Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 15, pp 2677–2696 | Cite as

Pleiotropic function of SRY-related HMG box transcription factor 4 in regulation of tumorigenesis

  • Seyed Mehdi Jafarnejad
  • Gholamreza Safaee Ardekani
  • Mazyar Ghaffari
  • Gang Li
Review

Abstract

In addition to their critical roles in embryonic development, cell fate decision, and differentiation, members of Sox (Sry-related high-mobility group box) family of transcription factors including Sox4 have been implicated in various cancers. Multiple studies have revealed an increased expression along with specific oncogenic function of Sox4 in tumors, while others observed a reduced expression of Sox4 in different types of malignancies and suppression of tumor initiation or progression by this protein. More interestingly, the prognostic value of Sox4 is debated due to obvious differences between various reports as well as inconsistencies within specific studies. This review summarizes our current understanding of Sox4 expression pattern and its transcription-dependent, as well as transcription-independent, functions in tumor initiation or progression and its correlation with patient survival. We also discuss the existing discrepancies between different reports and their possible explanations.

Keywords

Cancer Sox4 Oncogene Tumor suppressor 

Notes

Acknowledgments

This work was supported by Canadian Institutes of Health Research (MOP-84559, MOP-93810 and MOP-110974), Canadian Cancer Society Research Institute (2011-700714) and Canadian Dermatology Foundation to G.L. S.M.J and R.S.A. are recipients of the trainee award from Canadian Institute of Health Research Skin Research Training Centre. S.M.J. is a recipient of Roman M. Babicki Fellowship and the University of British Columbia Graduate Fellowship.

References

  1. 1.
    Bowles J, Schepers G, Koopman P (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227:239–255PubMedCrossRefGoogle Scholar
  2. 2.
    Stros M, Launholt D, Grasser KD (2007) The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell Mol Life Sci 64:2590–2606PubMedCrossRefGoogle Scholar
  3. 3.
    Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–244PubMedCrossRefGoogle Scholar
  4. 4.
    Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, Fellous M (1990) Genetic evidence equating SRY and the testis-determining factor. Nature 348:448–450PubMedCrossRefGoogle Scholar
  5. 5.
    Farr CJ, Easty DJ, Ragoussis J, Collignon J, Lovell-Badge R, Goodfellow PN (1993) Characterization and mapping of the human SOX4 gene. Mamm Genome 4:577–584PubMedCrossRefGoogle Scholar
  6. 6.
    Prior HM, Walter MA (1996) SOX genes: architects of development. Mol Med 2:405–412PubMedGoogle Scholar
  7. 7.
    Schepers GE, Teasdale RD, Koopman P (2002) Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 3:167–170PubMedCrossRefGoogle Scholar
  8. 8.
    van Beest M, Dooijes D, van de Wetering M, Kjaerulff S, Bonvin A, Nielsen O, Clevers H (2000) Sequence-specific high mobility group box factors recognize 10–12-base pair minor groove motifs. J Biol Chem 275:27266–27273PubMedGoogle Scholar
  9. 9.
    Wissmuller S, Kosian T, Wolf M, Finzsch M, Wegner M (2006) The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. Nucl Acids Res 34:1735–1744PubMedCrossRefGoogle Scholar
  10. 10.
    Iguchi H, Urashima Y, Inagaki Y, Ikeda Y, Okamura M, Tanaka T, Uchida A, Yamamoto TT, Kodama T, Sakai J (2007) SOX6 suppresses cyclin D1 promoter activity by interacting with beta-catenin and histone deacetylase 1, and its down-regulation induces pancreatic beta-cell proliferation. J Biol Chem 282:19052–19061PubMedCrossRefGoogle Scholar
  11. 11.
    Stolt CC, Lommes P, Hillgartner S, Wegner M (2008) The transcription factor Sox5 modulates Sox10 function during melanocyte development. Nucl Acids Res 36:5427–5440PubMedCrossRefGoogle Scholar
  12. 12.
    Agarwal P, Verzi MP, Nguyen T, Hu J, Ehlers ML, McCulley DJ, Xu SM, Dodou E, Anderson JP, Wei ML, Black BL (2011) The MADS box transcription factor MEF2C regulates melanocyte development and is a direct transcriptional target and partner of SOX10. Development 138:2555–2565PubMedCrossRefGoogle Scholar
  13. 13.
    Chew LJ, Gallo V (2009) The Yin and Yang of Sox proteins: activation and repression in development and disease. J Neurosci Res 87:3277–3287PubMedCrossRefGoogle Scholar
  14. 14.
    Harris ML, Baxter LL, Loftus SK, Pavan WJ (2010) Sox proteins in melanocyte development and melanoma. Pigment Cell Melanoma Res 23:496–513PubMedCrossRefGoogle Scholar
  15. 15.
    Lefebvre V, Dumitriu B, Penzo-Mendez A, Han Y, Pallavi B (2007) Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol 39:2195–2214PubMedCrossRefGoogle Scholar
  16. 16.
    Dy P, Penzo-Mendez A, Wang H, Pedraza CE, Macklin WB, Lefebvre V (2008) The three SoxC proteins—Sox4, Sox11 and Sox12—exhibit overlapping expression patterns and molecular properties. Nucl Acids Res 36:3101–3117PubMedCrossRefGoogle Scholar
  17. 17.
    Kuhlbrodt K, Herbarth B, Sock E, Enderich J, Hermans-Borgmeyer I, Wegner M (1998) Cooperative function of POU proteins and SOX proteins in glial cells. J Biol Chem 273:16050–16057PubMedCrossRefGoogle Scholar
  18. 18.
    van Houte LP, Chuprina VP, van der Wetering M, Boelens R, Kaptein R, Clevers H (1995) Solution structure of the sequence-specific HMG box of the lymphocyte transcriptional activator Sox-4. J Biol Chem 270:30516–30524PubMedCrossRefGoogle Scholar
  19. 19.
    Vandewetering M, Oosterwegel M, Vannorren K, Clevers H (1993) Sox-4, an Sry-like Hmg box protein, is a transcriptional activator in lymphocytes. EMBO J 12:3847–3854Google Scholar
  20. 20.
    Pan X, Zhao J, Zhang WN, Li HY, Mu R, Zhou T, Zhang HY, Gong WL, Yu M, Man JH, Zhang PJ, Li AL, Zhang XM (2009) Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci USA 106:3788–3793PubMedCrossRefGoogle Scholar
  21. 21.
    Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SCJ, Jonatan D, Zorn AM, Wells JM (2007) Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol 27:7802–7815PubMedCrossRefGoogle Scholar
  22. 22.
    Beekman JM, Vervoort SJ, Dekkers F, van Vessem ME, Vendelbosch S, Brugulat-Panes A, van Loosdregt J, Braat AK, Coffer PJ (2012) Syntenin-mediated regulation of Sox4 proteasomal degradation modulates transcriptional output. Oncogene 31:2668–2679PubMedCrossRefGoogle Scholar
  23. 23.
    Hur EH, Hur W, Choi JY, Kim IK, Kim HY, Yoon SK, Rhim H (2004) Functional identification of the pro-apoptotic effector domain in human Sox4. Biochem Bioph Res Co 325:59–67CrossRefGoogle Scholar
  24. 24.
    Hoser M, Potzner MR, Koch JM, Bosl MR, Wegner M, Sock E (2008) Sox12 deletion in the mouse reveals nonreciprocal redundancy with the related Sox4 and Sox11 transcription factors. Mol Cell Biol 28:4675–4687PubMedCrossRefGoogle Scholar
  25. 25.
    Bhattaram P, Penzo-Mendez A, Sock E, Colmenares C, Kaneko KJ, Vassilev A, Depamphilis ML, Wegner M, Lefebvre V (2010) Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat Commun 1:9PubMedCrossRefGoogle Scholar
  26. 26.
    Schilham MW, Oosterwegel MA, Moerer P, Ya J, deBoer PAJ, van de Wetering M, Verbeek S, Lamers WH, Kruisbeek AM, Cumano A, Clevers H (1996) Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 380:711–714PubMedCrossRefGoogle Scholar
  27. 27.
    Boogerd CJ, Wong LY, van den Boogaard M, Bakker ML, Tessadori F, Bakkers J, t Hoen PA, Moorman AF, Christoffels VM, Barnett P (2011) Sox4 mediates Tbx3 transcriptional regulation of the gap junction protein Cx43. Cell Mol Life Sci 68:3949–3961Google Scholar
  28. 28.
    Sock E, Rettig SD, Enderich J, Bosl MR, Tamm ER, Wegner M (2004) Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol 24:6635–6644PubMedCrossRefGoogle Scholar
  29. 29.
    Schilham MW, Moerer P, Cumano A, Clevers HC (1997) Sox-4 facilitates thymocyte differentiation. Eur J Immunol 27:1292–1295PubMedCrossRefGoogle Scholar
  30. 30.
    Schilham MW, Oosterwegel MA, Moerer P, Ya J, de Boer PA, van de Wetering M, Verbeek S, Lamers WH, Kruisbeek AM, Cumano A, Clevers H (1996) Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 380:711–714PubMedCrossRefGoogle Scholar
  31. 31.
    Liber D, Domaschenz R, Holmqvist PH, Mazzarella L, Georgiou A, Leleu M, Fisher AG, Labosky PA, Dillon N (2010) Epigenetic priming of a pre-B cell-specific enhancer through binding of Sox2 and Foxd3 at the ESC stage. Cell Stem Cell 7:114–126PubMedCrossRefGoogle Scholar
  32. 32.
    Kuwahara M, Yamashita M, Shinoda K, Tofukuji S, Onodera A, Shinnakasu R, Motohashi S, Hosokawa H, Tumes D, Iwamura C, Lefebvre V, Nakayama T (2012) The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-beta and suppresses T(H)2 differentiation. Nat Immunol 13:778–786PubMedCrossRefGoogle Scholar
  33. 33.
    Geijsen N, Uings IJ, Pals C, Armstrong J, McKinnon M, Raaijmakers JAM, Lammers JWJ, Koenderman L, Coffer PJ (2001) Cytokine-specific transcriptional regulation through an IL-5R alpha interacting protein. Science 293:1136–1138PubMedCrossRefGoogle Scholar
  34. 34.
    Bergsland M, Werme M, Malewicz M, Perlmann T, Muhr J (2006) The establishment of neuronal properties is controlled by Sox4 and Sox11. Gene Dev 20:3475–3486PubMedCrossRefGoogle Scholar
  35. 35.
    Mu LF, Berti L, Masserdotti G, Covic M, Michaelidis TM, Doberauer K, Merz K, Rehfeld F, Haslinger A, Wegner M, Sock E, Lefebvre V, Couillard-Despres S, Aigner L, Berninger B, Lie DC (2012) SoxC transcription factors are required for neuronal differentiation in adult hippocampal neurogenesis. J Neurosci 32:3067–3080PubMedCrossRefGoogle Scholar
  36. 36.
    Shim SB, Kwan KY, Li MF, Lefebvre V, Sestan N (2012) Cis-regulatory control of corticospinal system development and evolution. Nature 486:74–79PubMedGoogle Scholar
  37. 37.
    Potzner MR, Griffel C, Lutjen-Drecoll E, Bosl MR, Wegner M, Sock E (2007) Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system. Mol Cell Biol 27:5316–5326PubMedCrossRefGoogle Scholar
  38. 38.
    Gao ZL, Ure K, Ding PG, Nashaat M, Yuan LR, Ma J, Hammer RE, Hsieh J (2011) The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J Neurosci 31:9772–9786PubMedCrossRefGoogle Scholar
  39. 39.
    Lioubinski O, Muller M, Wegner M, Sander M (2003) Expression of Sox transcription factors in the developing mouse pancreas. Dev Dyn Off Publ Am Assoc Anat 227:402–408Google Scholar
  40. 40.
    Mavropoulos A, Devos N, Biemar F, Zecchin E, Argenton F, Edlund H, Motte P, Martial JA, Peers B (2005) sox4b is a key player of pancreatic alpha cell differentiation in zebrafish. Dev Biol 285:211–223PubMedCrossRefGoogle Scholar
  41. 41.
    Wilson ME, Yang KY, Kalousova A, Lau J, Kosaka Y, Lynn FC, Wang J, Mrejen C, Episkopou V, Clevers HC, German MS (2005) The HMG box transcription factor Sox4 contributes to the development of the endocrine pancreas. Diabetes 54:3402–3409PubMedCrossRefGoogle Scholar
  42. 42.
    Goldsworthy M, Hugill A, Freeman H, Horner E, Shimomura K, Bogani D, Pieles G, Mijat V, Arkell R, Bhattacharya S, Ashcroft FM, Cox RD (2008) Role of the transcription factor sox4 in insulin secretion and impaired glucose tolerance. Diabetes 57:2234–2244PubMedCrossRefGoogle Scholar
  43. 43.
    Nissen-Meyer LS, Jemtland R, Gautvik VT, Pedersen ME, Paro R, Fortunati D, Pierroz DD, Stadelmann VA, Reppe S, Reinholt FP, Del Fattore A, Rucci N, Teti A, Ferrari S, Gautvik KM (2007) Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice. J Cell Sci 120:2785–2795PubMedCrossRefGoogle Scholar
  44. 44.
    Ikushima H, Todo T, Ino Y, Takahashi M, Saito N, Miyazawa K, Miyazono K (2011) Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 286:41434–41441PubMedCrossRefGoogle Scholar
  45. 45.
    Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9:625–635PubMedCrossRefGoogle Scholar
  46. 46.
    Graham JD, Hunt SMN, Tran N, Clarke CL (1999) Regulation of the expression and activity by progestins of a member of the SOX gene family of transcriptional modulators. J Mol Endocrinol 22:295–304PubMedCrossRefGoogle Scholar
  47. 47.
    Reppe S, Rian E, Jemtland R, Olstad OK, Gautvik VT, Gautvik KM (2000) Sox-4 messenger RNA is expressed in the embryonic growth plate and regulated via the parathyroid hormone/parathyroid hormone-related protein receptor in osteoblast-like cells. J Bone Miner Res 15:2402–2412PubMedCrossRefGoogle Scholar
  48. 48.
    Ahn SG, Cho GH, Jeong SY, Rhim H, Choi JY, Kim IK (1999) Identification of cDNAs for Sox-4, an HMG-Box protein, and a novel human homolog of yeast splicing factor SSF-1 differentially regulated during apoptosis induced by prostaglandin A(2)/Delta(12)-PGJ(2) in Hep3B cells. Biochem Biophys Res Commun 260:216–221PubMedCrossRefGoogle Scholar
  49. 49.
    Gorreta F, Runfola TP, VanMeter AJ, Barzaghi D, Chandhoke V, Del Giacco L (2005) Identification of thioredoxin reductase 1-regulated genes using small interference RNA and cDNA microarray. Cancer Biol Ther 4:1079–1088PubMedCrossRefGoogle Scholar
  50. 50.
    Lee HM, Zhang H, Schulz V, Tuck DP, Forget BG (2010) Downstream targets of HOXB4 in a cell line model of primitive hematopoietic progenitor cells. Blood 116:720–730PubMedCrossRefGoogle Scholar
  51. 51.
    Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5:504–514PubMedCrossRefGoogle Scholar
  52. 52.
    Wang YJ, Solt LA, Kojetin DJ, Burris TP (2012) Regulation of p53 stability and apoptosis by a ROR agonist. Plos One 7:e34921PubMedCrossRefGoogle Scholar
  53. 53.
    Saegusa M, Hashimura M, Kuwata T (2012) Sox4 functions as a positive regulator of beta-catenin signaling through upregulation of TCF4 during morular differentiation of endometrial carcinomas. Lab Invest 92:511–521PubMedCrossRefGoogle Scholar
  54. 54.
    Potzner MR, Tsarovina K, Binder E, Penzo-Mendez A, Lefebvre V, Rohrer H, Wegner M, Sock E (2010) Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development 137:775–784PubMedCrossRefGoogle Scholar
  55. 55.
    Lai YH, Cheng J, Cheng DM, Feasel ME, Beste KD, Peng JM, Nusrat A, Moreno CS (2011) SOX4 interacts with plakoglobin in a Wnt3a-dependent manner in prostate cancer cells. BMC Cell Biol 12:1–11Google Scholar
  56. 56.
    Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801PubMedCrossRefGoogle Scholar
  57. 57.
    Kinzler KW, Ruppert JM, Bigner SH, Vogelstein B (1988) The Gli gene is a member of the Kruppel family of zinc finger proteins. Nature 332:371–374PubMedCrossRefGoogle Scholar
  58. 58.
    Hahn H, Wicking C, Zaphiropoulos PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S, Negus K, Smyth I, Pressman C, Leffell DJ, Gerrard B, Goldstein AM, Dean M, Toftgard R, ChenevixTrench G, Wainwright B, Bale AE (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851PubMedCrossRefGoogle Scholar
  59. 59.
    Giancotti V, Berlingieri MT, DiFiore PP, Fusco A, Vecchio G, Crane-Robinson C (1985) Changes in nuclear proteins on transformation of rat epithelial thyroid cells by a murine sarcoma retrovirus. Cancer Res 45:6051–6057PubMedGoogle Scholar
  60. 60.
    Bussemakers MJ, van de Ven WJ, Debruyne FM, Schalken JA (1991) Identification of high mobility group protein I(Y) as potential progression marker for prostate cancer by differential hybridization analysis. Cancer Res 51:606–611PubMedGoogle Scholar
  61. 61.
    Sattler HP, Lensch R, Rohde V, Zimmer E, Meese E, Bonkhoff H, Retz M, Zwergel T, Bex A, Stoeckle M, Wullich B (2000) Novel amplification unit at chromosome 3q25-q27 in human prostate cancer. Prostate 45:207–215PubMedCrossRefGoogle Scholar
  62. 62.
    Collins C, Rommens JM, Kowbel D, Godfrey T, Tanner M, Hwang S, Polikoff D, Nonet G, Cochran J, Myambo K, Jay KE, Froula J, Cloutier T, Kuo WL, Yaswen P, Dairkee S, Giovanola J, Hutchinson GB, Isola J, Kallioniemi OP, Palazzolo M, Martin C, Ericsson C, Pinkel D, Albertson D, Li WB, Gray JW (1998) Positional cloning of ZNF217 and NABC1: genes amplified at 20q13.2 and overexpressed in breast carcinoma. Proc Natl Acad Sci USA 95:8703–8708PubMedCrossRefGoogle Scholar
  63. 63.
    Korn WM, Yasutake T, Kuo WL, Warren RS, Collins C, Tomita M, Gray J, Waldman FM (1999) Chromosome arm 20q gains and other genomic alterations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Gene Chromosome Canc 25:82–90CrossRefGoogle Scholar
  64. 64.
    Cheng YC, Lee CJ, Badge RM, Orme AT, Scotting PJ (2001) Sox8 gene expression identifies immature glial cells in developing cerebellum and cerebellar tumours. Mol Brain Res 92:193–200PubMedCrossRefGoogle Scholar
  65. 65.
    Lee CJ, Appleby VJ, Orme AT, Chan WI, Scotting PJ (2002) Differential expression of SOX4 and SOX11 in medulloblastoma. J Neurooncol 57:201–214PubMedCrossRefGoogle Scholar
  66. 66.
    Ueda R, Yoshida K, Kawase T, Kawakami Y, Toda M (2007) Preferential expression and frequent IgG responses of a tumor antigen, SOX5, in glioma patients. Int J Cancer 120:1704–1711PubMedCrossRefGoogle Scholar
  67. 67.
    McCracken S, Kim CS, Xu Y, Minden M, Miyamoto NG (1997) An alternative pathway for expression of p56(lck) from type I promoter transcripts in colon carcinoma. Oncogene 15:2929–2937PubMedCrossRefGoogle Scholar
  68. 68.
    Zamoyska R, Basson A, Filby A, Legname G, Lovatt M, Seddon B (2003) The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol Rev 191:107–118PubMedCrossRefGoogle Scholar
  69. 69.
    McCracken S, Leung S, Bosselut R, Ghysdael J, Miyamoto NG (1994) Myb and Ets related transcription factors are required for activity of the human lck type I promoter. Oncogene 9:3609–3615PubMedGoogle Scholar
  70. 70.
    Hurst CD, Fiegler H, Carr P, Williams S, Carter NP, Knowles MA (2004) High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene 23:2250–2263PubMedCrossRefGoogle Scholar
  71. 71.
    Grasemann C, Gratias S, Stephan H, Schuler A, Schramm A, Klein-Hitpass L, Rieder H, Schneider S, Kappes F, Eggert A, Lohmann DR (2005) Gains and overexpression identify DEK and E2F3 as targets of chromosome 6p gains in retinoblastoma. Oncogene 24:6441–6449PubMedGoogle Scholar
  72. 72.
    Oeggerli M, Tomovska S, Schraml P, Calvano-Forte D, Schafroth S, Simon R, Gasser T, Mihatsch MJ, Sauter G (2004) E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Oncogene 23:5616–5623PubMedCrossRefGoogle Scholar
  73. 73.
    Wu QO, Hoffmann MJ, Hartmann FH, Schulz WA (2005) Amplification and overexpression of the ID4 gene at 6p22.3 in bladder cancer. Mol Cancer 4:16Google Scholar
  74. 74.
    Stephens BJ, Han HY, Gokhale V, Von Hoff DD (2005) PRL phosphatases as potential molecular targets in cancer. Mol Cancer Ther 4:1653–1661PubMedCrossRefGoogle Scholar
  75. 75.
    Aaboe M, Birkenkamp-Demtroder K, Wiuf C, Sorensen FB, Tbykjaer T, Sauter G, Jensen KME, Dyrskjot L, Orntoft T (2006) SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer Res 66:3434–3442PubMedCrossRefGoogle Scholar
  76. 76.
    Medina PP, Castillo SD, Blanco S, Sanz-Garcia M, Largo C, Alvarez S, Yokota J, Gonzalez-Neira A, Benitez J, Clevers HC, Cigudosa JC, Lazo PA, Sanchez-Cespedes M (2009) The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer dagger. Hum Mol Genet 18:1343–1352PubMedCrossRefGoogle Scholar
  77. 77.
    Hur W, Rhim H, Jung CK, Kim JD, Bae SH, Jang JW, Yang JM, Oh ST, Kim DG, Wang HJ, Lee SB, Yoon SK (2010) SOX4 overexpression regulates the p53-mediated apoptosis in hepatocellular carcinoma: clinical implication and functional analysis in vitro. Carcinogenesis 31:1298–1307PubMedCrossRefGoogle Scholar
  78. 78.
    Vanaja DK, Ballman KV, Morlan BW, Cheville JC, Neumann RM, Lieber MM, Tindall DJ, Young CYF (2006) PDLIM4 repression by hypermethylation as a potential biomarker for prostate cancer. Clin Cancer Res 12:1128–1136PubMedCrossRefGoogle Scholar
  79. 79.
    Liu PB, Ramachandran S, Ali Seyed M, Scharer CD, Laycock N, Dalton WB, Williams H, Karanam S, Datta MW, Jaye DL, Moreno CS (2006) Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res 66:4011–4019PubMedCrossRefGoogle Scholar
  80. 80.
    Scharer CD, McCabe CD, Ali-Seyed M, Berger MF, Bulyk ML, Moreno CS (2009) Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Res 69:709–717PubMedCrossRefGoogle Scholar
  81. 81.
    Pramoonjago P, Baras AS, Moskaluk CA (2006) Knockdown of Sox4 expression by RNAi induces apoptosis in ACC3 cells. Oncogene 25:5626–5639PubMedCrossRefGoogle Scholar
  82. 82.
    Frierson HF Jr, El-Naggar AK, Welsh JB, Sapinoso LM, Su AI, Cheng J, Saku T, Moskaluk CA, Hampton GM (2002) Large scale molecular analysis identifies genes with altered expression in salivary adenoid cystic carcinoma. Am J Pathol 161:1315–1323PubMedCrossRefGoogle Scholar
  83. 83.
    Castillo SD, Matheu A, Mariani N, Carretero J, Lopez-Rios F, Lovell-Badge R, Sanchez-Cespedes M (2012) Novel transcriptional targets of the SRY-HMG box transcription factor SOX4 link its expression to the development of small cell lung cancer. Cancer Res 72:176–186PubMedCrossRefGoogle Scholar
  84. 84.
    Dyrskjot L, Ostenfeld MS, Bramsen JB, Silahtaroglu AN, Lamy P, Ramanathan R, Fristrup N, Jensen JL, Andersen CL, Zieger K, Kauppinen S, Ulhoi BP, Kjems J, Borre M, Orntoft TF (2009) Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res 69:4851–4860PubMedCrossRefGoogle Scholar
  85. 85.
    Huang YW, Liu JC, Deatherage DE, Luo JQ, Mutch DG, Goodfellow PJ, Miller DS, Huang THM (2009) Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res 69:9038–9046PubMedCrossRefGoogle Scholar
  86. 86.
    Shen R, Pan S, Qi S, Lin X, Cheng S (2010) Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem Biophys Res Commun 394:1047–1052PubMedCrossRefGoogle Scholar
  87. 87.
    Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang QQ, Bos PD, Gerald WL, Massague J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152PubMedCrossRefGoogle Scholar
  88. 88.
    Liu S, Patel SH, Ginestier C, Ibarra I, Martin-Trevino R, Bai S, McDermott SP, Shang L, Ke J, Ou SJ, Heath A, Zhang KJ, Korkaya H, Clouthier SG, Charafe-Jauffret E, Birnbaum D, Hannon GJ, Wicha MS (2012) MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet 8:e1002751PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X, Feng J, Zhang Y, Gao H, Liu DX, Lu J, Huang B (2012) SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression. Cancer Res 72:4597–4608PubMedCrossRefGoogle Scholar
  90. 90.
    Liao YL, Sun YM, Chau GY, Chau YP, Lai TC, Wang JL, Horng JT, Hsiao M, Tsou AP (2008) Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene 27:5578–5589PubMedCrossRefGoogle Scholar
  91. 91.
    Du Y, Spence SE, Jenkins NA, Copeland NG (2005) Cooperating cancer-gene identification through oncogenic-retrovirus-induced insertional mutagenesis. Blood 106:2498–2505PubMedCrossRefGoogle Scholar
  92. 92.
    Schwieger M, Schuler A, Forster M, Engelmann A, Arnold MA, Delwel R, Valk PJ, Lohler J, Slany RK, Olson EN, Stocking C (2009) Homing and invasiveness of MLL/ENL leukemic cells is regulated by MEF2C. Blood 114:2476–2488PubMedCrossRefGoogle Scholar
  93. 93.
    Aue G, Du Y, Cleveland SM, Smith SB, Dave UP, Liu DL, Weniger MA, Metais JY, Jenkins NA, Copeland NG, Dunbar CE (2011) Sox4 cooperates with PU.1 haploinsufficiency in murine myeloid leukemia. Blood 118:4674–4681PubMedCrossRefGoogle Scholar
  94. 94.
    Bies J, Sramko M, Fares J, Rosu-Myles M, Zhang S, Koller R, Wolff L (2010) Myeloid-specific inactivation of p15Ink4b results in monocytosis and predisposition to myeloid leukemia. Blood 116:979–987PubMedCrossRefGoogle Scholar
  95. 95.
    Suzuki T, Shen HF, Akagi K, Morse HC, Malley JD, Naiman DQ, Jenkins NA, Copeland NG (2002) New genes involved in cancer identified by retroviral tagging. Nat Genet 32:166–174PubMedCrossRefGoogle Scholar
  96. 96.
    Sandoval S, Kraus C, Cho EC, Cho M, Bies J, Manara E, Accordi B, Landaw EM, Wolff L, Pigazzi M, Sakamoto KM (2012) Sox4 cooperates with CREB in myeloid transformation. Blood 120:155–165PubMedCrossRefGoogle Scholar
  97. 97.
    Iqbal MS, Otsuyama K, Shamsasenjan K, Asaoku H, Kawano MM (2010) CD56 expression in human myeloma cells derived from the neurogenic gene expression: possible role of the SRY-HMG box gene, SOX4. Int J Hematol 91:267–275PubMedCrossRefGoogle Scholar
  98. 98.
    Gattenlohner S, Stuhmer T, Leich E, Reinhard M, Etschmann B, Volker HU, Rosenwald A, Serfling E, Bargou RC, Ertl G, Einsele H, Muller-Hermelink HK (2009) Specific detection of CD56 (NCAM) Isoforms for the identification of aggressive malignant neoplasms with progressive development. Am J Pathol 174:1160–1171PubMedCrossRefGoogle Scholar
  99. 99.
    Lin BY, Madan A, Yoon JG, Fang XF, Yan XW, Kim TK, Hwang D, Hood L, Foltz G (2010) Massively parallel signature sequencing and bioinformatics analysis identifies up-regulation of TGFBI and SOX4 in human glioblastoma. Plos One 5:e10210PubMedCrossRefGoogle Scholar
  100. 100.
    Ahn SG, Kim HS, Jeong SW, Kim BE, Rhim H, Shim JY, Kim JW, Lee JH, Kim IK (2002) Sox-4 is a positive regulator of Hep3B and HepG2 cells’ apoptosis induced by prostaglandin (PG)A(2) and Delta(12)-PGJ(2). Exp Mol Med 34:243–249PubMedCrossRefGoogle Scholar
  101. 101.
    Kim BE, Lee JH, Kim HS, Kwon OJ, Jeong SW, Kim IK (2004) Involvement of Sox-4 in the cytochrome c-dependent AIF-independent apoptotic pathway in HeLa cells induced by Delta(12)-prostaglandin J(2). Exp Mol Med 36:444–453PubMedCrossRefGoogle Scholar
  102. 102.
    Moschos SJ, Smith AP, Mandic M, Athanassiou C, Watson-Hurst K, Jukic DM, Edington HD, Kirkwood JM, Becker D (2007) SAGE and antibody array analysis of melanoma-infiltrated lymph nodes: identification of Ubc9 as an important molecule in advanced-stage melanomas. Oncogene 26:4216–4225PubMedCrossRefGoogle Scholar
  103. 103.
    Zhu S, Sachdeva M, Wu F, Lu Z, Mo YY (2010) Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene 29:1763–1772PubMedCrossRefGoogle Scholar
  104. 104.
    Jafarnejad SM, Wani AA, Martinka M, Li G (2010) Prognostic significance of Sox4 expression in human cutaneous melanoma and its role in cell migration and invasion. Am J Pathol 177:2741–2752PubMedCrossRefGoogle Scholar
  105. 105.
    Landreville S, Lupien CB, Vigneault F, Gaudreault M, Mathieu M, Rousseau AP, Guerin SL, Salesse C (2011) Identification of differentially expressed genes in uveal melanoma using suppressive subtractive hybridization. Mol Vis 17:1224–1233Google Scholar
  106. 106.
    Meir T, Dror R, Yu X, Qian J, Simon I, Pe’er J, Chowers I (2007) Molecular characteristics of liver metastases from uveal melanoma. Invest Ophthalmol Vis Sci 48:4890–4896PubMedCrossRefGoogle Scholar
  107. 107.
    Jafarnejad SM, Ardekani GS, Ghaffari M, Martinka M, Li G (2012) Sox4-mediated Dicer expression is critical for suppression of melanoma cell invasion. Oncogene (in press)Google Scholar
  108. 108.
    Francia S, Michelini F, Saxena A, Tang D, De Hoon M, Anelli V, Mione M, Carninci P, Di Fagagna FD (2012) Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488:231–235PubMedCrossRefGoogle Scholar
  109. 109.
    Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW, Dhir R (2006) Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol 169:1812–1820PubMedCrossRefGoogle Scholar
  110. 110.
    Wang C, Zhao H, Lu J, Yin J, Zang L, Song N, Dong R, Wu T, Du X (2012) Clinicopathological significance of SOX4 expression in primary gallbladder carcinoma. Diagn Pathol 7:41PubMedCrossRefGoogle Scholar
  111. 111.
    de Bont JM, Kros JM, Passier MMCJ, Reddingius RE, Smitt PAES, Luider TM, den Boer ML, Pieters R (2008) Differential expression and prognostic significance of SOX genes in pediatric medulloblastoma and ependymoma identified by microarray analysis. Neuro-Oncology 10:648–660PubMedCrossRefGoogle Scholar
  112. 112.
    Andersen CL, Christensen LL, Thorsen K, Schepeler T, Sorensen FB, Verspaget HW, Simon R, Kruhoffer M, Aaltonen LA, Laurberg S, Orntoft TF (2009) Dysregulation of the transcription factors SOX4, CBFB and SMARCC1 correlates with outcome of colorectal cancer. Br J Cancer 100:511–523PubMedCrossRefGoogle Scholar
  113. 113.
    Chetty C, Dontula R, Gujrati M, Dinh DH, Lakka SS (2012) Blockade of SOX4 mediated DNA repair by SPARC enhances radioresponse in medulloblastoma. Cancer Lett 323:188–198PubMedCrossRefGoogle Scholar
  114. 114.
    Polakis P (2000) Wnt signaling and cancer. Gene Dev 14:1837–1851PubMedGoogle Scholar
  115. 115.
    Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480PubMedCrossRefGoogle Scholar
  116. 116.
    Lee AK, Ahn SG, Yoon JH, Kim SA (2011) Sox4 stimulates beta-catenin activity through induction of CK2. Oncol Rep 25:559–565PubMedGoogle Scholar
  117. 117.
    Shiina H, Breault JE, Basset WW, Enokida H, Urakami S, Li LC, Okino ST, Deguchi M, Kaneuchi M, Terashima M, Yoneda T, Shigeno K, Carroll PR, Igawa M, Dahiya R (2005) Functional loss of the gamma-catenin gene through epigenetic and genetic pathways in human prostate cancer. Cancer Res 65:2130–2138PubMedCrossRefGoogle Scholar
  118. 118.
    Rieger-Christ KM, Ng L, Hanley RS, Durrani O, Ma H, Yee AS, Libertino JA, Summerhayes IC (2005) Restoration of plakoglobin expression in bladder carcinoma cell lines suppresses cell migration and tumorigenic potential. Brit J Cancer 92:2153–2159PubMedCrossRefGoogle Scholar
  119. 119.
    Cai HH, Ni AH, Li W, Li JW (2011) Inhibition of melanoma cell proliferation by targeting Wnt/beta-catenin pathway through Sox4 RNA interference. J Huazhong Univ Sci-Med 31:565–569CrossRefGoogle Scholar
  120. 120.
    Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT, Rothberg BEG, Taketo MM, Dankort D, Rimm DL, McMahon M, Bosenberg M (2011) Beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20:741–754PubMedCrossRefGoogle Scholar
  121. 121.
    Arozarena I, Bischof H, Gilby D, Belloni B, Dummer R, Wellbrock C (2011) In melanoma, beta-catenin is a suppressor of invasion. Oncogene 30:4531–4543PubMedCrossRefGoogle Scholar
  122. 122.
    Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ, Major MB, Hwang ST, Rimm DL, Moon RT (2009) Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci USA 106:1193–1198PubMedCrossRefGoogle Scholar
  123. 123.
    Maelandsmo GM, Holm R, Nesland JM, Fodstad O, Florenes VA (2003) Reduced beta-catenin expression in the cytoplasm of advanced-stage superficial spreading malignant melanoma. Clin Cancer Res 9:3383–3388PubMedGoogle Scholar
  124. 124.
    Kageshita T, Hamby CV, Ishihara T, Matsumoto K, Saida T, Ono T (2001) Loss of beta-catenin expression associated with disease progression in malignant melanoma. Brit J Dermatol 145:210–216CrossRefGoogle Scholar
  125. 125.
    Pecina-Slaus N, Zigmund M, Kusec V, Martic TN, Cacic M, Slaus M (2007) E-cadherin and beta-catenin expression patterns in malignant melanoma assessed by image analysis. J Cutan Pathol 34:239–246PubMedCrossRefGoogle Scholar
  126. 126.
    Rothberg BEG, Berger AJ, Molinaro AM, Subtil A, Krauthammer MO, Camp RL, Bradley WR, Ariyan S, Kluger HM, Rimm DL (2009) Melanoma prognostic model using tissue microarrays and genetic algorithms. J Clin Oncol 27:5772–5780CrossRefGoogle Scholar
  127. 127.
    Bachmann IM, Straume O, Puntervoll HE, Kalvenes MB, Akslen LA (2005) Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res 11:8606–8614PubMedCrossRefGoogle Scholar
  128. 128.
    Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE (2005) Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26:495–502PubMedCrossRefGoogle Scholar
  129. 129.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  130. 130.
    He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134PubMedCrossRefGoogle Scholar
  131. 131.
    Reichling T, Goss KH, Carson DJ, Holdcraft RW, Ley-Ebert C, Witte D, Aronow BJ, Groden J (2005) Transcriptional profiles of intestinal tumors in Apc(Min) mice are unique from those of embryonic intestine and identify novel gene targets dysregulated in human colorectal tumors. Cancer Res 65:166–176PubMedGoogle Scholar
  132. 132.
    Yokota N, Mainprize TG, Taylor MD, Kohata T, Loreto M, Ueda S, Dura W, Grajkowska W, Kuo JS, Rutka JT (2004) Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 23:3444–3453PubMedCrossRefGoogle Scholar
  133. 133.
    Kim HD, Choe HK, Chung S, Kim M, Seong JY, Son GH, Kim K (2011) Class-C SOX transcription factors control GnRH gene expression via the intronic transcriptional enhancer. Mol Endocrinol 25:1184–1196PubMedCrossRefGoogle Scholar
  134. 134.
    Wotton D, Lake RA, Farr CJ, Owen MJ (1995) The high mobility group transcription factor, SOX4, transactivates the human CD2 enhancer. J Biol Chem 270:7515–7522PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • Seyed Mehdi Jafarnejad
    • 1
  • Gholamreza Safaee Ardekani
    • 1
  • Mazyar Ghaffari
    • 2
  • Gang Li
    • 1
  1. 1.Department of Dermatology and Skin Science, Jack Bell Research CentreUniversity of British ColumbiaVancouverCanada
  2. 2.The Vancouver Prostate Centre, Vancouver General HospitalUniversity of British ColumbiaVancouverCanada

Personalised recommendations