascio V, Sawamura T (2001) The binding of oxidized low-density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J Biol Chem 276(17):13750–13755PubMedGoogle Scholar
  74. 74.
    Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, Rigoni A, Pastorino AM, Lo Cascio V, Sawamura T (2000) Oxidized low-density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem 275(17):12633–12638PubMedCrossRefGoogle Scholar
  75. 75.
    Nagase M, Abe J, Takahashi K, Ando J, Hirose S, Fujita T (1998) Genomic organization and regulation of expression of the lectin-like oxidized low-density lipoprotein receptor (LOX-1) gene. J Biol Chem 273(50):33702–33707PubMedCrossRefGoogle Scholar
  76. 76.
    Li D, Saldeen T, Romeo F, Mehta JL (2000) Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: the potential role of transcription factor NF-kappaB. Circulation 102(16):1970–1976PubMedCrossRefGoogle Scholar
  77. 77.
    Li DY, Zhang YC, Philips MI, Sawamura T, Mehta JL (1999) Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ Res 84(9):1043–1049PubMedCrossRefGoogle Scholar
  78. 78.
    Li D, Singh RM, Liu L, Chen H, Singh BM, Kazzaz N, Mehta JL (2003) Oxidized-LDL through LOX-1 increases the expression of angiotensin converting enzyme in human coronary artery endothelial cells. Cardiovasc Res 57(1):238–243PubMedCrossRefGoogle Scholar
  79. 79.
    Chen J, Liu Y, Liu H, Hermonat PL, Mehta JL (2006) Molecular dissection of angiotensin II-activated human LOX-1 promoter. Arterioscler Thromb Vasc Biol 26(5):1163–1168PubMedCrossRefGoogle Scholar
  80. 80.
    Shiu SW, Wong Y, Tan KC (2012) Effect of advanced glycation end products on lectin-like oxidized low-density lipoprotein receptor-1 expression in endothelial cells. J Atheroscler Thromb.
  81. 81.
    Murase T, Kume N, Kataoka H, Minami M, Sawamura T, Masaki T, Kita T (2000) Identification of soluble forms of lectin-like oxidized LDL receptor-1. Arterioscler Thromb Vasc Biol 20(3):715–720PubMedCrossRefGoogle Scholar
  82. 82.
    Mitsuoka H, Kume N, Hayashida K, Inui-Hayashiada A, Aramaki Y, Toyohara M, Jinnai T, Nishi E, Kita T (2009) Interleukin 18 stimulates release of soluble lectin-like oxidized LDL receptor-1 (sLOX-1). Atherosclerosis 202(1):176–182PubMedCrossRefGoogle Scholar
  83. 83.
    Zhao XQ, Zhang MW, Wang F, Zhao YX, Li JJ, Wang XP, Bu PL, Yang JM, Liu XL, Zhang MX, Gao F, Zhang C, Zhang Y (2011) CRP enhances soluble LOX-1 release from macrophages by activating TNF-alpha converting enzyme. J Lipid Res 52(5):923–933PubMedCrossRefGoogle Scholar
  84. 84.
    Lubrano V, Del Turco S, Nicolini G, Di Cecco P, Basta G (2008) Circulating levels of lectin-like oxidized low-density lipoprotein receptor-1 are associated with inflammatory markers. Lipids 43(10):945–950PubMedCrossRefGoogle Scholar
  85. 85.
    Brinkley TE, Kume N, Mitsuoka H, Brown MD, Phares DA, Ferrell RE, Kita T, Hagberg JM (2008) Variation in the human lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) gene is associated with plasma soluble LOX-1 levels. Exp Physiol 93(9):1085–1090PubMedCrossRefGoogle Scholar
  86. 86.
    Hayashida K, Kume N, Murase T, Minami M, Nakagawa D, Inada T, Tanaka M, Ueda A, Kominami G, Kambara H, Kimura T, Kita T (2005) Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are elevated in acute coronary syndrome: a novel marker for early diagnosis. Circulation 112(6):812–818PubMedCrossRefGoogle Scholar
  87. 87.
    Kume N, Mitsuoka H, Hayashida K, Tanaka M, Kita T (2010) Soluble lectin-like oxidized low-density lipoprotein receptor-1 predicts prognosis after acute coronary syndrome—a pilot study. Circ J 74(7):1399–1404PubMedCrossRefGoogle Scholar
  88. 88.
    Kume N, Mitsuoka H, Hayashida K, Tanaka M, Kominami G, Kita T (2010) Soluble lectin-like oxidized LDL receptor-1 (sLOX-1) as a sensitive and specific biomarker for acute coronary syndrome–comparison with other biomarkers. J Cardiol 56(2):159–165PubMedCrossRefGoogle Scholar
  89. 89.
    Inoue N, Okamura T, Kokubo Y, Fujita Y, Sato Y, Nakanishi M, Yanagida K, Kakino A, Iwamoto S, Watanabe M, Ogura S, Otsui K, Matsuda H, Uchida K, Yoshimoto R, Sawamura T (2010) LOX index, a novel predictive biochemical marker for coronary heart disease and stroke. Clin Chem 56(4):550–558PubMedCrossRefGoogle Scholar
  90. 90.
    Uchida K, Suehiro A, Nakanishi M, Sawamura T, Wakabayashi I (2011) Associations of atherosclerotic risk factors with oxidized low-density lipoprotein evaluated by LOX-1 ligand activity in healthy men. Clin Chim Acta 412(17–18):1643–1647PubMedCrossRefGoogle Scholar
  91. 91.
    Matsumoto T, Fujita M, Sawamura T, Kakino A, Sato Y, Fujita Y, Matsuda H, Nakanishi M, Uchida K, Nakae I, Kanda H, Yoshida A, Miwa K, Hayashi H, Mitsunami K, Horie M (2010) Pitavastatin reduces lectin-like oxidized low-density lipoprotein receptor-1 ligands in hypercholesterolemic humans. Lipids 45(4):329–335PubMedCrossRefGoogle Scholar
  92. 92.
    Chen XP, Zhang TT, Du GH (2007) Lectin-like oxidized low-density lipoprotein receptor-1, a new promising target for the therapy of atherosclerosis? Cardiovasc Drug Rev 25(2):146–161PubMedCrossRefGoogle Scholar
  93. 93.
    Mehta JL, Khaidakov M, Hermonat PL, Mitra S, Wang X, Novelli G, Sawamura T (2011) LOX-1: a new target for therapy for cardiovascular diseases. Cardiovasc Drugs Ther 25(5):495–500PubMedCrossRefGoogle Scholar
  94. 94.
    Lu J, Mitra S, Wang X, Khaidakov M, Mehta JL (2011) Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in atherogenesis and tumorigenesis. Antioxid Redox Signal 15(8):2301–2333PubMedCrossRefGoogle Scholar
  95. 95.
    Mehta JL, Chen J, Hermonat PL, Romeo F, Novelli G (2006) Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res 69(1):36–45PubMedCrossRefGoogle Scholar
  96. 96.
    Steinberg D, Witztum JL (2002) Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 105(17):2107–2111PubMedCrossRefGoogle Scholar
  97. 97.
    Kang BY, Khan JA, Ryu S, Shekhar R, Seung KB, Mehta JL (2010) Curcumin reduces angiotensin II-mediated cardiomyocyte growth via LOX-1 inhibition. J Cardiovasc Pharmacol 55(2):176–183PubMedGoogle Scholar
  98. 98.
    Guan S, Wang B, Li W, Guan J, Fang X (2010) Effects of berberine on expression of LOX-1 and SR-BI in human macrophage-derived foam cells induced by ox-LDL. Am J Chin Med 38(6):1161–1169PubMedCrossRefGoogle Scholar
  99. 99.
    Huang Z, Dong F, Li S, Chu M, Zhou H, Lu Z, Huang W (2012) Berberine-induced inhibition of adipocyte enhancer-binding protein 1 attenuates oxidized low-density lipoprotein accumulation and foam cell formation in phorbol 12-myristate 13-acetate-induced macrophages. Eur J Pharmacol 690(1–3):164–169PubMedCrossRefGoogle Scholar
  100. 100.
    Ou HC, Song TY, Yeh YC, Huang CY, Yang SF, Chiu TH, Tsai KL, Chen KL, Wu YJ, Tsai CS, Chang LY, Kuo WW, Lee SD (2010) EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling. J Appl Physiol 108(6):1745–1756PubMedCrossRefGoogle Scholar
  101. 101.
    Chang HC, Chen TG, Tai YT, Chen TL, Chiu WT, Chen RM (2011) Resveratrol attenuates oxidized LDL-evoked Lox-1 signaling and consequently protects against apoptotic insults to cerebrovascular endothelial cells. J Cereb Blood Flow Metab 31(3):842–854PubMedCrossRefGoogle Scholar
  102. 102.
    Gao S, Liu Z, Li H, Little PJ, Liu P, Xu S (2012) Cardiovascular actions and therapeutic potential of tanshinone IIA. Atherosclerosis 220(1):3–10PubMedCrossRefGoogle Scholar
  103. 103.
    Xu S, Little PJ, Lan T, Huang Y, Le K, Wu X, Shen X, Huang H, Cai Y, Tang F, Wang H, Liu P (2011) Tanshinone II-A attenuates and stabilizes atherosclerotic plaques in apolipoprotein-E knockout mice fed a high cholesterol diet. Arch Biochem Biophys 515(1–2):72–79PubMedCrossRefGoogle Scholar
  104. 104.
    Hofnagel O, Luechtenborg B, Eschert H, Weissen-Plenz G, Severs NJ, Robenek H (2006) Pravastatin inhibits expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in Watanabe heritable hyperlipidemic rabbits: a new pleiotropic effect of statins. Arterioscler Thromb Vasc Biol 26(3):604–610PubMedCrossRefGoogle Scholar
  105. 105.
    Kang BY, Wang W, Palade P, Sharma SG, Mehta JL (2009) Cardiac hypertrophy during hypercholesterolemia and its amelioration with rosuvastatin and amlodipine. J Cardiovasc Pharmacol 54(4):327–334PubMedCrossRefGoogle Scholar
  106. 106.
    Matarazzo S, Quitadamo MC, Mango R, Ciccone S, Novelli G, Biocca S (2012) Cholesterol-lowering drugs inhibit LOX-1 receptor function by membrane raft disruption. Mol Pharmacol 82(2):246–254PubMedCrossRefGoogle Scholar
  107. 107.
    Sugano M, Tsuchida K, Makino N (2002) Nifedipine prevents apoptosis of endothelial cells induced by oxidized low-density lipoproteins. J Cardiovasc Pharmacol 40(1):146–152PubMedCrossRefGoogle Scholar
  108. 108.
    Zhou MS, Jaimes EA, Raij L (2004) Inhibition of oxidative stress and improvement of endothelial function by amlodipine in angiotensin II-infused rats. Am J Hypertens 17(2):167–171PubMedCrossRefGoogle Scholar
  109. 109.
    Rudijanto A (2010) Calcium channel blocker (diltiazem) inhibits apoptosis of vascular smooth muscle cell exposed to high glucose concentration through lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) pathway. Acta Med Indones 42(2):59–65PubMedGoogle Scholar
  110. 110.
    Zhang H, Ma G, Yao Y, Qian H, Li W, Chen X, Jiang W, Zheng R (2012) Olmesartan attenuates the impairment of endothelial cells induced by oxidized low-density lipoprotein through downregulating expression of LOX-1. Int J Mol Sci 13(2):1512–1523PubMedCrossRefGoogle Scholar
  111. 111.
    Mehta JL, Chen J, Yu F, Li DY (2004) Aspirin inhibits ox-LDL-mediated LOX-1 expression and metalloproteinase-1 in human coronary endothelial cells. Cardiovasc Res 64(2):243–249PubMedCrossRefGoogle Scholar
  112. 112.
    Li D, Mehta JL (2000) Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol 20(4):1116–1122PubMedCrossRefGoogle Scholar
  113. 113.
    Ouslimani N, Mahrouf M, Peynet J, Bonnefont-Rousselot D, Cosson C, Legrand A, Beaudeux JL (2007) Metformin reduces endothelial cell expression of both the receptor for advanced glycation end products and lectin-like oxidized receptor 1. Metabolism 56(3):308–313PubMedCrossRefGoogle Scholar
  114. 114.
    Chiba Y, Ogita T, Ando K, Fujita T (2001) PPARgamma ligands inhibit TNF-alpha-induced LOX-1 expression in cultured endothelial cells. Biochem Biophys Res Commun 286(3):541–546PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Department of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat-sen UniversityGuangzhouChina
  3. 3.Faculty of MedicineSurugadai-Hospital of Nihon UniversityTokyoJapan
  4. 4.Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
  5. 5.Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, Health Innovations Research InstituteRMIT UniversityMelbourneAustralia

Personalised recommendations