Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 4, pp 729–742 | Cite as

Extensive characterization of sphere models established from colorectal cancer cell lines

  • Ada ColluraEmail author
  • Laetitia Marisa
  • Diletta Trojan
  • Olivier Buhard
  • Anaïs Lagrange
  • Arnaud Saget
  • Marianne Bombled
  • Patricia Méchighel
  • Mira Ayadi
  • Martine Muleris
  • Aurélien de Reynies
  • Magali Svrcek
  • Jean-François Fléjou
  • Jean-Claude Florent
  • Florence Mahuteau-Betzer
  • Anne-Marie Faussat
  • Alex DuvalEmail author
Research article

Abstract

Links between cancer and stem cells have been proposed for many years. As the cancer stem cell (CSC) theory became widely studied, new methods were developed to culture and expand cancer cells with conserved determinants of “stemness”. These cells show increased ability to grow in suspension as spheres in serum-free medium supplemented with growth factors and chemicals. The physiological relevance of this phenomenon in established cancer cell lines remains unclear. Cell lines have traditionally been used to explore tumor biology and serve as preclinical models for the screening of potential therapeutic agents. Here, we grew cell-forming spheres (CFS) from 25 established colorectal cancer cell lines. The molecular and cellular characteristics of CFS were compared to the bulk of tumor cells. CFS could be isolated from 72 % of the cell lines. Both CFS and their parental CRC cell lines were highly tumorigenic. Compared to their parental cells, they showed similar expression of putative CSC markers. The ability of CRC cells to grow as CFS was greatly enhanced by prior treatment with 5-fluorouracil. At the molecular level, CFS and parental CRC cells showed identical gene mutations and very similar genomic profiles, although microarray analysis revealed changes in CFS gene expression that were independent of DNA copy-number. We identified a CFS gene expression signature common to CFS from all CRC cell lines, which was predictive of disease relapse in CRC patients. In conclusion, CFS models derived from CRC cell lines possess interesting phenotypic features that may have clinical relevance for drug resistance and disease relapse.

Keywords

Colorectal cancer Colon cancer cell lines Spheres Microarray 

Abbreviations

5-FU

5-Fluorouracil

CFS

Cell-forming-spheres

CIN

Chromosomal instability

CRC

Colorectal cancer

CSC

Cancer stem cells

DFS

Disease-free survival

MMR

Mismatch-repair

MSI

Microsatellite instability

MSS

Microsatellite stability

Notes

Acknowledgments

This work was supported by the ‘Carte d’Identité des Tumeurs’ (CIT) program (http://cit.ligue-cancer.net) from the Ligue Nationale Contre le Cancer and by grants from the ‘Institut National du Cancer’ (INCa) (to A.D.). The A.D. group has the label “La Ligue Contre le Cancer”. A.C. is a recipient of an INCa fellowship (Institut National du Cancer). A.L. is a recipient of a MESR fellowship (Ministère de l’Enseignement Supérieur et de le Recherche.

Conflict of interest

No potential conflicts of interests were disclosed.

Supplementary material

18_2012_1160_MOESM1_ESM.xls (95 kb)
Supplementary material 1 (XLS 95 kb)
18_2012_1160_MOESM2_ESM.xls (38 kb)
Supplementary material 2 (XLS 37 kb)
18_2012_1160_MOESM3_ESM.xls (78 kb)
Supplementary material 3 (XLS 77 kb)
18_2012_1160_MOESM4_ESM.ppt (238 kb)
Supplementary material 4 (PPT 237 kb)
18_2012_1160_MOESM5_ESM.ppt (4.1 mb)
Supplementary material 5 (PPT 4178 kb)
18_2012_1160_MOESM6_ESM.ppt (332 kb)
Supplementary material 6 (PPT 331 kb)

References

  1. 1.
    Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402. doi: 10.1016/j.stem.2007.08.001 PubMedCrossRefGoogle Scholar
  2. 2.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110. doi: 10.1038/nature05372 PubMedCrossRefGoogle Scholar
  3. 3.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115. doi: 10.1038/nature05384 PubMedCrossRefGoogle Scholar
  4. 4.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi: 10.1038/3510216735102167 PubMedCrossRefGoogle Scholar
  5. 5.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284. doi: 10.1038/nrc1590 PubMedCrossRefGoogle Scholar
  6. 6.
    Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, Metzeler KH, Poeppl A, Ling V, Beyene J, Canty AJ, Danska JS, Bohlander SK, Buske C, Minden MD, Golub TR, Jurisica I, Ebert BL, Dick JE (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17(9):1086–1093. doi: 10.1038/nm.2415 PubMedCrossRefGoogle Scholar
  7. 7.
    Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14(1):43–47. doi: 10.1016/j.gde.2003.11.007 PubMedCrossRefGoogle Scholar
  8. 8.
    Medema JP, Vermeulen L (2011) Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474(7351):318–326. doi: 10.1038/nature10212 PubMedCrossRefGoogle Scholar
  9. 9.
    Liu Y, Bodmer WF (2006) Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci USA 103(4):976–981. doi: 10.1073/pnas.0510146103 PubMedCrossRefGoogle Scholar
  10. 10.
    Volchenboum SL, Li C, Li S, Attiyeh EF, Reynolds CP, Maris JM, Look AT, George RE (2009) Comparison of primary neuroblastoma tumors and derivative early-passage cell lines using genome-wide single nucleotide polymorphism array analysis. Cancer Res 69(10):4143–4149. doi: 10.1158/0008-5472.CAN-08-3112 PubMedCrossRefGoogle Scholar
  11. 11.
    Douglas EJ, Fiegler H, Rowan A, Halford S, Bicknell DC, Bodmer W, Tomlinson IP, Carter NP (2004) Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res 64(14):4817–4825. doi: 10.1158/0008-5472 PubMedCrossRefGoogle Scholar
  12. 12.
    Willson JK, Bittner GN, Oberley TD, Meisner LF, Weese JL (1987) Cell culture of human colon adenomas and carcinomas. Cancer Res 47(10):2704–2713PubMedGoogle Scholar
  13. 13.
    Kondo T (2007) Stem cell-like cancer cells in cancer cell lines. Cancer Biomark 3(4–5):245–250PubMedGoogle Scholar
  14. 14.
    Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF (2010) Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA 107(8):3722–3727. doi: 10.1073/pnas.0915135107 PubMedCrossRefGoogle Scholar
  15. 15.
    Dittfeld C, Dietrich A, Peickert S, Hering S, Baumann M, Grade M, Ried T, Kunz-Schughart LA (2009) CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell lines HCT-116. Radiother Oncol 92(3):353–361. doi: 10.1016/j.radonc.2009.06.034 PubMedCrossRefGoogle Scholar
  16. 16.
    Kai K, Nagano O, Sugihara E, Arima Y, Sampetrean O, Ishimoto T, Nakanishi M, Ueno NT, Iwase H, Saya H (2009) Maintenance of HCT116 colon cancer cell line conforms to a stochastic model but not a cancer stem cell model. Cancer Sci 100(12):2275–2282. doi: 10.1111/j.1349-7006.2009.01318.x PubMedCrossRefGoogle Scholar
  17. 17.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710PubMedCrossRefGoogle Scholar
  18. 18.
    Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699. doi: 10.1146/annurev.cellbio.22.010305.104154 PubMedCrossRefGoogle Scholar
  19. 19.
    Fan X, Ouyang N, Teng H, Yao H (2011) Isolation and characterization of spheroid cells from the HT29 colon cancer cell line. Int J Colorectal Dis 26(10):1279–1285. doi: 10.1007/s00384-011-1248-y PubMedCrossRefGoogle Scholar
  20. 20.
    Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G, Medema JP (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 105(36):13427–13432. doi: 10.1073/pnas.0805706105 PubMedCrossRefGoogle Scholar
  21. 21.
    Jung P, Sato T, Merlos-Suarez A, Barriga FM, Iglesias M, Rossell D, Auer H, Gallardo M, Blasco MA, Sancho E, Clevers H, Batlle E (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med 17(10):1225–1227. doi: 10.1038/nm.2470 PubMedCrossRefGoogle Scholar
  22. 22.
    Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386(6625):623–627. doi: 10.1038/386623a0 PubMedCrossRefGoogle Scholar
  23. 23.
    Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62(9):2447–2454PubMedGoogle Scholar
  24. 24.
    Pino MS, Chung DC (2010) The chromosomal instability pathway in colon cancer. Gastroenterology 138(6):2059–2072. doi: 10.1053/j.gastro.2009.12.065 PubMedCrossRefGoogle Scholar
  25. 25.
    Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Jiang A, Lu P, Johnson JC, Schmidt C, Bailey CE, Eschrich S, Kis C, Levy S, Washington MK, Heslin MJ, Coffey RJ, Yeatman TJ, Shyr Y, Beauchamp RD (2010) Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology 138(3):958–968. doi: 10.1053/j.gastro.2009.11.005 PubMedCrossRefGoogle Scholar
  26. 26.
    Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, Kerr D, Aaltonen LA, Arango D, Kruhoffer M, Orntoft TF, Andersen CL, Gruidl M, Kamath VP, Eschrich S, Yeatman TJ, Sieber OM (2009) Metastasis-associated gene expression changes predict poor outcomes in patients with Dukes stage B and C colorectal cancer. Clin Cancer Res 15(24):7642–7651. doi: 10.1158/1078-0432.CCR-09-1431 PubMedCrossRefGoogle Scholar
  27. 27.
    Spinola M, Leoni V, Pignatiello C, Conti B, Ravagnani F, Pastorino U, Dragani TA (2005) Functional FGFR4 Gly388Arg polymorphism predicts prognosis in lung adenocarcinoma patients. J Clin Oncol 23(29):7307–7311. doi: 10.1200/JCO.2005.17.350 PubMedCrossRefGoogle Scholar
  28. 28.
    Kang HC, Kim IJ, Park JH, Shin Y, Ku JL, Jung MS, Yoo BC, Kim HK, Park JG (2004) Identification of genes with differential expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays. Clin Cancer Res 10(1 Pt 1):272–284PubMedCrossRefGoogle Scholar
  29. 29.
    Hayakawa I, Shioya R, Agatsuma T, Furukawa H, Sugano Y (2004) Thienopyridine and benzofuran derivatives as potent anti-tumor agents possessing different structure-activity relationships. Bioorg Med Chem Lett 14(13):3411–3414. doi: 10.1016/j.bmcl.2004.04.079 PubMedCrossRefGoogle Scholar
  30. 30.
    Baraldi PG, Romagnoli R, Giovanna Pavani M, del Carmen Nunez M, Bingham JP, Hartley JA (2002) Benzoyl and cinnamoyl nitrogen mustard derivatives of benzoheterocyclic analogues of the tallimustine: synthesis and antitumour activity. Bioorg Med Chem 10(5):1611–1618PubMedCrossRefGoogle Scholar
  31. 31.
    Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627. doi: 10.1146/annurev.med.53 PubMedCrossRefGoogle Scholar
  32. 32.
    Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034. doi: 10.1038/nm0901-1028 PubMedCrossRefGoogle Scholar
  33. 33.
    Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, Nomiyama K, Hosokawa K, Sakurada K, Nakagata N, Ikeda Y, Mak TW, Suda T (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431(7011):997–1002. doi: 10.1038/nature02989 PubMedCrossRefGoogle Scholar
  34. 34.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. doi: 10.1038/nature05236 PubMedCrossRefGoogle Scholar
  35. 35.
    Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783. doi: 10.1038/nature07733 PubMedCrossRefGoogle Scholar
  36. 36.
    Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D, Sevillano M, Hernando-Momblona X, da Silva-Diz V, Munoz P, Clevers H, Sancho E, Mangues R, Batlle E (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8(5):511–524. doi: 10.1016/j.stem.2011.02.020 PubMedCrossRefGoogle Scholar
  37. 37.
    Sinicrope FA, Foster NR, Thibodeau SN, Marsoni S, Monges G, Labianca R, Kim GP, Yothers G, Allegra C, Moore MJ, Gallinger S, Sargent DJ (2011) DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst 103(11):863–875. doi: 10.1093/jnci/djr153 PubMedCrossRefGoogle Scholar
  38. 38.
    Poupon MF, Arvelo F, Goguel AF, Bourgeois Y, Jacrot M, Hanania N, Arriagada R, Le Chevalier T (1993) Response of small-cell lung cancer xenografts to chemotherapy: multidrug resistance and direct clinical correlates. J Natl Cancer Inst 85(24):2023–2029PubMedCrossRefGoogle Scholar
  39. 39.
    Buhard O, Suraweera N, Lectard A, Duval A, Hamelin R (2004) Quasimonomorphic mononucleotide repeats for high-level microsatellite instability analysis. Dis Markers 20(4–5):251–257PubMedGoogle Scholar
  40. 40.
    Gayet J, Zhou XP, Duval A, Rolland S, Hoang JM, Cottu P, Hamelin R (2001) Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines. Oncogene 20(36):5025–5032. doi: 10.1038/sj.onc.1204611 PubMedCrossRefGoogle Scholar
  41. 41.
    Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31(4):e15PubMedCrossRefGoogle Scholar
  42. 42.
    Letouze E, Sow A, Petel F, Rosati R, Figueiredo BC, Burnichon N, Gimenez-Roqueplo AP, Lalli E, de Reynies A (2012) Identity by descent mapping of founder mutations in cancer using high-resolution tumor SNP data. PLoS ONE 7(5):e35897. doi: 10.1371/journal.pone.0035897 PubMedCrossRefGoogle Scholar
  43. 43.
    Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3. doi: 10.2202/1544-6115.1027

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Ada Collura
    • 1
    • 2
    • 7
    Email author
  • Laetitia Marisa
    • 3
  • Diletta Trojan
    • 1
    • 2
  • Olivier Buhard
    • 1
    • 2
  • Anaïs Lagrange
    • 1
    • 2
  • Arnaud Saget
    • 1
    • 2
  • Marianne Bombled
    • 4
  • Patricia Méchighel
    • 1
    • 2
  • Mira Ayadi
    • 3
  • Martine Muleris
    • 1
    • 2
  • Aurélien de Reynies
    • 3
  • Magali Svrcek
    • 1
    • 2
    • 5
    • 6
  • Jean-François Fléjou
    • 1
    • 2
    • 5
    • 6
  • Jean-Claude Florent
    • 4
  • Florence Mahuteau-Betzer
    • 4
  • Anne-Marie Faussat
    • 2
  • Alex Duval
    • 1
    • 2
    • 7
    Email author
  1. 1.Inserm, UMRS_938, Centre de Recherche Saint-Antoine, Equipe “Instabilité des Microsatellites et Cancers”ParisFrance
  2. 2.Université Pierre et Marie Curie-Paris6ParisFrance
  3. 3.Programme “Cartes d’Identité des Tumeurs”Ligue Nationale Contre le CancerParisFrance
  4. 4.UMR 176 CNRS/Institut CurieUniversite Paris-SudOrsayFrance
  5. 5.AP-HP, Hôpital Saint-AntoineService d’Anatomie et Cytologie PathologiquesParisFrance
  6. 6.AP-HP, Hôpital Saint-Antoine, Tumorothèque CancerEstParisFrance
  7. 7.INSERM UMRS 938 Team “Microsatellite Instability and Cancer”Hôpital Saint-AntoineParis cedex 12France

Personalised recommendations