Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 12, pp 2083–2098 | Cite as

Effects of MACPF/CDC proteins on lipid membranes

  • Robert J. C. GilbertEmail author
  • Miha Mikelj
  • Mauro Dalla Serra
  • Christopher J. Froelich
  • Gregor AnderluhEmail author
Review

Abstract

Recent work on the MACPF/CDC superfamily of pore-forming proteins has focused on the structural analysis of monomers and pore-forming oligomeric complexes. We set the family of proteins in context and highlight aspects of their function which the direct and exclusive equation of oligomers with pores fails to explain. Starting with a description of the distribution of MACPF/CDC proteins across the domains of life, we proceed to show how their evolutionary relationships can be understood on the basis of their structural homology and re-evaluate models for pore formation by perforin, in particular. We furthermore highlight data showing the role of incomplete oligomeric rings (arcs) in pore formation and how this can explain small pores generated by oligomers of proteins belonging to the family. We set this in the context of cell biological and biophysical data on the proteins’ function and discuss how this helps in the development of an understanding of how they act in processes such as apicomplexan parasites gliding through cells and exiting from cells.

Keywords

MACPF domain Cholesterol-dependent cytolysins Pore Membrane interactions Membrane damage 

Abbreviations

ALY

Anthrolysin

Bth

Bacillus thetaiotaomicron MACPF protein

CDCs

Cholesterol-dependent cytolysins

CTL

Cytotoxic T lymphocytes

EM

Electron microscopy

GrB

Granzyme B

ILY

Intermedilysin

LLO

Listeriolysin

MACPF

Membrane attack complex/perforin

MAC

Membrane attack complex

PFN

Perforin

PFO

Perfringolysin

PLY

Pneumolysin

PLPs

Perforin-like proteins

Plu

Photorhabdus luminescens MACPF protein

PPLPs

Plasmodium perforin-like proteins

PV

Parasitophorous vacuole

SLO

Streptolysin

TMH

Trans-membrane hairpin (present in the soluble forms of CDC/MACPFs as α-helices)

Notes

Acknowledgments

We would like to thank Tilen Praper for the work performed with planar lipid bilayers and Robert Liddington and Alexander Aleshin for discussion and for providing the model of the complement membrane attack complex. R.J.C.G. is a Royal Society University Research Fellow and the Oxford Division of Structural Biology is part of the Wellcome Trust Centre for Human Genetics, Wellcome Trust Core Award Grant Number 090532/Z/09/Z.M.D.S. would like to thank the Nanosmart project from the Provincia Autonoma di Trento for support. G. A. would like to thank the Slovenian Research Agency for support.

Supplementary material

18_2012_1153_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. 1.
    Tschopp J, Masson D, Stanley KK (1986) Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. Nature 322:831–834PubMedCrossRefGoogle Scholar
  2. 2.
    Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH, Ung K, Browne KA, Baran K, Bashtannyk-Puhalovich TA, Faux NG, Wong W, Porter CJ, Pike RN, Ellisdon AM, Pearce MC, Bottomley SP, Emsley J, Smith AI, Rossjohn J, Hartland EL, Voskoboinik I, Trapani JA, Bird PI, Dunstone MA, Whisstock JC (2007) A common fold mediates vertebrate defense and bacterial attack. Science 317:1548–1551PubMedCrossRefGoogle Scholar
  3. 3.
    Hadders MA, Beringer DX, Gros P (2007) Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317:1552–1554PubMedCrossRefGoogle Scholar
  4. 4.
    Slade DJ, Lovelace LL, Chruszcz M, Minor W, Lebioda L, Sodetz JM (2008) Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit. J Mol Biol 379:331–342PubMedCrossRefGoogle Scholar
  5. 5.
    Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RHP, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10:1765–1774PubMedCrossRefGoogle Scholar
  6. 6.
    Gilbert RJ (2005) Inactivation and activity of cholesterol-dependent cytolysins: what structural studies tell us. Structure 13:1097–1106PubMedCrossRefGoogle Scholar
  7. 7.
    Hotze EM, Tweten RK (2012) Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim Biophys Acta 1818:1028–1038PubMedCrossRefGoogle Scholar
  8. 8.
    Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK (2010) Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci USA 107:4341–4346PubMedCrossRefGoogle Scholar
  9. 9.
    Giddings KS, Zhao J, Sims PJ, Tweten RK (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11:1173–1178PubMedCrossRefGoogle Scholar
  10. 10.
    Gilbert RJ, Jimenez JL, Chen S, Tickle IJ, Rossjohn J, Parker M, Andrew PW, Saibil HR (1999) Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Cell 97:647–655PubMedCrossRefGoogle Scholar
  11. 11.
    Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121:247–256PubMedCrossRefGoogle Scholar
  12. 12.
    Farrand S, Hotze E, Friese P, Hollingshead SK, Smith DF, Cummings RD, Dale GL, Tweten RK (2008) Characterization of a streptococcal cholesterol-dependent cytolysin with a Lewis y and b specific lectin domain. Biochemistry 47:7097–7107PubMedCrossRefGoogle Scholar
  13. 13.
    Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, DiScipio RG (2012) Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of membrane attack complex (MAC). J Biol Chem 287:10210–10222PubMedCrossRefGoogle Scholar
  14. 14.
    Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nuc Acids Res 40:D290–D301CrossRefGoogle Scholar
  15. 15.
    van Beurden SJ, Bossers A, Voorbergen-Laarman MH, Haenen OL, Peters S, Abma-Henkens MH, Peeters BP, Rottier PJ, Engelsma MY (2010) Complete genome sequence and taxonomic position of anguillid herpesvirus 1. J Gen Virol 91:880–887PubMedCrossRefGoogle Scholar
  16. 16.
    Huang S, Yuan S, Guo L, Yu Y, Li J, Wu T, Liu T, Yang M, Wu K, Liu H, Ge J, Huang H, Dong M, Yu C, Chen S, Xu A (2008) Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Res 18:1112–1126PubMedCrossRefGoogle Scholar
  17. 17.
    Ponting CP (1999) Chlamydial homologues of the MACPF (MAC/perforin) domain. Curr Biol 9:R911–R913PubMedCrossRefGoogle Scholar
  18. 18.
    Xu Q, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Cai X, Carlton D, Chen C, Chiu HJ, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Lam WW, Marciano D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Puckett C, Reyes R, Tien HJ, Trame CB, van den Bedem H, Weekes D, Wooten T, Yeh A, Zhou J, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA (2010) Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron. Acta Crystall Sect F Struct Biol Cryst Commun 66:1297–1305CrossRefGoogle Scholar
  19. 19.
    Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6:940–952PubMedCrossRefGoogle Scholar
  20. 20.
    Podack ER, Deyev V, Shiratsuchi M (2007) Pore formers of the immune system. Adv Exp Med Biol 598:325–341PubMedCrossRefGoogle Scholar
  21. 21.
    Oshiro N, Kobayashi C, Iwanaga S, Nozaki M, Namikoshi M, Spring J, Nagai H (2004) A new membrane-attack complex/perforin (MACPF) domain lethal toxin from the nematocyst venom of the Okinawan sea anemone Actineria villosa. Toxicon 43:225–228PubMedCrossRefGoogle Scholar
  22. 22.
    Wiens M, Korzhev M, Krasko A, Thakur NL, Perovic-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Muller IM, Muller WE (2005) Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. Induction of a perforin-like molecule. J Biol Chem 280:27949–27959PubMedCrossRefGoogle Scholar
  23. 23.
    Stevens LM, Frohnhofer HG, Klingler M, Nusslein-Volhard C (1990) Localized requirement for torso-like expression in follicle cells for development of terminal anlagen of the Drosophila embryo. Nature 346:660–663PubMedCrossRefGoogle Scholar
  24. 24.
    Adams NC, Tomoda T, Cooper M, Dietz G, Hatten ME (2002) Mice that lack astrotactin have slowed neuronal migration. Development 129:965–972PubMedGoogle Scholar
  25. 25.
    Zheng C, Heintz N, Hatten ME (1996) CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science 272:417–419PubMedCrossRefGoogle Scholar
  26. 26.
    Kafsack BF, Carruthers VB (2010) Apicomplexan perforin-like proteins. Commun Integr Biol 3:18–23PubMedCrossRefGoogle Scholar
  27. 27.
    Morita-Yamamuro C, Tsutsui T, Sato M, Yoshioka H, Tamaoki M, Ogawa D, Matsuura H, Yoshihara T, Ikeda A, Uyeda I, Yamaguchi J (2005) The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain. Plant Cell Physiol 46:902–912PubMedCrossRefGoogle Scholar
  28. 28.
    Lukoyanova N, Saibil HR (2008) Friend or foe: the same fold for attack and defense. Trends Immunol 29:51–53PubMedCrossRefGoogle Scholar
  29. 29.
    Anderluh G, Lakey JH (2008) Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 33:482–490PubMedCrossRefGoogle Scholar
  30. 30.
    Baran K, Dunstone M, Chia J, Ciccone A, Browne KA, Clarke CJ, Lukoyanova N, Saibil H, Whisstock JC, Voskoboinik I, Trapani JA (2009) The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 30:684–695PubMedCrossRefGoogle Scholar
  31. 31.
    Praper T, Sonnen A, Viero G, Kladnik A, Froelich CJ, Anderluh G, Dalla Serra M, Gilbert RJ (2011) Human perforin employs different avenues to damage membranes. J Biol Chem 286:2946–2955PubMedCrossRefGoogle Scholar
  32. 32.
    Voskoboinik I, Thia MC, Fletcher J, Ciccone A, Browne K, Smyth MJ, Trapani JA (2005) Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: a critical role for aspartate residues 429, 435, 483, and 485 but not 491. J Biol Chem 280:8426–8434PubMedCrossRefGoogle Scholar
  33. 33.
    Aleshin AE, Discipio RG, Stec B, Liddington RC (2012) Crystal structure of C5b-6 suggests a structural basis for priming the assembly of the membrane attack complex (MAC). J Biol Chem 287:19642–19652PubMedCrossRefGoogle Scholar
  34. 34.
    Hadders MA, Bubeck D, Roversi P, Hakobyan S, Forneris F, Morgan BP, Pangburn MK, Llorca O, Lea SM, Gros P (2012) Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. Cell Rep 1:1–8CrossRefGoogle Scholar
  35. 35.
    Lovelace LL, Cooper CL, Sodetz JM, Lebioda L (2011) Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement. J Biol Chem 286:17585–17592PubMedCrossRefGoogle Scholar
  36. 36.
    Tomita T, Noguchi K, Mimuro H, Ukaji F, Ito K, Sugawara-Tomita N, Hashimoto Y (2004) Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex. J Biol Chem 279:26975–26982PubMedCrossRefGoogle Scholar
  37. 37.
    Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D’Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468:447–451PubMedCrossRefGoogle Scholar
  38. 38.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comp Chem 25:1605–1612CrossRefGoogle Scholar
  39. 39.
    Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396PubMedCrossRefGoogle Scholar
  40. 40.
    Riffel N, Harlos K, Iourin O, Rao Z, Kingsman A, Stuart D, Fry E (2002) Atomic resolution structure of Moloney murine leukemia virus matrix protein and its relationship to other retroviral matrix proteins. Structure 10:1627–1636PubMedCrossRefGoogle Scholar
  41. 41.
    Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663PubMedCrossRefGoogle Scholar
  42. 42.
    Graham SC, Bahar MW, Cooray S, Chen RA, Whalen DM, Abrescia NG, Alderton D, Owens RJ, Stuart DI, Smith GL, Grimes JM (2008) Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 4:e1000128PubMedCrossRefGoogle Scholar
  43. 43.
    Bahar MW, Graham SC, Stuart DI, Grimes JM (2011) Insights into the evolution of a complex virus from the crystal structure of vaccinia virus D13. Structure 19:1011–1020PubMedCrossRefGoogle Scholar
  44. 44.
    Ji X, Sutton G, Evans G, Axford D, Owen R, Stuart DI (2010) How baculovirus polyhedra fit square pegs into round holes to robustly package viruses. EMBO J 29:505–514PubMedCrossRefGoogle Scholar
  45. 45.
    Dunstone MA, Tweten RK (2012) Packing a punch: the mechanism of pore formation by cholesterol-dependent cytolysins and membrane attack complex/perforin-like proteins. Curr Opin Struct Biol 22:342–349PubMedCrossRefGoogle Scholar
  46. 46.
    Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta 1724:270–280PubMedCrossRefGoogle Scholar
  47. 47.
    Almers W (2001) Fusion needs more than SNAREs. Nature 409:567–568PubMedCrossRefGoogle Scholar
  48. 48.
    Kielian M, Rey FA (2006) Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4:67–76PubMedCrossRefGoogle Scholar
  49. 49.
    Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866PubMedCrossRefGoogle Scholar
  50. 50.
    Basanez G, Sharpe JC, Galanis J, Brandt TB, Hardwick JM, Zimmerberg J (2002) Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 277:49360–49365PubMedCrossRefGoogle Scholar
  51. 51.
    Qian S, Wang W, Yang L, Huang HW (2008) Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores. Proc Natl Acad Sci USA 105:17379–17383PubMedCrossRefGoogle Scholar
  52. 52.
    Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K, Nureki O (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455:988–991PubMedCrossRefGoogle Scholar
  53. 53.
    Morgan PJ, Hyman SC, Byron O, Andrew PW, Mitchell TJ, Rowe AJ (1994) Modeling the bacterial protein toxin, pneumolysin, in its monomeric and oligomeric form. J Biol Chem 269:25315–25320PubMedGoogle Scholar
  54. 54.
    Olofsson A, Hebert H, Thelestam M (1993) The projection structure of Perfringolysin O (Clostridium perfringens [theta]-toxin). FEBS Lett 319:125–127PubMedCrossRefGoogle Scholar
  55. 55.
    Mueller M, Grauschopf U, Maier T, Glockshuber R, Ban N (2009) The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature 459:726–730PubMedCrossRefGoogle Scholar
  56. 56.
    Fang Y, Cheley S, Bayley H, Yang J (1997) The heptameric prepore of a staphylococcal alpha-hemolysin mutant in lipid bilayers imaged by atomic force microscopy. Biochemistry 36:9518–9522PubMedCrossRefGoogle Scholar
  57. 57.
    Smart OS, Coates GM, Sansom MS, Alder GM, Bashford CL (1998) Structure-based prediction of the conductance properties of ion channels. Faraday Discuss 111:185–199PubMedCrossRefGoogle Scholar
  58. 58.
    Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Ohta M, Kamio Y, Yao M, Tanaka I (2011) Crystal structure of the octameric pore of staphylococcal gamma-hemolysin reveals the beta-barrel pore formation mechanism by two components. Proc Natl Acad Sci USA 108:17314–17319PubMedCrossRefGoogle Scholar
  59. 59.
    Comai M, Dalla Serra M, Coraiola M, Werner S, Colin DA, Monteil H, Prevost G, Menestrina G (2002) Protein engineering modulates the transport properties and ion selectivity of the pores formed by staphylococcal gamma-haemolysins in lipid membranes. Mol Microbiol 44:1251–1267PubMedCrossRefGoogle Scholar
  60. 60.
    Sugawara-Tomita N, Tomita T, Kamio Y (2002) Stochastic assembly of two-component staphylococcal gamma-hemolysin into heteroheptameric transmembrane pores with alternate subunit arrangements in ratios of 3:4 and 4:3. J Bacteriol 184:4747–4756PubMedCrossRefGoogle Scholar
  61. 61.
    Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99:293–299PubMedCrossRefGoogle Scholar
  62. 62.
    Hotze EM, Wilson-Kubalek EM, Rossjohn J, Parker MW, Johnson AE, Tweten RK (2001) Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate. J Biol Chem 276:8261–8268PubMedCrossRefGoogle Scholar
  63. 63.
    Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J 23:3206–3215PubMedCrossRefGoogle Scholar
  64. 64.
    Harris RW, Sims PJ, Tweten RK (1991) Kinetic aspects of the aggregation of Clostridium perfringens theta- toxin on erythrocyte membranes. A fluorescence energy transfer study. J Biol Chem 266:6936–6941PubMedGoogle Scholar
  65. 65.
    Bhakdi S, Tranum-Jensen J, Sziegoleit A (1985) Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52–60PubMedGoogle Scholar
  66. 66.
    Palmer M, Harris R, Freytag C, Kehoe M, Tranum-Jensen J, Bhakdi S (1998) Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J 17:1598–1605PubMedCrossRefGoogle Scholar
  67. 67.
    Bernheimer AW, Avigad LS, Kim K (1979) Comparison of metridiolysin from the sea anemone with thiol-activated cytolysins from bacteria. Toxicon 17:69–75PubMedCrossRefGoogle Scholar
  68. 68.
    Harris JR, Adrian M, Bhakdi S, Palmer M (1998) Cholesterol-streptolysin O interaction: an EM study of wild-type and mutant streptolysin O. J Struct Biol 121:343–355PubMedCrossRefGoogle Scholar
  69. 69.
    Harris JR, Lewis RJ, Baik C, Pokrajac L, Billington SJ, Palmer M (2011) Cholesterol microcrystals and cochleate cylinders: attachment of pyolysin oligomers and domain 4. J Struct Biol 173:38–45PubMedCrossRefGoogle Scholar
  70. 70.
    Young JD, Hengartner H, Podack ER, Cohn ZA (1986) Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44:849–859PubMedCrossRefGoogle Scholar
  71. 71.
    Podack ER, Dennert G (1983) Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. Nature 302:442–445PubMedCrossRefGoogle Scholar
  72. 72.
    Young LH, Joag SV, Zheng LM, Lee CP, Lee YS, Young JD (1990) Perforin-mediated myocardial damage in acute myocarditis. Lancet 336:1019–1021PubMedCrossRefGoogle Scholar
  73. 73.
    Bhakdi S, Tranum-Jensen J (1984) On the cause and nature of C9-related heterogeneity of terminal complement complexes generated on target erythrocytes through the action of whole serum. J Immunol 133:1453–1463PubMedGoogle Scholar
  74. 74.
    Bhakdi S, Tranum-Jensen J (1986) C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore. J Immunol 136:2999–3005PubMedGoogle Scholar
  75. 75.
    Zalman LS, Muller-Eberhard HJ (1990) Comparison of channels formed by poly C9, C5b-8 and the membrane attack complex of complement. Mol Immunol 27:533–537PubMedCrossRefGoogle Scholar
  76. 76.
    From C, Granum PE, Hardy SP (2008) Demonstration of a cholesterol-dependent cytolysin in a noninsecticidal Bacillus sphaericus strain and evidence for widespread distribution of the toxin within the species. FEMS Microbiol Lett 286:85–92PubMedCrossRefGoogle Scholar
  77. 77.
    Korchev YE, Bashford CL, Pasternak CA (1992) Differential sensitivity of pneumolysin-induced channels to gating by divalent cations. J Membr Biol 127:195–203PubMedGoogle Scholar
  78. 78.
    El-Rachkidy RG, Davies NW, Andrew PW (2008) Pneumolysin generates multiple conductance pores in the membrane of nucleated cells. Biochem Biophys Res Commun 368:786–792PubMedCrossRefGoogle Scholar
  79. 79.
    Bavdek A, Kostanjšek R, Antonini V, Lakey JH, Dalla Serra M, Gilbert RJ, Anderluh G (2011) pH dependence of listeriolysin O aggregation and pore-forming ability. FEBS J 279:126–141PubMedCrossRefGoogle Scholar
  80. 80.
    Bashford CL, Menestrina G, Henkart PA, Pasternak CA (1988) Cell damage by cytolysin. Spontaneous recovery and reversible inhibition by divalent cations. J Immunol 141:3965–3974PubMedGoogle Scholar
  81. 81.
    Podack ER, Young JD, Cohn ZA (1985) Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc Natl Acad Sci USA 82:8629–8633PubMedCrossRefGoogle Scholar
  82. 82.
    Young JD, Nathan CF, Podack ER, Palladino MA, Cohn ZA (1986) Functional channel formation associated with cytotoxic T-cell granules. Proc Natl Acad Sci USA 83:150–154PubMedCrossRefGoogle Scholar
  83. 83.
    Young JD, Podack ER, Cohn ZA (1986) Properties of a purified pore-forming protein (perforin 1) isolated from H-2-restricted cytotoxic T cell granules. J Exp Med 164:144–155PubMedCrossRefGoogle Scholar
  84. 84.
    Pipkin ME, Lieberman J (2007) Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol 19:301–308PubMedCrossRefGoogle Scholar
  85. 85.
    Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH (2008) Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451:350–354PubMedCrossRefGoogle Scholar
  86. 86.
    Shaughnessy LM, Hoppe AD, Christensen KA, Swanson JA (2006) Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol 8:781–792PubMedCrossRefGoogle Scholar
  87. 87.
    Gekara NO, Westphal K, Ma B, Rohde M, Groebe L, Weiss S (2007) The multiple mechanisms of Ca2+ signalling by listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Cell Microbiol 9:2008–2021PubMedCrossRefGoogle Scholar
  88. 88.
    Menestrina G, Bashford CL, Pasternak CA (1990) Pore-forming toxins: experiments with S. aureus alpha-toxin, C. perfringens theta-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells. Toxicon 28:477–491PubMedCrossRefGoogle Scholar
  89. 89.
    Keefe D, Shi L, Feske S, Massol R, Navarro F, Kirchhausen T, Lieberman J (2005) Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23:249–262PubMedCrossRefGoogle Scholar
  90. 90.
    Thiery J, Keefe D, Saffarian S, Martinvalet D, Walch M, Boucrot E, Kirchhausen T, Lieberman J (2010) Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood 115:1582–1593PubMedCrossRefGoogle Scholar
  91. 91.
    Thiery J, Keefe D, Boulant S, Boucrot E, Walch M, Martinvalet D, Goping IS, Bleackley RC, Kirchhausen T, Lieberman J (2011) Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nature Immunol 12:770–777CrossRefGoogle Scholar
  92. 92.
    Weaver JC (1994) Molecular basis for cell membrane electroporation. Ann New York Acad Sci 720:141–152CrossRefGoogle Scholar
  93. 93.
    Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA (2004) Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore. FEBS Lett 576:205–210PubMedCrossRefGoogle Scholar
  94. 94.
    Anderluh G, Dalla Serra M, Viero G, Guella G, Maček P, Menestrina G (2003) Pore formation by equinatoxin II, a eukaryotic protein toxin, occurs by induction of nonlamellar lipid structures. J Biol Chem 278:45216–45223PubMedCrossRefGoogle Scholar
  95. 95.
    Epand RF, Martinou JC, Montessuit S, Epand RM, Yip CM (2002) Direct evidence for membrane pore formation by the apoptotic protein Bax. Biochem Biophys Res Commun 298:744–749PubMedCrossRefGoogle Scholar
  96. 96.
    Valcarcel CA, Dalla Serra M, Potrich C, Bernhart I, Tejuca M, Martinez D, Pazos F, Lanio ME, Menestrina G (2001) Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Biophys J 80:2761–2774PubMedCrossRefGoogle Scholar
  97. 97.
    Dalla Serra M, Tejuca Martínez M (2001) Pore-forming toxins. eLS John Wiley & Sons. doi: 10.1002/9780470015902.a0002655.pub2
  98. 98.
    Anderluh G, Lakey JH (2010) Proteins membrane binding and pore formation. Springer, New YorkCrossRefGoogle Scholar
  99. 99.
    De Colibus L, Sonnen AFP, Morris KJ, Siebert CA, Abrusci P, Plitzko J, Hodnik V, Leippe M, Volpi E, Anderluh G, Gilbert RJC (2012) Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and a novel mode of sphingomyelin recognition. Structure 20:1498–1507Google Scholar
  100. 100.
    Madden JC, Ruiz N, Caparon M (2001) Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in Gram-positive bacteria. Cell 104:143–152PubMedCrossRefGoogle Scholar
  101. 101.
    Praper T, Beseničar MP, Istinič H, Podlesek Z, Metkar SS, Froelich CJ, Anderluh G (2010) Human perforin permeabilizing activity, but not binding to lipid membranes, is affected by pH. Mol Immunol 47:2492–2504PubMedCrossRefGoogle Scholar
  102. 102.
    Metkar SS, Wang B, Catalan E, Anderluh G, Gilbert RJ, Pardo J, Froelich CJ (2011) Perforin rapidly induces plasma membrane phospholipid flip-flop. PLoS ONE 6:e24286PubMedCrossRefGoogle Scholar
  103. 103.
    Pinkoski MJ, Hobman M, Heibein JA, Tomaselli K, Li F, Seth P, Froelich CJ, Bleackley RC (1998) Entry and trafficking of granzyme B in target cells during granzyme B-perforin-mediated apoptosis. Blood 92:1044–1054PubMedGoogle Scholar
  104. 104.
    Froelich CJ, Orth K, Turbov J, Seth P, Gottlieb R, Babior B, Shah GM, Bleackley RC, Dixit VM, Hanna W (1996) New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J Biol Chem 271:29073–29079PubMedCrossRefGoogle Scholar
  105. 105.
    Shi L, Mai S, Israels S, Browne K, Trapani JA, Greenberg AH (1997) Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J Exp Med 185:855–866PubMedCrossRefGoogle Scholar
  106. 106.
    Praper T, Sonnen AF, Kladnik A, Andrighetti AO, Viero G, Morris KJ, Volpi E, Lunelli L, Dalla Serra M, Froelich CJ, Gilbert RJ, Anderluh G (2011) Perforin activity at membranes leads to invaginations and vesicle formation. Proc Natl Acad Sci USA 108(52):21016–21021PubMedCrossRefGoogle Scholar
  107. 107.
    Stewart SE, D’Angelo ME, Bird PI (2012) Intercellular communication via the endo-lysosomal system: translocation of granzymes through membrane barriers. Biochim Biophys Acta 1824:59–67PubMedCrossRefGoogle Scholar
  108. 108.
    Romer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MR, Fraisier V, Florent JC, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450:670–675PubMedCrossRefGoogle Scholar
  109. 109.
    Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH (2009) Membrane scission by the ESCRT-III complex. Nature 458:172–177PubMedCrossRefGoogle Scholar
  110. 110.
    Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De CP (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155:193–200PubMedCrossRefGoogle Scholar
  111. 111.
    Bonev BB, Gilbert RJ, Andrew PW, Byron O, Watts A (2001) Structural analysis of the protein/lipid complexes associated with pore formation by the bacterial toxin pneumolysin. J Biol Chem 276:5714–5719PubMedCrossRefGoogle Scholar
  112. 112.
    Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415:673–679PubMedCrossRefGoogle Scholar
  113. 113.
    Ecker A, Pinto SB, Baker KW, Kafatos FC, Sinden RE (2007) Plasmodium berghei: plasmodium perforin-like protein 5 is required for mosquito midgut invasion in Anopheles stephensi. Exp Parasitol 116:504–508PubMedCrossRefGoogle Scholar
  114. 114.
    Ecker A, Bushell ES, Tewari R, Sinden RE (2008) Reverse genetics screen identifies six proteins important for malaria development in the mosquito. Mol Microbiol 70:209–220PubMedCrossRefGoogle Scholar
  115. 115.
    Amino R, Giovannini D, Thiberge S, Gueirard P, Boisson B, Dubremetz JF, Prevost MC, Ishino T, Yuda M, Menard R (2008) Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host Microbe 3:88–96PubMedCrossRefGoogle Scholar
  116. 116.
    Tardieux I, Menard R (2008) Migration of Apicomplexa across biological barriers: the Toxoplasma and Plasmodium rides. Traffic 9:627–635PubMedCrossRefGoogle Scholar
  117. 117.
    Frevert U, Engelmann S, Zougbede S, Stange J, Ng B, Matuschewski K, Liebes L, Yee H (2005) Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol 3:e192PubMedCrossRefGoogle Scholar
  118. 118.
    Ishino T, Yano K, Chinzei Y, Yuda M (2004) Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol 2:e4PubMedCrossRefGoogle Scholar
  119. 119.
    Mota MM, Rodriguez A (2002) Invasion of mammalian host cells by Plasmodium sporozoites. BioEssays 24:149–156PubMedCrossRefGoogle Scholar
  120. 120.
    Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419:520–526PubMedCrossRefGoogle Scholar
  121. 121.
    Kadota K, Ishino T, Matsuyama T, Chinzei Y, Yuda M (2004) Essential role of membrane-attack protein in malarial transmission to mosquito host. Proc Natl Acad Sci USA 101:16310–16315PubMedCrossRefGoogle Scholar
  122. 122.
    Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK, James K, Rutherford K, Harris B, Harris D, Churcher C, Quail MA, Ormond D, Doggett J, Trueman HE, Mendoza J, Bidwell SL, Rajandream MA, Carucci DJ, Yates JR 3rd, Kafatos FC, Janse CJ, Barrell B, Turner CM, Waters AP, Sinden RE (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307:82–86PubMedCrossRefGoogle Scholar
  123. 123.
    Raibaud A, Brahimi K, Roth CW, Brey PT, Faust DM (2006) Differential gene expression in the ookinete stage of the malaria parasite Plasmodium berghei. Mol Biochem Parasitol 150:107–113PubMedCrossRefGoogle Scholar
  124. 124.
    Kafsack BF, Pena JD, Coppens I, Ravindran S, Boothroyd JC, Carruthers VB (2009) Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 323:530–533PubMedCrossRefGoogle Scholar
  125. 125.
    Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW (1997) Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692PubMedCrossRefGoogle Scholar
  126. 126.
    Stuart DI, Levine M, Muirhead H, Stammers DK (1979) Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 A. J Mol Biol 134:109–142PubMedCrossRefGoogle Scholar
  127. 127.
    Felsenstein J (1997) An alternating least squares approach to inferring phylogenies from pairwise distances. Syst Biol 46:101–111PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Robert J. C. Gilbert
    • 1
    Email author
  • Miha Mikelj
    • 2
  • Mauro Dalla Serra
    • 3
  • Christopher J. Froelich
    • 4
  • Gregor Anderluh
    • 2
    • 5
    Email author
  1. 1.Division of Structural Biology, Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
  2. 2.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.National Research Council, Institute of Biophysics and Bruno Kessler FoundationTrentoItaly
  4. 4.Department of MedicineNorthShore University HealthSystem Research InstituteEvanstonUSA
  5. 5.National Institute of ChemistryLjubljanaSlovenia

Personalised recommendations