Cellular and Molecular Life Sciences

, Volume 70, Issue 13, pp 2259–2269 | Cite as

Robustness of signal transduction pathways

Review

Abstract

Signal transduction pathways transduce information about the outside of the cell to the nucleus, regulating gene expression and cell fate. To reliably inform the cell about its surroundings, information transfer has to be robust against typical perturbation that a cell experiences. Robustness of several mammalian signaling pathways has been studied recently by quantitative experimentation and using mathematical modeling. Here, we review these studies, and describe the emerging concepts of robustness and the underlying mechanisms.

Keywords

Robustness Feedback Signal transduction Adaptation Sensitivity Heterogeneity MAPK BMP 

Notes

Acknowledgments

We thank our groups for discussions on robustness. NB acknowledges support for this work by DFG (SFB 618, project A3, and SPP 1395) and BMBF through the FORSYS-Partner programme. SL is supported by the BMBF (Virtual Liver Network; e: bio junior group programme).

References

  1. 1.
    Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837PubMedCrossRefGoogle Scholar
  2. 2.
    Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J (2004) Robustness of cellular functions. Cell 118:675–685PubMedCrossRefGoogle Scholar
  3. 3.
    Loewer A, Lahav G (2011) We are all individuals: causes and consequences of non-genetic heterogeneity in mammalian cells. Curr Opin Genet Dev 21:753–758PubMedCrossRefGoogle Scholar
  4. 4.
    Batchelor E, Loewer A, Mock C, Lahav G (2011) Stimulus-dependent dynamics of p53 in single cells. Mol Syst Biol 7:488PubMedGoogle Scholar
  5. 5.
    Turner DA, Paszek P, Woodcock DJ, Nelson DE, Horton CA, Wang Y, Spiller DG, Rand DA, White MRH, Harper CV (2010) Physiological levels of TNFalpha stimulation induce stochastic dynamics of NF-kappaB responses in single living cells. J Cell Sci 123:2834–2843PubMedCrossRefGoogle Scholar
  6. 6.
    Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A (2011) Information transduction capacity of noisy biochemical signaling networks. Science 334:354–358PubMedCrossRefGoogle Scholar
  7. 7.
    Huang CY, Ferrell JE (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93:10078–10083PubMedCrossRefGoogle Scholar
  8. 8.
    Cohen-Saidon C, Cohen AA, Sigal A, Liron Y, Alon U (2009) Dynamics and variability of ERK2 response to EGF in individual living cells. Mol Cell 36:885–893PubMedCrossRefGoogle Scholar
  9. 9.
    Goentoro L, Kirschner MW (2009) Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Mol Cell 36:872–884PubMedCrossRefGoogle Scholar
  10. 10.
    Blüthgen N, Herzel H (2003) How robust are switches in intracellular signaling cascades? J Theor Biol 225:293–300PubMedCrossRefGoogle Scholar
  11. 11.
    Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459:428–432PubMedCrossRefGoogle Scholar
  12. 12.
    Chen J-Y, Lin J-R, Cimprich KA, Meyer T (2012) A two-dimensional ERK-AKT signaling code for an NGF-triggered cell-fate decision. Mol Cell 45:196–209PubMedCrossRefGoogle Scholar
  13. 13.
    Mariani L, Schulz EG, Lexberg MH, Helmstetter C, Radbruch A, Löhning M, Höfer T (2010) Short-term memory in gene induction reveals the regulatory principle behind stochastic IL-4 expression. Mol Syst Biol 6:359PubMedCrossRefGoogle Scholar
  14. 14.
    Paszek P, Ryan S, Ashall L, Sillitoe K, Harper CV, Spiller DG, Rand DA, White MRH (2010) Population robustness arising from cellular heterogeneity. Proc Natl Acad Sci USA 107:11644–11649PubMedCrossRefGoogle Scholar
  15. 15.
    Jaeger J, Martinez-Arias A (2009) Getting the measure of positional information. PLoS Biol 7:e81PubMedCrossRefGoogle Scholar
  16. 16.
    Plouhinec J-L, Zakin L, De Robertis EM (2011) Systems control of BMP morphogen flow in vertebrate embryos. Curr Opin Genet Dev 21:696–703PubMedCrossRefGoogle Scholar
  17. 17.
    Sprinzak D, Lakhanpal A, Lebon L, Santat LA, Fontes ME, Anderson GA, Garcia-Ojalvo J, Elowitz MB (2010) Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465:86–90PubMedCrossRefGoogle Scholar
  18. 18.
    Bruggeman FJ, Blüthgen N, Westerhoff HV (2009) Noise management by molecular networks. PLoS Comput Biol 5:e1000506PubMedCrossRefGoogle Scholar
  19. 19.
    Snijder B, Sacher R, Rämö P, Damm E-M, Liberali P, Pelkmans L (2009) Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461:520–523PubMedCrossRefGoogle Scholar
  20. 20.
    Sigal A, Milo R, Cohen A, Geva-Zatorsky N, Klein Y, Liron Y, Rosenfeld N, Danon T, Perzov N, Alon U (2006) Variability and memory of protein levels in human cells. Nature 444:643–646PubMedCrossRefGoogle Scholar
  21. 21.
    Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226PubMedCrossRefGoogle Scholar
  22. 22.
    Ben-Zvi D, Shilo B-Z, Barkai N (2011) Scaling of morphogen gradients. Curr Opin Genet Dev 21:704–710PubMedCrossRefGoogle Scholar
  23. 23.
    Niehrs C (2004) Regionally specific induction by the Spemann–Mangold organizer. Nat Rev Genet 5:425–434PubMedCrossRefGoogle Scholar
  24. 24.
    Spemann H, Mangold H (1924) Development genes and evolution. Dev Genes Evol 100:3–4Google Scholar
  25. 25.
    Legewie S, Blüthgen N, Herzel H (2005) Quantitative analysis of ultrasensitive responses. FEBS J 272:4071–4079PubMedCrossRefGoogle Scholar
  26. 26.
    Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem/FEBS 42:89–95CrossRefGoogle Scholar
  27. 27.
    Hornberg JJ, Binder B, Bruggeman FJ, Schoeberl B, Heinrich R, Westerhoff HV (2005) Control of MAPK signalling: from complexity to what really matters. Oncogene 24:5533–5542PubMedCrossRefGoogle Scholar
  28. 28.
    Westerhoff HV (2008) Signalling control strength. J Theor Biol 252:555–567PubMedCrossRefGoogle Scholar
  29. 29.
    Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295:1664–1669PubMedCrossRefGoogle Scholar
  30. 30.
    Höfer T, Heinrich R (1993) A second-order approach to metabolic control analysis. J Theor Biol 164:85–102PubMedCrossRefGoogle Scholar
  31. 31.
    Soltis AR, Saucerman JJ (2011) Robustness portraits of diverse biological networks conserved despite order-of-magnitude parameter uncertainty. Bioinformatics 27:2888–2894PubMedCrossRefGoogle Scholar
  32. 32.
    Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25:1923–1929PubMedCrossRefGoogle Scholar
  33. 33.
    Steuer R, Waldherr S, Sourjik V, Kollmann M (2011) Robust signal processing in living cells. PLoS Comput Biol 7:e1002218PubMedCrossRefGoogle Scholar
  34. 34.
    Shinar G, Feinberg M (2010) Structural sources of robustness in biochemical reaction networks. Science 327:1389–1391PubMedCrossRefGoogle Scholar
  35. 35.
    Aldridge BB, Haller G, Sorger PK, Lauffenburger DA (2006) Direct Lyapunov exponent analysis enables parametric study of transient signalling governing cell behaviour. Syst Biol (Stevenage) 153:425–432CrossRefGoogle Scholar
  36. 36.
    Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461PubMedCrossRefGoogle Scholar
  37. 37.
    Shoval O, Alon U (2010) SnapShot: network motifs. Cell 143:326 e1PubMedCrossRefGoogle Scholar
  38. 38.
    Bleris L, Xie Z, Glass D, Adadey A, Sontag E, Benenson Y (2011) Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol Syst Biol 7:519PubMedCrossRefGoogle Scholar
  39. 39.
    Hart Y, Madar D, Yuan J, Bren A, Mayo AE, Rabinowitz JD, Alon U (2011) Robust control of nitrogen assimilation by a bifunctional enzyme in E. coli. Mol Cell 41:117–127PubMedCrossRefGoogle Scholar
  40. 40.
    Kollmann M, Lovdok L, Bartholome K, Timmer J, Sourjik V (2005) Design principles of a bacterial signalling network. Nature 438:504–507PubMedCrossRefGoogle Scholar
  41. 41.
    Lovdok L, Bentele K, Vladimirov N, Müller A, Pop FS, Lebiedz D, Kollmann M, Sourjik V (2009) Role of translational coupling in robustness of bacterial chemotaxis pathway. PLoS Biol 7:e1000171PubMedCrossRefGoogle Scholar
  42. 42.
    Muzzey D, Gómez-Uribe CA, Mettetal JT, van Oudenaarden A (2009) A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138:160–171PubMedCrossRefGoogle Scholar
  43. 43.
    Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97:4649–4653PubMedCrossRefGoogle Scholar
  44. 44.
    Sturm OE, Orton R, Grindlay J, Birtwistle M, Vyshemirsky V, Gilbert D, Calder M, Pitt A, Kholodenko B, Kolch W (2010) The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Sci Signal 3(153):ra90PubMedCrossRefGoogle Scholar
  45. 45.
    Sauro HM, Kholodenko BN (2004) Quantitative analysis of signaling networks. Prog Biophys Mol Biol 86:5–43PubMedCrossRefGoogle Scholar
  46. 46.
    Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, Hoek JB (2002) Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci USA 99:12841–12846PubMedCrossRefGoogle Scholar
  47. 47.
    Kholodenko BN (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem/FEBS 267:1583–1588CrossRefGoogle Scholar
  48. 48.
    Thieffry D, Huerta AM, Pérez-Rueda E, Collado-Vides J (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20:433–440PubMedCrossRefGoogle Scholar
  49. 49.
    Kiełbasa SM, Vingron M (2008) Transcriptional autoregulatory loops are highly conserved in vertebrate evolution. PLoS one 3:e3210PubMedCrossRefGoogle Scholar
  50. 50.
    Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323:785–793PubMedCrossRefGoogle Scholar
  51. 51.
    Dublanche Y, Michalodimitrakis K, Kümmerer N, Foglierini M, Serrano L (2006) Noise in transcription negative feedback loops: simulation and experimental analysis. Mol Syst Biol 2:41PubMedCrossRefGoogle Scholar
  52. 52.
    Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405:590–593PubMedCrossRefGoogle Scholar
  53. 53.
    Denby CM, Im JH, Yu RC, Pesce CG, Brem RB (2012) Negative feedback confers mutational robustness in yeast transcription factor regulation. Proc Natl Acad Sci USA 109:3874–3878PubMedCrossRefGoogle Scholar
  54. 54.
    Legewie S, Herzel H, Westerhoff HV, Blüthgen N (2008) Recurrent design patterns in the feedback regulation of the mammalian signalling network. Mol Syst Biol 4:190PubMedCrossRefGoogle Scholar
  55. 55.
    Blüthgen N, Legewie S, Kielbasa SM, Schramme A, Tchernitsa O, Keil J, Solf A, Vingron M, Schäfer R, Herzel H, Sers C (2009) A systems biological approach suggests that transcriptional feedback regulation by dual-specificity phosphatase 6 shapes extracellular signal-related kinase activity in RAS-transformed fibroblasts. FEBS J 276:1024–1035PubMedCrossRefGoogle Scholar
  56. 56.
    Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F, Tarcic G, Siwak D, Lahad J, Jacob-Hirsch J, Amariglio N, Vaisman N, Segal E, Rechavi G, Alon U, Mills GB, Domany E, Yarden Y (2007) A module of negative feedback regulators defines growth factor signaling. Nat Genet 39:503–512PubMedCrossRefGoogle Scholar
  57. 57.
    Blüthgen N (2010) Transcriptional feedbacks in mammalian signal transduction pathways facilitate rapid and reliable protein induction. Mol BioSyst 6:1277PubMedCrossRefGoogle Scholar
  58. 58.
    Fritsche-Guenther R, Witzel F, Sieber A, Herr R, Schmidt N, Braun S, Brummer T, Sers C, Blüthgen N (2011) Strong negative feedback from Erk to Raf confers robustness to MAPK signalling. Mol Syst Biol 7:489PubMedCrossRefGoogle Scholar
  59. 59.
    Paulsen M, Legewie S, Eils R, Karaulanov E, Niehrs C (2011) Negative feedback in the bone morphogenetic protein 4 (BMP4) synexpression group governs its dynamic signaling range and canalizes development. Proc Natl Acad Sci USA 108:10202–10207PubMedCrossRefGoogle Scholar
  60. 60.
    Lefloch R, Pouysségur J, Lenormand P (2009) Total ERK1/2 activity regulates cell proliferation. Cell Cycle 8:705–711PubMedCrossRefGoogle Scholar
  61. 61.
    Blüthgen N, Legewie S (2008) Systems analysis of MAPK signal transduction. Essays Biochem 45:95–107PubMedCrossRefGoogle Scholar
  62. 62.
    Santos SDM, Verveer PJ, Bastiaens PIH (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9:324–330PubMedCrossRefGoogle Scholar
  63. 63.
    Legewie S, Sers C, Herzel H (2009) Kinetic mechanisms for overexpression insensitivity and oncogene cooperation. FEBS Lett 583:93–96PubMedCrossRefGoogle Scholar
  64. 64.
    Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12:104–117PubMedCrossRefGoogle Scholar
  65. 65.
    Cirit M, Wang C–C, Haugh JM (2010) Systematic quantification of negative feedback mechanisms in the extracellular signal-regulated kinase (ERK) signaling network. J Biol Chem 285:36736–36744PubMedCrossRefGoogle Scholar
  66. 66.
    Bachmann J, Raue A, Schilling M, Böhm ME, Kreutz C, Kaschek D, Busch H, Gretz N, Lehmann WD, Timmer J, Klingmüller U (2011) Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range. Mol Syst Biol 7:516PubMedCrossRefGoogle Scholar
  67. 67.
    Friday BB, Yu C, Dy GK, Smith PD, Wang L, Thibodeau SN, Adjei AA (2008) BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Res 68:6145–6153PubMedCrossRefGoogle Scholar
  68. 68.
    Patel SP, Kim KB (2012) Selumetinib (AZD6244; ARRY-142886) in the treatment of metastatic melanoma. Expert Opin Investig Drugs 21:531–539PubMedCrossRefGoogle Scholar
  69. 69.
    Teleman AA, Cohen SM (2000) Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103:971–980PubMedCrossRefGoogle Scholar
  70. 70.
    Dosch R, Gawantka V, Delius H, Blumenstock C, Niehrs C (1997) Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124:2325–2334PubMedGoogle Scholar
  71. 71.
    Eldar A, Dorfman R, Weiss D, Ashe H, Shilo B-Z, Barkai N (2002) Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419:304–308PubMedCrossRefGoogle Scholar
  72. 72.
    Ben-Zvi D, Shilo B-Z, Fainsod A, Barkai N (2008) Scaling of the BMP activation gradient in Xenopus embryos. Nature 453:1205–1211PubMedCrossRefGoogle Scholar
  73. 73.
    Reversade B, De Robertis EM (2005) Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123:1147–1160PubMedCrossRefGoogle Scholar
  74. 74.
    Nevozhay D, Adams RM, Murphy KF, Josic K, Balázsi G (2009) Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. Proc Natl Acad Sci USA 106:5123–5128PubMedCrossRefGoogle Scholar
  75. 75.
    Colman-Lerner A, Gordon A, Serra E, Chin T, Resnekov O, Endy D, Pesce CG, Brent R (2005) Regulated cell-to-cell variation in a cell-fate decision system. Nature 437:699–706PubMedCrossRefGoogle Scholar
  76. 76.
    Niehrs C, Pollet N (1999) Synexpression groups in eukaryotes. Nature 402:483–487PubMedCrossRefGoogle Scholar
  77. 77.
    Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G (2008) Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 321:1081–1084PubMedCrossRefGoogle Scholar
  78. 78.
    Moriya H, Shimizu-Yoshida Y, Kitano H (2006) In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. PLoS Genet 2:e111PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Institute of PathologyCharité Universitätsmedizin BerlinBerlinGermany
  2. 2.Institute for Theoretical BiologyHumboldt University BerlinBerlinGermany
  3. 3.Institute of Molecular BiologyMainzGermany

Personalised recommendations