Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 12, pp 2031–2044 | Cite as

Multiple functions of tristetraprolin/TIS11 RNA-binding proteins in the regulation of mRNA biogenesis and degradation

  • Delphine Ciais
  • Nadia Cherradi
  • Jean-Jacques FeigeEmail author
Review

Abstract

Members of the tristetraprolin (TTP/TIS11) family are important RNA-binding proteins initially characterized as mediators of mRNA degradation. They act via their interaction with AU-rich elements present in the 3′UTR of regulated transcripts. However, it is progressively appearing that the different steps of mRNA processing and fate including transcription, splicing, polyadenylation, translation, and degradation are coordinately regulated by multifunctional integrator proteins that possess a larger panel of functions than originally anticipated. Tristetraprolin and related proteins are very good examples of such integrators. This review gathers the present knowledge on the functions of this family of RNA-binding proteins, including their role in AU-rich element-mediated mRNA decay and focuses on recent advances that support the concept of their broader involvement in distinct steps of mRNA biogenesis and degradation.

Keywords

Tristetraprolin AU-rich element mRNA stability mRNA processing 

Notes

Acknowledgments

This work was supported by Institut National de la Santé et de la Recherche Médicale (U1036), Université Joseph Fourier, Commissariat à l’Energie Atomique et aux Energies Alternatives, Association pour la Recherche sur le Cancer (ARC) and Groupement des Entreprises Françaises pour la Lutte contre le Cancer (GEFLUC-Comité Dauphiné-Savoie). DC was supported by post-doctoral grants from ARC and Fondation Lefoulon Delalande. We are indebted to Dr. Sabine Bailly for helpful discussions and friendly support.

References

  1. 1.
    Varnum BC, Lim RW, Sukhatme VP, Herschman HR (1989) Nucleotide sequence of a cDNA encoding TIS11, a message induced in Swiss 3T3 cells by the tumor promoter tetradecanoyl phorbol acetate. Oncogene 4:119–120PubMedGoogle Scholar
  2. 2.
    DuBois RN, McLane MW, Ryder K, Lau LF, Nathans D (1990) A growth factor-inducible nuclear protein with a novel cysteine/histidine repetitive sequence. J Biol Chem 265:19185–19191PubMedGoogle Scholar
  3. 3.
    Gomperts M, Pascall JC, Brown KD (1990) The nucleotide sequence of a cDNA encoding an EGF-inducible gene indicates the existence of a new family of mitogen-induced genes. Oncogene 5:1081–1083PubMedGoogle Scholar
  4. 4.
    Lai WS, Stumpo DJ, Blackshear PJ (1990) Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. J Biol Chem 265:16556–16563PubMedGoogle Scholar
  5. 5.
    Nie XF, Maclean KN, Kumar V, McKay IA, Bustin SA (1995) ERF-2, the human homologue of the murine Tis11d early response gene. Gene 152:285–286PubMedCrossRefGoogle Scholar
  6. 6.
    Varnum BC, Ma QF, Chi TH, Fletcher B, Herschman HR (1991) The TIS11 primary response gene is a member of a gene family that encodes proteins with a highly conserved sequence containing an unusual Cys-His repeat. Mol Cell Biol 11:1754–1758PubMedGoogle Scholar
  7. 7.
    Blackshear PJ, Phillips RS, Ghosh S, Ramos SB, Richfield EK, Lai WS (2005) Zfp36l3, a rodent X chromosome gene encoding a placenta-specific member of the tristetraprolin family of CCCH tandem zinc finger proteins. Biol Reprod 73:297–307PubMedCrossRefGoogle Scholar
  8. 8.
    Frederick ED, Ramos SB, Blackshear PJ (2008) A unique C-terminal repeat domain maintains the cytosolic localization of the placenta-specific tristetraprolin family member ZFP36L3. J Biol Chem 283:14792–14800PubMedCrossRefGoogle Scholar
  9. 9.
    Blackshear PJ (2002) Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem Soc Trans 30:945–952PubMedCrossRefGoogle Scholar
  10. 10.
    De J, Lai WS, Thorn JM, Goldsworthy SM, Liu X, Blackwell TK, Blackshear PJ (1999) Identification of four CCCH zinc finger proteins in Xenopus, including a novel vertebrate protein with four zinc fingers and severely restricted expression. Gene 228:133–145PubMedCrossRefGoogle Scholar
  11. 11.
    Ma Q, Wadleigh D, Chi T, Herschman H (1994) The Drosophila TIS11 homologue encodes a developmentally controlled gene. Oncogene 9:3329–3334PubMedGoogle Scholar
  12. 12.
    Thompson MJ, Lai WS, Taylor GA, Blackshear PJ (1996) Cloning and characterization of two yeast genes encoding members of the CCCH class of zinc finger proteins: zinc finger-mediated impairment of cell growth. Gene 174:225–233PubMedCrossRefGoogle Scholar
  13. 13.
    Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, Blackwell TK, Anderson P (2004) MK2-induced tristetraprolin:14–3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 23:1313–1324PubMedCrossRefGoogle Scholar
  14. 14.
    Schmidlin M, Lu M, Leuenberger SA, Stoecklin G, Mallaun M, Gross B, Gherzi R, Hess D, Hemmings BA, Moroni C (2004) The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J 23:4760–4769PubMedCrossRefGoogle Scholar
  15. 15.
    Taylor GA, Carballo E, Lee DM, Lai WS, Thompson MJ, Patel DD, Schenkman DI, Gilkeson GS, Broxmeyer HE, Haynes BF, Blackshear PJ (1996) A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4:445–454PubMedCrossRefGoogle Scholar
  16. 16.
    Bell SE, Sanchez MJ, Spasic-Boskovic O, Santalucia T, Gambardella L, Burton GJ, Murphy JJ, Norton JD, Clark AR, Turner M (2006) The RNA binding protein Zfp36l1 is required for normal vascularisation and post-transcriptionally regulates VEGF expression. Dev Dyn 235:3144–3155PubMedCrossRefGoogle Scholar
  17. 17.
    Stumpo DJ, Byrd NA, Phillips RS, Ghosh S, Maronpot RR, Castranio T, Meyers EN, Mishina Y, Blackshear PJ (2004) Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the tristetraprolin family. Mol Cell Biol 24:6445–6455PubMedCrossRefGoogle Scholar
  18. 18.
    Ramos SB (2012) Characterization of DeltaN-Zfp36l2 mutant associated with arrest of early embryonic development and female infertility. J Biol Chem 287:13116–13127PubMedCrossRefGoogle Scholar
  19. 19.
    Ramos SB, Stumpo DJ, Kennington EA, Phillips RS, Bock CB, Ribeiro-Neto F, Blackshear PJ (2004) The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 131:4883–4893PubMedCrossRefGoogle Scholar
  20. 20.
    Stumpo DJ, Broxmeyer HE, Ward T, Cooper S, Hangoc G, Chung YJ, Shelley WC, Richfield EK, Ray MK, Yoder MC, Aplan PD, Blackshear PJ (2009) Targeted disruption of Zfp36l2, encoding a CCCH tandem zinc finger RNA-binding protein, results in defective hematopoiesis. Blood 114:2401–2410PubMedCrossRefGoogle Scholar
  21. 21.
    Hodson DJ, Janas ML, Galloway A, Bell SE, Andrews S, Li CM, Pannell R, Siebel CW, MacDonald HR, De Keersmaecker K, Ferrando AA, Grutz G, Turner M (2010) Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol 11:717–724PubMedCrossRefGoogle Scholar
  22. 22.
    Murata T, Yoshino Y, Morita N, Kaneda N (2002) Identification of nuclear import and export signals within the structure of the zinc finger protein TIS11. Biochem Biophys Res Commun 293:1242–1247PubMedCrossRefGoogle Scholar
  23. 23.
    Phillips RS, Ramos SB, Blackshear PJ (2002) Members of the tristetraprolin family of tandem CCCH zinc finger proteins exhibit CRM1-dependent nucleocytoplasmic shuttling. J Biol Chem 277:11606–11613PubMedCrossRefGoogle Scholar
  24. 24.
    Carman JA, Nadler SG (2004) Direct association of tristetraprolin with the nucleoporin CAN/Nup214. Biochem Biophys Res Commun 315:445–449PubMedCrossRefGoogle Scholar
  25. 25.
    Brook M, Tchen CR, Santalucia T, McIlrath J, Arthur JS, Saklatvala J, Clark AR (2006) Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol Cell Biol 26:2408–2418PubMedCrossRefGoogle Scholar
  26. 26.
    Cherradi N, Lejczak C, Desroches-Castan A, Feige JJ (2006) Antagonistic functions of tetradecanoyl phorbol acetate-inducible-sequence 11b and HuR in the hormonal regulation of vascular endothelial growth factor messenger ribonucleic acid stability by adrenocorticotropin. Mol Endocrinol 20:916–930PubMedCrossRefGoogle Scholar
  27. 27.
    Desroches-Castan A, Cherradi N, Feige JJ, Ciais D (2011) A novel function of Tis11b/BRF1 as a regulator of Dll4 mRNA 3′-end processing. Mol Biol Cell 22:3625–3633PubMedCrossRefGoogle Scholar
  28. 28.
    Gringhuis SI, Garcia-Vallejo JJ, van Het Hof B, van Dijk W (2005) Convergent actions of I kappa B kinase beta and protein kinase C delta modulate mRNA stability through phosphorylation of 14–3-3 beta complexed with tristetraprolin. Mol Cell Biol 25:6454–6463PubMedCrossRefGoogle Scholar
  29. 29.
    Taylor GA, Thompson MJ, Lai WS, Blackshear PJ (1996) Mitogens stimulate the rapid nuclear to cytosolic translocation of tristetraprolin, a potential zinc-finger transcription factor. Mol Endocrinol 10:140–146PubMedCrossRefGoogle Scholar
  30. 30.
    Bourcier C, Griseri P, Grepin R, Bertolotto C, Mazure N, Pages G (2011) Constitutive ERK activity induces downregulation of tristetraprolin, a major protein controlling interleukin8/CXCL8 mRNA stability in melanoma cells. Am J Physiol Cell Physiol 301:C609–618PubMedCrossRefGoogle Scholar
  31. 31.
    Graham JR, Hendershott MC, Terragni J, Cooper GM (2010) mRNA degradation plays a significant role in the program of gene expression regulated by phosphatidylinositol 3-kinase signaling. Mol Cell Biol 30:5295–5305PubMedCrossRefGoogle Scholar
  32. 32.
    Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, Radzioch D, Clark AR, Blackshear PJ, Kotlyarov A, Gaestel M (2006) Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol 26:2399–2407PubMedCrossRefGoogle Scholar
  33. 33.
    Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, Clark AR (2001) Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 21:6461–6469PubMedCrossRefGoogle Scholar
  34. 34.
    Marderosian M, Sharma A, Funk AP, Vartanian R, Masri J, Jo OD, Gera JF (2006) Tristetraprolin regulates cyclin D1 and c-Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling. Oncogene 25:6277–6290PubMedCrossRefGoogle Scholar
  35. 35.
    Cao H, Dzineku F, Blackshear PJ (2003) Expression and purification of recombinant tristetraprolin that can bind to tumor necrosis factor-alpha mRNA and serve as a substrate for mitogen-activated protein kinases. Arch Biochem Biophys 412:106–120PubMedCrossRefGoogle Scholar
  36. 36.
    Carballo E, Cao H, Lai WS, Kennington EA, Campbell D, Blackshear PJ (2001) Decreased sensitivity of tristetraprolin-deficient cells to p38 inhibitors suggests the involvement of tristetraprolin in the p38 signaling pathway. J Biol Chem 276:42580–42587PubMedCrossRefGoogle Scholar
  37. 37.
    Maitra S, Chou CF, Luber CA, Lee KY, Mann M, Chen CY (2008) The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2. RNA 14:950–959PubMedCrossRefGoogle Scholar
  38. 38.
    Baou M, Jewell A, Murphy JJ (2009) TIS11 family proteins and their roles in posttranscriptional gene regulation. J Biomed Biotechnol 2009:634520PubMedCrossRefGoogle Scholar
  39. 39.
    Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB, Muller M, Gaestel M, Resch K, Holtmann H (1999) The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J 18:4969–4980PubMedCrossRefGoogle Scholar
  40. 40.
    Benjamin D, Schmidlin M, Min L, Gross B, Moroni C (2006) BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol Cell Biol 26:9497–9507PubMedCrossRefGoogle Scholar
  41. 41.
    Johnson BA, Stehn JR, Yaffe MB, Blackwell TK (2002) Cytoplasmic localization of tristetraprolin involves 14–3-3-dependent and -independent mechanisms. J Biol Chem 277:18029–18036PubMedCrossRefGoogle Scholar
  42. 42.
    Sun L, Stoecklin G, Van Way S, Hinkovska-Galcheva V, Guo RF, Anderson P, Shanley TP (2007) Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-alpha mRNA. J Biol Chem 282:3766–3777PubMedCrossRefGoogle Scholar
  43. 43.
    Deleault KM, Skinner SJ, Brooks SA (2008) Tristetraprolin regulates TNF TNF-alpha mRNA stability via a proteasome dependent mechanism involving the combined action of the ERK and p38 pathways. Mol Immunol 45:13–24PubMedCrossRefGoogle Scholar
  44. 44.
    Schichl YM, Resch U, Lemberger CE, Stichlberger D, de Martin R (2011) Novel phosphorylation-dependent ubiquitination of tristetraprolin by mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1) and tumor necrosis factor receptor-associated factor 2 (TRAF2). J Biol Chem 286:38466–38477PubMedCrossRefGoogle Scholar
  45. 45.
    Clement SL, Scheckel C, Stoecklin G, Lykke-Andersen J (2011) Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol Cell Biol 31:256–266PubMedCrossRefGoogle Scholar
  46. 46.
    Marchese FP, Aubareda A, Tudor C, Saklatvala J, Clark AR, Dean JL (2010) MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment. J Biol Chem 285:27590–27600PubMedCrossRefGoogle Scholar
  47. 47.
    Sandler H, Stoecklin G (2008) Control of mRNA decay by phosphorylation of tristetraprolin. Biochem Soc Trans 36:491–496PubMedCrossRefGoogle Scholar
  48. 48.
    Sanduja S, Blanco FF, Young LE, Kaza V, Dixon DA (2012) The role of tristetraprolin in cancer and inflammation. Front Biosci 17:174–188PubMedCrossRefGoogle Scholar
  49. 49.
    Baou M, Norton JD, Murphy JJ (2011) AU-rich RNA binding proteins in hematopoiesis and leukemogenesis. Blood 118:5732–5740PubMedCrossRefGoogle Scholar
  50. 50.
    Caput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A (1986) Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA 83:1670–1674PubMedCrossRefGoogle Scholar
  51. 51.
    Chen CY, Shyu AB (1994) Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol Cell Biol 14:8471–8482PubMedGoogle Scholar
  52. 52.
    Bakheet T, Williams BR, Khabar KS (2003) ARED 2.0: an update of AU-rich element mRNA database. Nucleic Acids Res 31:421–423PubMedCrossRefGoogle Scholar
  53. 53.
    Bakheet T, Williams BR, Khabar KS (2006) ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res 34:D111–114PubMedCrossRefGoogle Scholar
  54. 54.
    Spasic M, Friedel CC, Schott J, Kreth J, Leppek K, Hofmann S, Ozgur S, Stoecklin G (2012) Genome-wide assessment of AU-rich elements by the ARE score algorithm. PLoS Genet 8:e1002433PubMedCrossRefGoogle Scholar
  55. 55.
    Lai WS, Carballo E, Thorn JM, Kennington EA, Blackshear PJ (2000) Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem 275:17827–17837PubMedCrossRefGoogle Scholar
  56. 56.
    Worthington MT, Pelo JW, Sachedina MA, Applegate JL, Arseneau KO, Pizarro TT (2002) RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristetraprolin protein. J Biol Chem 277:48558–48564PubMedCrossRefGoogle Scholar
  57. 57.
    Blackshear PJ, Lai WS, Kennington EA, Brewer G, Wilson GM, Guan X, Zhou P (2003) Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrates. J Biol Chem 278:19947–19955PubMedCrossRefGoogle Scholar
  58. 58.
    Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE (2004) Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol 11:257–264PubMedCrossRefGoogle Scholar
  59. 59.
    Amann BT, Worthington MT, Berg JM (2003) A Cys3His zinc-binding domain from Nup475/tristetraprolin: a novel fold with a disklike structure. Biochemistry 42:217–221PubMedCrossRefGoogle Scholar
  60. 60.
    Brown RS (2005) Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 15:94–98PubMedCrossRefGoogle Scholar
  61. 61.
    Emmons J, Townley-Tilson WH, Deleault KM, Skinner SJ, Gross RH, Whitfield ML, Brooks SA (2008) Identification of TTP mRNA targets in human dendritic cells reveals TTP as a critical regulator of dendritic cell maturation. RNA 14:888–902PubMedCrossRefGoogle Scholar
  62. 62.
    Stoecklin G, Tenenbaum SA, Mayo T, Chittur SV, George AD, Baroni TE, Blackshear PJ, Anderson P (2008) Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J Biol Chem 283:11689–11699PubMedCrossRefGoogle Scholar
  63. 63.
    Linker K, Pautz A, Fechir M, Hubrich T, Greeve J, Kleinert H (2005) Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR. Nucleic Acids Res 33:4813–4827PubMedCrossRefGoogle Scholar
  64. 64.
    Fechir M, Linker K, Pautz A, Hubrich T, Forstermann U, Rodriguez-Pascual F, Kleinert H (2005) Tristetraprolin regulates the expression of the human inducible nitric-oxide synthase gene. Mol Pharmacol 67:2148–2161PubMedCrossRefGoogle Scholar
  65. 65.
    Kedar VP, Zucconi BE, Wilson GM, Blackshear PJ (2012) Direct binding of specific AUF1 isoforms to tandem zinc finger domains of tristetraprolin (TTP) family proteins. J Biol Chem 287:5459–5471PubMedCrossRefGoogle Scholar
  66. 66.
    Carballo E, Lai WS, Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281:1001–1005PubMedCrossRefGoogle Scholar
  67. 67.
    Lai WS, Blackshear PJ (2001) Interactions of CCCH zinc finger proteins with mRNA: tristetraprolin-mediated AU-rich element-dependent mRNA degradation can occur in the absence of a poly (A) tail. J Biol Chem 276:23144–23154PubMedCrossRefGoogle Scholar
  68. 68.
    Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, Blackshear PJ (1999) Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 19:4311–4323PubMedGoogle Scholar
  69. 69.
    Lai WS, Carrick DM, Blackshear PJ (2005) Influence of nonameric AU-rich tristetraprolin-binding sites on mRNA deadenylation and turnover. J Biol Chem 280:34365–34377PubMedCrossRefGoogle Scholar
  70. 70.
    Lai WS, Kennington EA, Blackshear PJ (2003) Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly (A) ribonuclease. Mol Cell Biol 23:3798–3812PubMedCrossRefGoogle Scholar
  71. 71.
    Lykke-Andersen J, Wagner E (2005) Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 19:351–361PubMedCrossRefGoogle Scholar
  72. 72.
    Sandler H, Kreth J, Timmers HT, Stoecklin G (2011) Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 39:4373–4386PubMedCrossRefGoogle Scholar
  73. 73.
    Rowlett RM, Chrestensen CA, Schroeder MJ, Harp MG, Pelo JW, Shabanowitz J, DeRose R, Hunt DF, Sturgill TW, Worthington MT (2008) Inhibition of tristetraprolin deadenylation by poly (A) binding protein. Am J Physiol Gastrointest Liver Physiol 295:G421–G430PubMedCrossRefGoogle Scholar
  74. 74.
    Kedar VP, Darby MK, Williams JG, Blackshear PJ (2010) Phosphorylation of human tristetraprolin in response to its interaction with the Cbl interacting protein CIN85. PLoS ONE 5:e9588PubMedCrossRefGoogle Scholar
  75. 75.
    Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJ, Stoecklin G, Moroni C, Mann M, Karin M (2001) AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107:451–464PubMedCrossRefGoogle Scholar
  76. 76.
    Mukherjee D, Gao M, O’Connor JP, Raijmakers R, Pruijn G, Lutz CS, Wilusz J (2002) The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21:165–174PubMedCrossRefGoogle Scholar
  77. 77.
    van Dijk EL, Schilders G, Pruijn GJ (2007) Human cell growth requires a functional cytoplasmic exosome, which is involved in various mRNA decay pathways. RNA 13:1027–1035PubMedCrossRefGoogle Scholar
  78. 78.
    Hau HH, Walsh RJ, Ogilvie RL, Williams DA, Reilly CS, Bohjanen PR (2007) Tristetraprolin recruits functional mRNA decay complexes to ARE sequences. J Cell Biochem 100:1477–1492PubMedCrossRefGoogle Scholar
  79. 79.
    Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J (2005) Multiple processing body factors and the ARE-binding protein TTP activate mRNA decapping. Mol Cell 20:905–915PubMedCrossRefGoogle Scholar
  80. 80.
    Stoecklin G, Mayo T, Anderson P (2006) ARE-mRNA degradation requires the 5′-3′ decay pathway. EMBO Rep 7:72–77PubMedCrossRefGoogle Scholar
  81. 81.
    Murata T, Hikita K, Kaneda N (2000) Transcriptional activation function of zinc finger protein TIS11 and its negative regulation by phorbol ester. Biochem Biophys Res Commun 274:526–532PubMedCrossRefGoogle Scholar
  82. 82.
    Dudziak K, Mottalebi N, Senkel S, Edghill EL, Rosengarten S, Roose M, Bingham C, Ellard S, Ryffel GU (2008) Transcription factor HNF1beta and novel partners affect nephrogenesis. Kidney Int 74:210–217PubMedCrossRefGoogle Scholar
  83. 83.
    Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33:201–212PubMedCrossRefGoogle Scholar
  84. 84.
    Prouteau M, Daugeron MC, Seraphin B (2008) Regulation of ARE transcript 3′ end processing by the yeast Cth2 mRNA decay factor. EMBO J 27:2966–2976PubMedCrossRefGoogle Scholar
  85. 85.
    Su YL, Wang SC, Chiang PY, Lin NY, Shen YF, Chang GD, Chang CJ (2012) Tristetraprolin inhibits poly (A)-tail synthesis in nuclear mRNA that contains AU-rich elements by interacting with poly (A)-binding protein nuclear 1. PLoS ONE 7:e41313PubMedCrossRefGoogle Scholar
  86. 86.
    Di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell 43:853–866PubMedCrossRefGoogle Scholar
  87. 87.
    Vergara SV, Puig S, Thiele DJ (2011) Early recruitment of AU-rich element-containing mRNAs determines their cytosolic fate during iron deficiency. Mol Cell Biol 31:417–429PubMedCrossRefGoogle Scholar
  88. 88.
    Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev 8:9–22CrossRefGoogle Scholar
  89. 89.
    Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884PubMedCrossRefGoogle Scholar
  90. 90.
    Franks TM, Lykke-Andersen J (2007) TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev 21:719–735PubMedCrossRefGoogle Scholar
  91. 91.
    Chang WL, Tarn WY (2009) A role for transportin in deposition of TTP to cytoplasmic RNA granules and mRNA decay. Nucleic Acids Res 37:6600–6612PubMedCrossRefGoogle Scholar
  92. 92.
    Espel E (2005) The role of the AU-rich elements of mRNAs in controlling translation. Semin Cell Dev Biol 16:59–67PubMedCrossRefGoogle Scholar
  93. 93.
    Vasudevan S, Steitz JA (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128:1105–1118PubMedCrossRefGoogle Scholar
  94. 94.
    Brooks SA, Connolly JE, Diegel RJ, Fava RA, Rigby WF (2002) Analysis of the function, expression, and subcellular distribution of human tristetraprolin. Arthr Rheum 46:1362–1370CrossRefGoogle Scholar
  95. 95.
    Rigby WF, Roy K, Collins J, Rigby S, Connolly JE, Bloch DB, Brooks SA (2005) Structure/function analysis of tristetraprolin (TTP): p38 stress-activated protein kinase and lipopolysaccharide stimulation do not alter TTP function. J Immunol 174:7883–7893PubMedGoogle Scholar
  96. 96.
    Qi MY, Wang ZZ, Zhang Z, Shao Q, Zeng A, Li XQ, Li WQ, Wang C, Tian FJ, Li Q, Zou J, Qin YW, Brewer G, Huang S, Jing Q (2011) AU-rich-element-dependent translation repression requires the cooperation of tristetraprolin and RCK/P54. Mol Cell Biol 32:913–928PubMedCrossRefGoogle Scholar
  97. 97.
    Pedro-Segura E, Vergara SV, Rodriguez-Navarro S, Parker R, Thiele DJ, Puig S (2008) The Cth2 ARE-binding protein recruits the Dhh1 helicase to promote the decay of succinate dehydrogenase SDH4 mRNA in response to iron deficiency. J Biol Chem 283:28527–28535PubMedCrossRefGoogle Scholar
  98. 98.
    Pfeiffer JR, Brooks SA (2012) Cullin 4B is recruited to tristetraprolin-containing messenger ribonucleoproteins and regulates TNF-alpha mRNA polysome loading. J Immunol 188:1828–1839PubMedCrossRefGoogle Scholar
  99. 99.
    Ciais D, Cherradi N, Bailly S, Grenier E, Berra E, Pouyssegur J, Lamarre J, Feige JJ (2004) Destabilization of vascular endothelial growth factor mRNA by the zinc-finger protein TIS11b. Oncogene 23:8673–8680PubMedCrossRefGoogle Scholar
  100. 100.
    Essafi-Benkhadir K, Onesto C, Stebe E, Moroni C, Pages G (2007) Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation. Mol Biol Cell 18:4648–4658PubMedCrossRefGoogle Scholar
  101. 101.
    Planel S, Salomon A, Jalinot P, Feige JJ, Cherradi N (2010) A novel concept in antiangiogenic and antitumoral therapy: multitarget destabilization of short-lived mRNAs by the zinc finger protein ZFP36L1. Oncogene 29:5989–6003PubMedCrossRefGoogle Scholar
  102. 102.
    von Roretz C, Gallouzi IE (2008) Decoding ARE-mediated decay: is microRNA part of the equation? J Cell Biol 181:189–194CrossRefGoogle Scholar
  103. 103.
    Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova F, Lin SC, Gram H, Han J (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634PubMedCrossRefGoogle Scholar
  104. 104.
    Helfer S, Schott J, Stoecklin G, Forstemann K (2012) AU-rich element-mediated mRNA decay can occur independently of the miRNA machinery in mouse embryonic fibroblasts and Drosophila S2-cells. PLoS ONE 7:e28907PubMedCrossRefGoogle Scholar
  105. 105.
    Dorner S, Lum L, Kim M, Paro R, Beachy PA, Green R (2006) A genomewide screen for components of the RNAi pathway in Drosophila cultured cells. Proc Natl Acad Sci USA 103:11880–11885PubMedCrossRefGoogle Scholar
  106. 106.
    Kim CW, Vo MT, Kim HK, Lee HH, Yoon NA, Lee BJ, Min YJ, Joo WD, Cha HJ, Park JW, Cho WJ (2012) Ectopic over-expression of tristetraprolin in human cancer cells promotes biogenesis of let-7 by down-regulation of Lin28. Nucleic Acids Res 40:3856–3869PubMedCrossRefGoogle Scholar
  107. 107.
    Liang J, Lei T, Song Y, Yanes N, Qi Y, Fu M (2009) RNA-destabilizing factor tristetraprolin negatively regulates NF-kappaB signaling. J Biol Chem 284:29383–29390PubMedCrossRefGoogle Scholar
  108. 108.
    Schichl YM, Resch U, Hofer-Warbinek R, de Martin R (2009) Tristetraprolin impairs NF-kappaB/p65 nuclear translocation. J Biol Chem 284:29571–29581PubMedCrossRefGoogle Scholar
  109. 109.
    Carballo E, Lai WS, Blackshear PJ (2000) Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95:1891–1899PubMedGoogle Scholar
  110. 110.
    Brennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, Wilson GM (2009) The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res 69:5168–5176PubMedCrossRefGoogle Scholar
  111. 111.
    Lee SK, Kim SB, Kim JS, Moon CH, Han MS, Lee BJ, Chung DK, Min YJ, Park JH, Choi DH, Cho HR, Park SK, Park JW (2005) Butyrate response factor 1 enhances cisplatin sensitivity in human head and neck squamous cell carcinoma cell lines. Int J Cancer 117:32–40PubMedCrossRefGoogle Scholar
  112. 112.
    Stoecklin G, Gross B, Ming XF, Moroni C (2003) A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA. Oncogene 22:3554–3561PubMedCrossRefGoogle Scholar
  113. 113.
    Griseri P, Bourcier C, Hieblot C, Essafi-Benkhadir K, Chamorey E, Touriol C, Pages G (2012) A synonymous polymorphism of the Tristetraprolin (TTP) gene, an AU-rich mRNA-binding protein, affects translation efficiency and response to Herceptin treatment in breast cancer patients. Hum Mol Genet 20:4556–4568CrossRefGoogle Scholar
  114. 114.
    Rounbehler RJ, Fallahi M, Yang C, Steeves MA, Li W, Doherty JR, Schaub FX, Sanduja S, Dixon DA, Blackshear PJ, Cleveland JL (2012) Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state. Cell 150:563–574PubMedCrossRefGoogle Scholar
  115. 115.
    Ross CR, Brennan-Laun SE, Wilson GM (2012) Tristetraprolin: roles in cancer and senescence. Ageing Res RevGoogle Scholar
  116. 116.
    Chang SH, Hla T (2011) Gene regulation by RNA binding proteins and microRNAs in angiogenesis. Trends Mol Med 17:650–658PubMedCrossRefGoogle Scholar
  117. 117.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956PubMedCrossRefGoogle Scholar
  118. 118.
    Wegmuller D, Raineri I, Gross B, Oakeley EJ, Moroni C (2007) A cassette system to study embryonic stem cell differentiation by inducible RNA interference. Stem Cells 25:1178–1185PubMedCrossRefGoogle Scholar
  119. 119.
    Patil CS, Liu M, Zhao W, Coatney DD, Li F, VanTubergen EA, D’Silva NJ, Kirkwood KL (2008) Targeting mRNA stability arrests inflammatory bone loss. Mol Ther 16:1657–1664PubMedCrossRefGoogle Scholar
  120. 120.
    Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F, Tarcic G, Siwak D, Lahad J, Jacob-Hirsch J, Amariglio N, Vaisman N, Segal E, Rechavi G, Alon U, Mills GB, Domany E, Yarden Y (2007) A module of negative feedback regulators defines growth factor signaling. Nat Genet 39:503–512PubMedCrossRefGoogle Scholar
  121. 121.
    Lai WS, Parker JS, Grissom SF, Stumpo DJ, Blackshear PJ (2006) Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol Cell Biol 26:9196–9208PubMedCrossRefGoogle Scholar
  122. 122.
    Lebedeva S, Jens M, Theil K, Schwanhausser B, Selbach M, Landthaler M, Rajewsky N (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43:340–352PubMedCrossRefGoogle Scholar
  123. 123.
    Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469PubMedCrossRefGoogle Scholar
  124. 124.
    Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, Ascano M Jr, Tuschl T, Ohler U, Keene JD (2011) Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 43:327–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Delphine Ciais
    • 1
    • 2
    • 3
  • Nadia Cherradi
    • 1
    • 2
    • 3
  • Jean-Jacques Feige
    • 1
    • 2
    • 3
    Email author
  1. 1.Institut National de la Santé et de la Recherche Médicale (INSERM) U1036Grenoble Cedex 9France
  2. 2.Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA)Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI)GrenobleFrance
  3. 3.Université Joseph Fourier-Grenoble 1GrenobleFrance

Personalised recommendations