Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 14, pp 2463–2472 | Cite as

Hsp90 regulation of mitochondrial protein folding: from organelle integrity to cellular homeostasis

  • Dario C. Altieri
Review

Abstract

Although essential for energy production and cell fate decisions, the mechanisms that govern protein homeostasis, or proteostasis, in mitochondria are only recently beginning to emerge. Fresh experimental evidence has uncovered a role of molecular chaperones of the heat shock protein 90 (Hsp90) family in overseeing the protein folding environment in mitochondria. Initially implicated in protection against cell death, there is now evidence that Hsp90-directed protein quality control in mitochondria connects to hosts of cellular homeostatic networks that become prominently exploited in human cancer.

Keywords

Apoptosis Autophagy Hsp90 Mitochondrial permeability transition Tumor progression 

Notes

Acknowledgments

This work was supported by National Institutes of Health Grants CA140043, CA78810 and CA118005.

Conflict of interest

The author declares that no conflict of interest exists.

References

  1. 1.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedCrossRefGoogle Scholar
  2. 2.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629PubMedCrossRefGoogle Scholar
  3. 3.
    Haynes CM, Ron D (2010) The mitochondrial UPR-protecting organelle protein homeostasis. J Cell Sci 123:3849–3855PubMedCrossRefGoogle Scholar
  4. 4.
    Janska H, Kwasniak M, Szczepanowska J (2012) Protein quality control in organelles-AAA/FtsH story. Biochim Biophys Acta (Epub ahead of print)Google Scholar
  5. 5.
    Young JC, Barral JM, Ulrich Hartl F (2003) More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci 28:541–547PubMedCrossRefGoogle Scholar
  6. 6.
    Eletto D, Dersh D, Argon Y (2010) GRP94 in ER quality control and stress responses. Semin Cell Dev Biol 21:479–485PubMedCrossRefGoogle Scholar
  7. 7.
    Wanderling S, Simen BB, Ostrovsky O, Ahmed NT, Vogen SM, Gidalevitz T, Argon Y (2007) GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. Mol Biol Cell 18:3764–3775PubMedCrossRefGoogle Scholar
  8. 8.
    Randow F, Seed B (2001) Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat Cell Biol 3:891–896PubMedCrossRefGoogle Scholar
  9. 9.
    Baker-LePain JC, Reed RC, Nicchitta CV (2003) ISO: a critical evaluation of the role of peptides in heat shock/chaperone protein-mediated tumor rejection. Curr Opin Immunol 15:89–94PubMedCrossRefGoogle Scholar
  10. 10.
    Luo B, Lam BS, Lee SH, Wey S, Zhou H, Wang M, Chen S-Y, Adams GB, Lee AS (2011) The endoplasmic reticulum chaperone protein GRP94 is required for maintaining hematopoietic stem cell interactions with the adult bone marrow niche. PLoS ONE 6:e20364PubMedCrossRefGoogle Scholar
  11. 11.
    Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131:257–270PubMedCrossRefGoogle Scholar
  12. 12.
    Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3312PubMedCrossRefGoogle Scholar
  13. 13.
    Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528PubMedCrossRefGoogle Scholar
  14. 14.
    Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772PubMedCrossRefGoogle Scholar
  15. 15.
    Song HY, Dunbar JD, Zhang YX, Guo D, Donner DB (1995) Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem 270:3574–3581PubMedCrossRefGoogle Scholar
  16. 16.
    Chen CF, Chen Y, Dai K, Chen PL, Riley DJ, Lee WH (1996) A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Mol Cell Biol 16:4691–4699PubMedGoogle Scholar
  17. 17.
    Chen B, Piel WH, Gui L, Bruford E, Monteiro A (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86:627–637PubMedCrossRefGoogle Scholar
  18. 18.
    Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28PubMedCrossRefGoogle Scholar
  19. 19.
    Leskovar A, Wegele H, Werbeck ND, Buchner J, Reinstein J (2008) The ATPase cycle of the mitochondrial Hsp90 analog Trap1. J Biol Chem 283:11677–11688PubMedCrossRefGoogle Scholar
  20. 20.
    Cechetto JD, Gupta RS (2000) Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp Cell Res 260:30–39PubMedCrossRefGoogle Scholar
  21. 21.
    Pridgeon JW, Olzmann JA, Chin LS, Li L (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5:e172PubMedCrossRefGoogle Scholar
  22. 22.
    Debatin KM, Krammer PH (2004) Death receptors in chemotherapy and cancer. Oncogene 23:2950–2966PubMedCrossRefGoogle Scholar
  23. 23.
    Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27:6194–6206PubMedCrossRefGoogle Scholar
  24. 24.
    Masuda Y, Shima G, Aiuchi T, Horie M, Hori K, Nakajo S, Kajimoto S, Shibayama-Imazu T, Nakaya K (2004) Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 279:42503–42515PubMedCrossRefGoogle Scholar
  25. 25.
    Hua G, Zhang Q, Fan Z (2007) Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J Biol Chem 282:20553–20560PubMedCrossRefGoogle Scholar
  26. 26.
    Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160PubMedCrossRefGoogle Scholar
  27. 27.
    Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S, Wang L, Rogaeva E, Fraser P, Robinson B, St George-Hyslop P, Tandon A (2005) Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 280:34025–34032PubMedCrossRefGoogle Scholar
  28. 28.
    Landriscina M, Laudiero G, Maddalena F, Amoroso MR, Piscazzi A, Cozzolino F, Monti M, Garbi C, Fersini A, Pucci P, Esposito F (2010) Mitochondrial chaperone Trap1 and the calcium binding protein Sorcin interact and protect cells against apoptosis induced by antiblastic agents. Cancer Res 70:6577–6586PubMedCrossRefGoogle Scholar
  29. 29.
    Im C-N, Lee J-S, Zheng Y, Seo J-S (2007) Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J Cell Biochem 100:474–486PubMedCrossRefGoogle Scholar
  30. 30.
    Montesano Gesualdi N, Chirico G, Pirozzi G, Costantino E, Landriscina M, Esposito F (2007) Tumor necrosis factor-associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 10:342–350PubMedCrossRefGoogle Scholar
  31. 31.
    Ruiz-Romero C, Calamia V, Rocha B, Mateos J, Fernandez-Puente P, Blanco FJ (2010) Hypoxia conditions differentially modulate human normal and osteoarthritic chondrocyte proteomes. J Proteome Res 9:3035–3045PubMedCrossRefGoogle Scholar
  32. 32.
    Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN, Golub TR (2000) Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci 97:3260–3265PubMedCrossRefGoogle Scholar
  33. 33.
    Leav I, Plescia J, Goel HL, Li J, Jiang Z, Cohen RJ, Languino LR, Altieri DC (2010) Cytoprotective mitochondrial chaperone TRAP-1 as a novel molecular target in localized and metastatic prostate cancer. Am J Pathol 176:393–401PubMedCrossRefGoogle Scholar
  34. 34.
    Kim HK, Choi IJ, Kim CG, Kim HS, Oshima A, Michalowski A, Green JE (2011) A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients. PLoS ONE 6:e16694PubMedCrossRefGoogle Scholar
  35. 35.
    Costantino E, Maddalena F, Calise S, Piscazzi A, Tirino V, Fersini A, Ambrosi A, Neri V, Esposito F, Landriscina M (2009) TRAP1, a novel mitochondrial chaperone responsible for multi-drug resistance and protection from apoptotis in human colorectal carcinoma cells. Cancer Lett 279:39–46PubMedCrossRefGoogle Scholar
  36. 36.
    Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46:821–831PubMedCrossRefGoogle Scholar
  37. 37.
    Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555PubMedCrossRefGoogle Scholar
  38. 38.
    Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465PubMedCrossRefGoogle Scholar
  39. 39.
    He L, Lemasters JJ (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512:1–7PubMedCrossRefGoogle Scholar
  40. 40.
    Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662PubMedCrossRefGoogle Scholar
  41. 41.
    Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658PubMedCrossRefGoogle Scholar
  42. 42.
    Forte M, Gold BG, Marracci G, Chaudhary P, Basso E, Johnsen D, Yu X, Fowlkes J, Bernardi P, Bourdette D (2007) Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc Natl Acad Sci 104:7558–7563PubMedCrossRefGoogle Scholar
  43. 43.
    Du H, Guo L, Fang F, Chen D, Sosunov AA, McKhann GM, Yan Y, Wang C, Zhang H, Molkentin JD, Gunn-Moore FJ, Vonsattel JP, Arancio O, Chen JX, Yan SD (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 14:1097–1105PubMedCrossRefGoogle Scholar
  44. 44.
    Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549PubMedCrossRefGoogle Scholar
  45. 45.
    Kang BH, Plescia J, Song HY, Meli M, Colombo G, Beebe K, Scroggins B, Neckers L, Altieri DC (2009) Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J Clin Invest 119:454–464PubMedCrossRefGoogle Scholar
  46. 46.
    Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76PubMedCrossRefGoogle Scholar
  47. 47.
    Kang BH, Siegelin MD, Plescia J, Raskett CM, Garlick DS, Dohi T, Lian JB, Stein GS, Languino LR, Altieri DC (2010) Preclinical characterization of mitochondria-directed, small molecule Hsp90 inhibitors, Gamitrinibs, in advanced prostate cancer. Clin Cancer Res 16:4779–4788PubMedCrossRefGoogle Scholar
  48. 48.
    Kang BH, Tavecchio M, Goel HL, Hsieh CC, Garlick DS, Raskett CM, Lian JB, Stein GS, Languino LR, Altieri DC (2011) Targeted inhibition of mitochondrial Hsp90 suppresses localised and metastatic prostate cancer growth in a genetic mouse model of disease. Br J Cancer 104:629–634PubMedCrossRefGoogle Scholar
  49. 49.
    Siegelin MD, Dohi T, Raskett CM, Orlowski GM, Powers CM, Gilbert CA, Ross AH, Plescia J, Altieri DC (2011) Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J Clin Invest 121:1349–1360PubMedCrossRefGoogle Scholar
  50. 50.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42PubMedCrossRefGoogle Scholar
  51. 51.
    Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967PubMedCrossRefGoogle Scholar
  52. 52.
    White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12:401–410PubMedCrossRefGoogle Scholar
  53. 53.
    Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760PubMedCrossRefGoogle Scholar
  54. 54.
    Narendra D, Tanaka A, Suen D-F, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803PubMedCrossRefGoogle Scholar
  55. 55.
    Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RLA, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrané J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci 107:378–383PubMedCrossRefGoogle Scholar
  56. 56.
    Hoyer-Hansen M, Jaattela M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14:1576–1582PubMedCrossRefGoogle Scholar
  57. 57.
    Pfaffenbach KT, Lee AS (2011) The critical role of GRP78 in physiologic and pathologic stress. Curr Opin Cell Biol 23:150–156PubMedCrossRefGoogle Scholar
  58. 58.
    Zhou H, Zhang Y, Fu Y, Chan L, Lee AS (2011) Novel mechanism of anti-apoptotic function of 78-kDa glucose-regulated protein (GRP78). J Biol Chem 286:25687–25696PubMedCrossRefGoogle Scholar
  59. 59.
    Hetz C, Glimcher LH (2009) Fine-tuning of the unfolded protein response: assembling the IRE1alpha interactome. Mol Cell 35:551–561PubMedCrossRefGoogle Scholar
  60. 60.
    Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529PubMedCrossRefGoogle Scholar
  61. 61.
    Biswas G, Adebanjo OA, Freedman BD, Anandatheerthavarada HK, Vijayasarathy C, Zaidi M, Kotlikoff M, Avadhani NG (1999) Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J 18:522–533PubMedCrossRefGoogle Scholar
  62. 62.
    Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419PubMedCrossRefGoogle Scholar
  63. 63.
    Aldridge JE, Horibe T, Hoogenraad NJ (2007) Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS ONE 2:e874PubMedCrossRefGoogle Scholar
  64. 64.
    Papa L, Germain D (2011) Estrogen receptor mediates a distinct mitochondrial unfolded protein response. J Cell Sci 124:1396–1402PubMedCrossRefGoogle Scholar
  65. 65.
    Radke S, Chander H, Schafer P, Meiss G, Kruger R, Schulz JB, Germain D (2008) Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J Biol Chem 283:12681–12685PubMedCrossRefGoogle Scholar
  66. 66.
    Haynes CM, Yang Y, Blais SP, Neubert TA, Ron D (2010) The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37:529–540PubMedCrossRefGoogle Scholar
  67. 67.
    Giorgi C, De Stefani D, Bononi A, Rizzuto R, Pinton P (2009) Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol 41:1817–1827PubMedCrossRefGoogle Scholar
  68. 68.
    Rath E, Berger E, Messlik A, Nunes T, Liu B, Kim SC, Hoogenraad N, Sans M, Sartor RB, Haller D (2012) Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut 61:1269–1278PubMedCrossRefGoogle Scholar
  69. 69.
    Hayashi T, Su T-P (2007) Sigma-1 receptor chaperones at the ER–mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131:596–610PubMedCrossRefGoogle Scholar
  70. 70.
    Chae YC, Caino MC, Lisanti S, Ghosh JC, Dohi T, Danial NN, Villanueva J, Ferrero S, Vaira V, Santambrogio L, Bosari S, Languino LR, Herlyn M, Altieri DC (2012) Control of tumor bioenergetics and survival stress signaling by mitochondrial Hsp90s. Cancer Cell 22:331–344PubMedCrossRefGoogle Scholar
  71. 71.
    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841PubMedCrossRefGoogle Scholar
  72. 72.
    Butler EK, Voigt A, Lutz AK, Toegel JP, Gerhardt E, Karsten P, Falkenburger B, Reinartz A, Winklhofer KF, Schulz JB (2012) The mitochondrial chaperone protein TRAP1 mitigates alpha-Synuclein toxicity. PLoS Genet 8:e1002488PubMedCrossRefGoogle Scholar
  73. 73.
    Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, Arnold SM (2002) The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 3:411–421PubMedCrossRefGoogle Scholar
  74. 74.
    Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15PubMedCrossRefGoogle Scholar
  75. 75.
    Harama D, Koyama K, Mukai M, Shimokawa N, Miyata M, Nakamura Y, Ohnuma Y, Ogawa H, Matsuoka S, Paton AW, Paton JC, Kitamura M, Nakao A (2009) A subcytotoxic dose of subtilase cytotoxin prevents lipopolysaccharide-induced inflammatory responses, depending on its capacity to induce the unfolded protein response. J Immunol 183:1368–1374PubMedCrossRefGoogle Scholar
  76. 76.
    Du S, Hiramatsu N, Hayakawa K, Kasai A, Okamura M, Huang T, Yao J, Takeda M, Araki I, Sawada N, Paton AW, Paton JC, Kitamura M (2009) Suppression of NF-kappaB by cyclosporin a and tacrolimus (FK506) via induction of the C/EBP family: implication for unfolded protein response. J Immunol 182:7201–7211PubMedCrossRefGoogle Scholar
  77. 77.
    Baud V, Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8:33–40PubMedCrossRefGoogle Scholar
  78. 78.
    Ashkenazi A (2008) Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 7:1001–1012PubMedCrossRefGoogle Scholar
  79. 79.
    Liu D, Hu J, Agorreta J, Cesario A, Zhang Y, Harris AL, Gatter K, Pezzella F (2010) Tumor necrosis factor receptor-associated protein 1(TRAP1) regulates genes involved in cell cycle and metastases. Cancer Lett 296:194–205PubMedCrossRefGoogle Scholar
  80. 80.
    Kang BH, Altieri DC (2009) Compartmentalized cancer drug discovery targeting mitochondrial Hsp90 chaperones. Oncogene 28:3681–3688PubMedCrossRefGoogle Scholar
  81. 81.
    Ghosh JC, Siegelin MD, Dohi T, Altieri DC (2010) Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res 70:8988–8993PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Prostate Cancer Discovery and Development ProgramThe Wistar Institute Cancer CenterPhiladelphiaUSA

Personalised recommendations