Cellular and Molecular Life Sciences

, Volume 70, Issue 11, pp 1897–1913

The Eyes Absent proteins in development and disease



The Eyes Absent (EYA) proteins, first described in the context of fly eye development, are now implicated in processes as disparate as organ development, innate immunity, DNA damage repair, photoperiodism, angiogenesis, and cancer metastasis. These functions are associated with an unusual combination of biochemical activities: tyrosine phosphatase and threonine phosphatase activities in separate domains, and transactivation potential when associated with a DNA-binding partner. EYA mutations are linked to multiorgan developmental disorders, as well as to adult diseases ranging from dilated cardiomyopathy to late-onset sensorineural hearing loss. With the growing understanding of EYA biochemical and cellular activity, biological function, and association with disease, comes the possibility that the EYA proteins are amenable to the design of targeted therapeutics. The availability of structural information, direct links to disease states, available animal models, and the fact that they utilize unconventional reaction mechanisms that could allow specificity, suggest that EYAs are well-positioned for drug discovery efforts. This review provides a summary of EYA structure, activity, and function, as they relate to development and disease, with particular emphasis on recent findings.


EYA Eyes absent Angiogenesis Cancer Organ development Cell migration 


  1. 1.
    Bonini NM, Leiserson WM, Benzer S (1998) Multiple roles of the eyes absent gene in Drosophila. Dev Biol 196(1):42–57PubMedGoogle Scholar
  2. 2.
    Halder G, Callaerts P, Flister S, Walldorf U, Kloter U, Gehring WJ (1998) Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development. Development 125(12):2181–2191PubMedGoogle Scholar
  3. 3.
    Leiserson WM, Benzer S, Bonini NM (1998) Dual functions of the Drosophila eyes absent gene in the eye and embryo. Mech Dev 73(2):193–202PubMedGoogle Scholar
  4. 4.
    Bonini NM, Leiserson WM, Benzer S (1993) The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72(3):379–395PubMedGoogle Scholar
  5. 5.
    Bonini NM, Bui QT, Gray-Board GL, Warrick JM (1997) The Drosophila eyes absent gene directs ectopic eye formation in a pathway conserved between flies and vertebrates. Development 124(23):4819–4826PubMedGoogle Scholar
  6. 6.
    Ohto H, Kamada S, Tago K, Tominaga SI, Ozaki H, Sato S, Kawakami K (1999) Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Mol Cell Biol 19(10):6815–6824PubMedGoogle Scholar
  7. 7.
    Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426(6964):247–254PubMedGoogle Scholar
  8. 8.
    Ikeda K, Watanabe Y, Ohto H, Kawakami K (2002) Molecular interaction and synergistic activation of a promoter by Six, Eya, and Dach proteins mediated through CREB binding protein. Mol Cell Biol 22(19):6759–6766PubMedGoogle Scholar
  9. 9.
    Rayapureddi JP, Kattamuri C, Steinmetz BD, Frankfort BJ, Ostrin EJ, Mardon G, Hegde RS (2003) Eyes absent represents a class of protein tyrosine phosphatases. Nature 426(6964):295–298PubMedGoogle Scholar
  10. 10.
    Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, Selengut JD, Parlikar BE, Rebay I (2003) The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature 426(6964):299–302PubMedGoogle Scholar
  11. 11.
    Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7(11):833–846. doi:10.1038/nrm2039 PubMedGoogle Scholar
  12. 12.
    Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711PubMedGoogle Scholar
  13. 13.
    Moorhead GB, De Wever V, Templeton G, Kerk D (2009) Evolution of protein phosphatases in plants and animals. Biochem J 417(2):401–409. doi:10.1042/BJ20081986 PubMedGoogle Scholar
  14. 14.
    Jung SK, Jeong DG, Chung SJ, Kim JH, Park BC, Tonks NK, Ryu SE, Kim SJ (2010) Crystal structure of ED-Eya2: insight into dual roles as a protein tyrosine phosphatase and a transcription factor. FASEB J 24(2):560–569. doi:10.1096/fj.09-143891 PubMedGoogle Scholar
  15. 15.
    Mermod N, O’Neill EA, Kelly TJ, Tjian R (1989) The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58(4):741–753. doi:10.1016/0092-8674(89)90108-6 PubMedGoogle Scholar
  16. 16.
    Xu PX, Cheng J, Epstein JA, Maas RL (1997) Mouse Eya genes are expressed during limb tendon development and encode a transcriptional activation function. Proc Natl Acad Sci USA 94(22):11974–11979PubMedGoogle Scholar
  17. 17.
    Okabe Y, Sano T, Nagata S (2009) Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature 460(7254):520–524. doi:10.1038/nature08138 PubMedGoogle Scholar
  18. 18.
    Sano T, Nagata S (2011) Characterization of the threonine-phosphatase of mouse eyes absent 3. FEBS Lett 585(17):2714–2719. doi:10.1016/j.febslet.2011.07.029 PubMedGoogle Scholar
  19. 19.
    Takeda Y, Hatano S, Sentoku N, Matsuoka M (1999) Homologs of animal eyes absent (eya) genes are found in higher plants. Mol Gen Genet 262(1):131–138PubMedGoogle Scholar
  20. 20.
    Patterson KI, Brummer T, O’Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418(3):475–489PubMedGoogle Scholar
  21. 21.
    Pulido R, Hooft van Huijsduijnen R (2008) Protein tyrosine phosphatases: dual-specificity phosphatases in health and disease. FEBS J 275(5):848–866. doi:10.1111/j.1742-4658.2008.06250.x PubMedGoogle Scholar
  22. 22.
    Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458(7238):591–596. doi:10.1038/nature07849 PubMedGoogle Scholar
  23. 23.
    Krishnan N, Jeong DG, Jung SK, Ryu SE, Xiao A, Allis CD, Kim SJ, Tonks NK (2009) Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase eyes absent. J Biol Chem 284(24):16066–16070. doi:10.1074/jbc.C900032200 PubMedGoogle Scholar
  24. 24.
    Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL (1997) The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development [published erratum appears in Cell 1998 Feb 20;92(4):following 585]. Cell 91(7):881–891PubMedGoogle Scholar
  25. 25.
    Chen R, Amoui M, Zhang Z, Mardon G (1997) Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila [see comments]. Cell 91(7):893–903PubMedGoogle Scholar
  26. 26.
    Heanue TA, Reshef R, Davis RJ, Mardon G, Oliver G, Tomarev S, Lassar AB, Tabin CJ (1999) Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation. Genes Dev 13(24):3231–3243PubMedGoogle Scholar
  27. 27.
    Silver SJ, Davies EL, Doyon L, Rebay I (2003) Functional dissection of eyes absent reveals new modes of regulation within the retinal determination gene network. Mol Cell Biol 23(17):5989–5999PubMedGoogle Scholar
  28. 28.
    Zhou J, Wang C, Wang Z, Dampier W, Wu K, Casimiro MC, Chepelev I, Popov VM, Quong A, Tozeren A, Zhao K, Lisanti MP, Pestell RG (2010) Attenuation of Forkhead signaling by the retinal determination factor DACH1. Proc Natl Acad Sci USA 107(15):6864–6869. doi:10.1073/pnas.1002746107 PubMedGoogle Scholar
  29. 29.
    Kim SS, Zhang R, Braunstein SE, Joachimiak A, Cvekl A, Hegde RS (2002) Structure of the retinal determination protein dachshund reveals a DNA binding motif. Structure 10(6):787–795PubMedGoogle Scholar
  30. 30.
    Zhou J, Liu Y, Zhang W, Popov VM, Wang M, Pattabiraman N, Sune C, Cvekl A, Wu K, Jiang J, Wang C, Pestell RG (2010) Transcription elongation regulator 1 is a co-integrator of the cell fate determination factor Dachshund homolog 1. J Biol Chem 285(51):40342–40350. doi:10.1074/jbc.M110.156141 PubMedGoogle Scholar
  31. 31.
    Patrick AN, Schiemann BJ, Yang K, Zhao R, Ford HL (2009) Biochemical and functional characterization of six SIX1 branchio-oto-renal syndrome mutations. J Biol Chem 284(31):20781–20790. doi:10.1074/jbc.M109.016832 PubMedGoogle Scholar
  32. 32.
    Zhu X, Rosenfeld MG (2004) Transcriptional control of precursor proliferation in the early phases of pituitary development. Curr Opin Genet Dev 14(5):567–574. doi:10.1016/j.gde.2004.08.006S0959-437X PubMedGoogle Scholar
  33. 33.
    Pandey RN, Rani R, Yeo EJ, Spencer M, Hu S, Lang RA, Hegde RS (2010) The Eyes Absent phosphatase-transactivator proteins promote proliferation, transformation, migration, and invasion of tumor cells. Oncogene 29(25):3715–3722. doi:10.1038/onc.2010.122 PubMedGoogle Scholar
  34. 34.
    Jemc J, Rebay I (2007) The eyes absent family of phosphotyrosine phosphatases: properties and roles in developmental regulation of transcription. Annu Rev Biochem 76:513–538PubMedGoogle Scholar
  35. 35.
    Li X, Perissi V, Liu F, Rose DW, Rosenfeld MG (2002) Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science 297(5584):1180–1183PubMedGoogle Scholar
  36. 36.
    Spitz F, Demignon J, Porteu A, Kahn A, Concordet JP, Daegelen D, Maire P (1998) Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc Natl Acad Sci USA 95(24):14220–14225PubMedGoogle Scholar
  37. 37.
    Coletta RD, Christensen K, Reichenberger KJ, Lamb J, Micomonaco D, Huang L, Wolf DM, Muller-Tidow C, Golub TR, Kawakami K, Ford HL (2004) The Six1 homeoprotein stimulates tumorigenesis by reactivation of cyclin A1. Proc Natl Acad Sci USA 101(17):6478–6483PubMedGoogle Scholar
  38. 38.
    Kawakami K, Ohto H, Ikeda K, Roeder RG (1996) Structure, function and expression of a murine homeobox protein AREC3, a homologue of Drosophila sine oculis gene product, and implication in development. Nucleic Acids Res 24(2):303–310PubMedGoogle Scholar
  39. 39.
    Brodbeck S, Besenbeck B, Englert C (2004) The transcription factor Six2 activates expression of the Gdnf gene as well as its own promoter. Mech Dev 121(10):1211–1222PubMedGoogle Scholar
  40. 40.
    Grifone R, Laclef C, Spitz F, Lopez S, Demignon J, Guidotti JE, Kawakami K, Xu PX, Kelly R, Petrof BJ, Daegelen D, Concordet JP, Maire P (2004) Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype. Mol Cell Biol 24(14):6253–6267PubMedGoogle Scholar
  41. 41.
    Himeda CL, Ranish JA, Angello JC, Maire P, Aebersold R, Hauschka SD (2004) Quantitative proteomic identification of six4 as the trex-binding factor in the muscle creatine kinase enhancer. Mol Cell Biol 24(5):2132–2143PubMedGoogle Scholar
  42. 42.
    Ando Z, Sato S, Ikeda K, Kawakami K (2005) Slc12a2 is a direct target of two closely related homeobox proteins, Six1 and Six4. FEBS J 272(12):3026–3041. doi:10.1111/j.1742-4658.2005.04716.x PubMedGoogle Scholar
  43. 43.
    Yu Y, Davicioni E, Triche TJ, Merlino G (2006) The homeoprotein six1 transcriptionally activates multiple protumorigenic genes but requires ezrin to promote metastasis. Cancer Res 66(4):1982–1989PubMedGoogle Scholar
  44. 44.
    Sander LE, Blander JM (2009) Innate immune cells cast an eye on DNA. J Mol Cell Biol 1(2):77–79. doi:10.1093/jmcb/mjp023 PubMedGoogle Scholar
  45. 45.
    Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, Van Den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M (2004) A map of the interactome network of the metazoan C. elegans. Science 303(5657):540–543. doi:10.1126/science.10914031091403 PubMedGoogle Scholar
  46. 46.
    Fan X, Brass LF, Poncz M, Spitz F, Maire P, Manning DR (2000) The alpha subunits of Gz and Gi interact with the eyes absent transcription cofactor Eya2, preventing its interaction with the six class of homeodomain-containing proteins. J Biol Chem 275(41):32129–32134PubMedGoogle Scholar
  47. 47.
    Azuma N, Hirakiyama A, Inoue T, Asaka A, Yamada M (2000) Mutations of a human homologue of the Drosophila eyes absent gene (EYA1) detected in patients with congenital cataracts and ocular anterior segment anomalies. Hum Mol Genet 9(3):363–366PubMedGoogle Scholar
  48. 48.
    Weng J, Luo J, Cheng X, Jin C, Zhou X, Qu J, Tu L, Ai D, Li D, Wang J, Martin JF, Amendt BA, Liu M (2008) Deletion of G protein-coupled receptor 48 leads to ocular anterior segment dysgenesis (ASD) through down-regulation of Pitx2. Proc Natl Acad Sci USA 105(16):6081–6086. doi:10.1073/pnas.0708257105 PubMedGoogle Scholar
  49. 49.
    Landgraf K, Bollig F, Trowe MO, Besenbeck B, Ebert C, Kruspe D, Kispert A, Hanel F, Englert C (2010) Sipl1 and Rbck1 are novel Eya1-binding proteins with a role in craniofacial development. Mol Cell Biol 30(24):5764–5775. doi:10.1128/MCB.01645-09 PubMedGoogle Scholar
  50. 50.
    El-Hashash AH, Turcatel G, Al Alam D, Buckley S, Tokumitsu H, Bellusci S, Warburton D (2011) Eya1 controls cell polarity, spindle orientation, cell fate and Notch signaling in distal embryonic lung epithelium. Development 138(7):1395–1407. doi:10.1242/dev.058479 PubMedGoogle Scholar
  51. 51.
    Stokes MP, Rush J, Macneill J, Ren JM, Sprott K, Nardone J, Yang V, Beausoleil SA, Gygi SP, Livingstone M, Zhang H, Polakiewicz RD, Comb MJ (2007) Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci USA 104(50):19855–19860. doi:10.1073/pnas.0707579104 PubMedGoogle Scholar
  52. 52.
    Xiong W, Dabbouseh NM, Rebay I (2009) Interactions with the abelson tyrosine kinase reveal compartmentalization of eyes absent function between nucleus and cytoplasm. Dev Cell 16(2):271–279. doi:10.1016/j.devcel.2008.12.005 PubMedGoogle Scholar
  53. 53.
    Morillo SA, Braid LR, Verheyen EM, Rebay I (2012) Nemo phosphorylates Eyes absent and enhances output from the Eya-sine oculis transcriptional complex during Drosophila retinal determination. Dev Biol 365(1):267–76. doi:10.1016/j.ydbio.2012.02.030 PubMedGoogle Scholar
  54. 54.
    Zou D, Erickson C, Kim EH, Jin D, Fritzsch B, Xu PX (2008) Eya1 gene dosage critically affects the development of sensory epithelia in the mammalian inner ear. Hum Mol Genet 17(21):3340–3356. doi:10.1093/hmg/ddn229 PubMedGoogle Scholar
  55. 55.
    Ahmed M, Wong EY, Sun J, Xu J, Wang F, Xu PX (2012) Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev Cell 22(2):377–390. doi:10.1016/j.devcel.2011.12.006 PubMedGoogle Scholar
  56. 56.
    Furuya M, Qadota H, Chisholm AD, Sugimoto A (2005) The C. elegans eyes absent ortholog EYA-1 is required for tissue differentiation and plays partially redundant roles with PAX-6. Dev Biol 286(2):452–463. doi:10.1016/j.ydbio.2005.08.011 PubMedGoogle Scholar
  57. 57.
    Kriebel M, Muller F, Hollemann T (2007) Xeya3 regulates survival and proliferation of neural progenitor cells within the anterior neural plate of Xenopus embryos. Dev Dyn 236(6):1526–1534PubMedGoogle Scholar
  58. 58.
    Zou D, Silvius D, Rodrigo-Blomqvist S, Enerback S, Xu PX (2006) Eya1 regulates the growth of otic epithelium and interacts with Pax2 during the development of all sensory areas in the inner ear. Dev Biol 298(2):430–441PubMedGoogle Scholar
  59. 59.
    Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23(1):113–117PubMedGoogle Scholar
  60. 60.
    El-Hashash AH, Al Alam D, Turcatel G, Bellusci S, Warburton D (2011) Eyes absent 1 (Eya1) is a critical coordinator of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Dev Biol 350(1):112–126. doi:10.1016/j.ydbio.2010.11.022 PubMedGoogle Scholar
  61. 61.
    Clark SW, Fee BE, Cleveland JL (2002) Misexpression of the eyes absent family triggers the apoptotic program. J Biol Chem 277(5):3560–3567PubMedGoogle Scholar
  62. 62.
    Hirose T, Galvin BD, Horvitz HR (2010) Six and Eya promote apoptosis through direct transcriptional activation of the proapoptotic BH3-only gene egl-1 in Caenorhabditis elegans. Proc Natl Acad Sci USA 107(35):15479–15484. doi:10.1073/pnas.1010023107 PubMedGoogle Scholar
  63. 63.
    Boyle M, Bonini N, DiNardo S (1997) Expression and function of clift in the development of somatic gonadal precursors within the Drosophila mesoderm. Development 124(5):971–982PubMedGoogle Scholar
  64. 64.
    Xu PX, Woo I, Her H, Beier DR, Maas RL (1997) Mouse Eya homologues of the Drosophila eyes absent gene require Pax6 for expression in lens and nasal placode. Development 124(1):219–231PubMedGoogle Scholar
  65. 65.
    Mishima N, Tomarev S (1998) Chicken Eyes absent 2 gene: isolation and expression pattern during development. Int J Dev Biol 42(8):1109–1115PubMedGoogle Scholar
  66. 66.
    Sahly I, Andermann P, Petit C (1999) The zebrafish eya1 gene and its expression pattern during embryogenesis. Dev Genes Evol 209(7):399–410. doi:92090399.427 PubMedGoogle Scholar
  67. 67.
    David R, Ahrens K, Wedlich D, Schlosser G (2001) Xenopus Eya1 demarcates all neurogenic placodes as well as migrating hypaxial muscle precursors. Mech Dev 103(1–2):189–192. doi:S0925477301003550 PubMedGoogle Scholar
  68. 68.
    Tadjuidje E, Wang TS, Pandey RN, Sumanas S, Lang RA, Hegde RS (2012) The EYA tyrosine phosphatase activity is pro-angiogenic and is inhibited by benzbromarone. PLoS One 7(4):e34806PubMedGoogle Scholar
  69. 69.
    Miller SJ, Lan ZD, Hardiman A, Wu J, Kordich JJ, Patmore DM, Hegde RS, Cripe TP, Cancelas JA, Collins MH, Ratner N (2009) Inhibition of Eyes absent homolog 4 expression induces malignant peripheral nerve sheath tumor necrosis. Oncogene 29(3):368–379. doi:10.1038/onc.2009.360 PubMedGoogle Scholar
  70. 70.
    Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36(17):5678–5694. doi:10.1093/nar/gkn550 PubMedGoogle Scholar
  71. 71.
    Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P, Hofmann K, Patel DJ, Elledge SJ, Allis CD (2009) WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457(7225):57–62. doi:10.1038/nature07668 PubMedGoogle Scholar
  72. 72.
    Xie A, Odate S, Chandramouly G, Scully R (2010) H2AX post-translational modifications in the ionizing radiation response and homologous recombination. Cell Cycle 9(17):3602–3610. doi:10.4161/cc.9.17.12884 PubMedGoogle Scholar
  73. 73.
    Economopoulou M, Langer HF, Celeste A, Orlova VV, Choi EY, Ma M, Vassilopoulos A, Callen E, Deng C, Bassing CH, Boehm M, Nussenzweig A, Chavakis T (2009) Histone H2AX is integral to hypoxia-driven neovascularization. Nat Med 15(5):553–558. doi:10.1038/nm.1947 PubMedGoogle Scholar
  74. 74.
    Wang CA, Jedlicka P, Patrick AN, Micalizzi DS, Lemmer KC, Deitsch E, Casas-Selves M, Harrell JC, Ford HL (2012) SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer. J Clin Invest 122(5):1895–1906. doi:10.1172/JCI59858 PubMedGoogle Scholar
  75. 75.
    Edwards RG, Beard HK (1997) Oocyte polarity and cell determination in early mammalian embryos. Mol Hum Reprod 3(10):863–905PubMedGoogle Scholar
  76. 76.
    Plusa B, Hadjantonakis AK, Gray D, Piotrowska-Nitsche K, Jedrusik A, Papaioannou VE, Glover DM, Zernicka-Goetz M (2005) The first cleavage of the mouse zygote predicts the blastocyst axis. Nature 434(7031):391–395. doi:10.1038/nature03388 PubMedGoogle Scholar
  77. 77.
    Bai J, Montell D (2002) Eyes absent, a key repressor of polar cell fate during Drosophila oogenesis. Development 129(23):5377–5388PubMedGoogle Scholar
  78. 78.
    Leiserson WM, Bonini NM, Benzer S (1994) Transvection at the eyes absent gene of Drosophila. Genetics 138(4):1171–1179PubMedGoogle Scholar
  79. 79.
    Duncan MK, Kos L, Jenkins NA, Gilbert DJ, Copeland NG, Tomarev SI (1997) Eyes absent: a gene family found in several metazoan phyla. Mamm Genome 8(7):479–485PubMedGoogle Scholar
  80. 80.
    Borsani G, DeGrandi A, Ballabio A, Bulfone A, Bernard L, Banfi S, Gattuso C, Mariani M, Dixon M, Donnai D, Metcalfe K, Winter R, Robertson M, Axton R, Brown A, van Heyningen V, Hanson I (1999) EYA4, a novel vertebrate gene related to Drosophila eyes absent. Hum Mol Genet 8(1):11–23PubMedGoogle Scholar
  81. 81.
    Zimmerman JE, Bui QT, Steingrimsson E, Nagle DL, Fu W, Genin A, Spinner NB, Copeland NG, Jenkins NA, Bucan M, Bonini NM (1997) Cloning and characterization of two vertebrate homologs of the Drosophila eyes absent gene. Genome Res 7(2):128–141PubMedGoogle Scholar
  82. 82.
    Neilson KM, Pignoni F, Yan B, SA M (2010) Developmental expression patterns of candidate cofactors for vertebrate six family transcription factors. Dev Dyn 239(12):3446–3466. doi:10.1002/dvdy.22484 PubMedGoogle Scholar
  83. 83.
    Fougerousse F, Durand M, Lopez S, Suel L, Demignon J, Thornton C, Ozaki H, Kawakami K, Barbet P, Beckmann JS, Maire P (2002) Six and Eya expression during human somitogenesis and MyoD gene family activation. J Muscle Res Cell Motil 23(3):255–264PubMedGoogle Scholar
  84. 84.
    Eissenberg JC, Ryerse JS (1991) ey-2: A recessive eyeless mutation on the second chromosome of Drosophila melanogaster. Drosophila Inf Serv 70:266–268Google Scholar
  85. 85.
    Sved J (1986) Eyes Absent (eya). Drosophila Inf Serv 63:169Google Scholar
  86. 86.
    Bui QT, Zimmerman JE, Liu H, Bonini NM (2000) Molecular analysis of Drosophila eyes absent mutants reveals features of the conserved Eya domain. Genetics 155(2):709–720PubMedGoogle Scholar
  87. 87.
    Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, Weil D, Cruaud C, Sahly I, Leibovici M, Bitner-Glindzicz M, Francis M, Lacombe D, Vigneron J, Charachon R, Boven K, Bedbeder P, Van Regemorter N, Weissenbach J, Petit C (1997) A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 15(2):157–164. doi:10.1038/ng0297-157 PubMedGoogle Scholar
  88. 88.
    Kalatzis V, Sahly I, El-Amraoui A, Petit C (1998) Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of branchio-oto-renal (BOR) syndrome. Dev Dyn 213(4):486–499PubMedGoogle Scholar
  89. 89.
    Ishihara T, Ikeda K, Sato S, Yajima H, Kawakami K (2008) Differential expression of Eya1 and Eya2 during chick early embryonic development. Gene Expr Patterns 8(5):357–367. doi:10.1016/j.gep.2008.01.003 PubMedGoogle Scholar
  90. 90.
    Sajithlal G, Zou D, Silvius D, Xu PX (2005) Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol 284(2):323–336. doi:10.1016/j.ydbio.2005.05.029 PubMedGoogle Scholar
  91. 91.
    Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130(14):3085–3094PubMedGoogle Scholar
  92. 92.
    Nie X, Xu J, El-Hashash A, Xu PX (2011) Six1 regulates Grem1 expression in the metanephric mesenchyme to initiate branching morphogenesis. Dev Biol 352(1):141–151. doi:10.1016/j.ydbio.2011.01.027 PubMedGoogle Scholar
  93. 93.
    Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25(21):5214–5228. doi:10.1038/sj.emboj.7601381 PubMedGoogle Scholar
  94. 94.
    Schlosser G, Ahrens K (2004) Molecular anatomy of placode development in Xenopus laevis. Dev Biol 271(2):439–466. doi:10.1016/j.ydbio.2004.04.013s PubMedGoogle Scholar
  95. 95.
    Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, Levi-Acobas F, Cruaud C, Le Merrer M, Mathieu M, Konig R, Vigneron J, Weissenbach J, Petit C, Weil D (1997) Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Hum Mol Genet 6(13):2247–2255PubMedGoogle Scholar
  96. 96.
    Kim SH, Shin JH, Yeo CK, Chang SH, Park SY, Cho EH, Ki CS, Kim JW (2005) Identification of a novel mutation in the EYA1 gene in a Korean family with branchio-oto-renal (BOR) syndrome. Int J Pediatr Otorhinolaryngol 69(8):1123–1128. doi:10.1016/j.ijporl.2005.03.003 PubMedGoogle Scholar
  97. 97.
    Rickard S, Parker M, van’t Hoff W, Barnicoat A, Russell-Eggitt I, Winter RM, Bitner-Glindzicz M (2001) Oto-facio-cervical (OFC) syndrome is a contiguous gene deletion syndrome involving EYA1: molecular analysis confirms allelism with BOR syndrome and further narrows the Duane syndrome critical region to 1 cM. Hum Genet 108(5):398–403PubMedGoogle Scholar
  98. 98.
    Vincent C, Kalatzis V, Abdelhak S, Chaib H, Compain S, Helias J, Vaneecloo FM, Petit C (1997) BOR and BO syndromes are allelic defects of EYA1. Eur J Hum Genet 5(4):242–246PubMedGoogle Scholar
  99. 99.
    Wayne S, Robertson NG, DeClau F, Chen N, Verhoeven K, Prasad S, Tranebjarg L, Morton CC, Ryan AF, Van Camp G, Smith RJ (2001) Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet 10(3):195–200PubMedGoogle Scholar
  100. 100.
    Sato S, Ikeda K, Shioi G, Ochi H, Ogino H, Yajima H, Kawakami K (2010) Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR. Dev Biol 344(1):158–171. doi:10.1016/j.ydbio.2010.04.029 PubMedGoogle Scholar
  101. 101.
    Kozlowski DJ, Whitfield TT, Hukriede NA, Lam WK, Weinberg ES (2005) The zebrafish dog-eared mutation disrupts eya1, a gene required for cell survival and differentiation in the inner ear and lateral line. Dev Biol 277(1):27–41PubMedGoogle Scholar
  102. 102.
    Bane BC, Van Rybroek JM, Kolker SJ, Weeks DL, Manaligod JM (2005) EYA1 expression in the developing inner ear. Ann Otol Rhinol Laryngol 114(11):853–858PubMedGoogle Scholar
  103. 103.
    Li Y, Manaligod JM, Weeks DL (2010) EYA1 mutations associated with the branchio-oto-renal syndrome result in defective otic development in Xenopus laevis. Biol Cell 102(5):277–292. doi:10.1042/BC20090098 PubMedGoogle Scholar
  104. 104.
    Ahmed M, Xu J, Xu PX (2012) EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development 139(11):1965–77. doi:10.1242/dev.071670 PubMedGoogle Scholar
  105. 105.
    Depreux FF, Darrow K, Conner DA, Eavey RD, Liberman MC, Seidman CE, Seidman JG (2008) Eya4-deficient mice are a model for heritable otitis media. J Clin Invest 118(2):651–658. doi:10.1172/JCI32899 PubMedGoogle Scholar
  106. 106.
    Schonberger J, Wang L, Shin JT, Kim SD, Depreux FF, Zhu H, Zon L, Pizard A, Kim JB, Macrae CA, Mungall AJ, Seidman JG, Seidman CE (2005) Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet 37(4):418–422. doi:10.1038/ng1527 PubMedGoogle Scholar
  107. 107.
    Shimasaki N, Watanabe K, Hara M, Kosaki K (2004) EYA1 mutation in a newborn female presenting with cardiofacial syndrome. Pediatr Cardiol 25(4):411–413. doi:10.1007/s00246-003-0271-3 PubMedGoogle Scholar
  108. 108.
    Soker T, Dalke C, Puk O, Floss T, Becker L, Bolle I, Favor J, Hans W, Holter SM, Horsch M, Kallnik M, Kling E, Moerth C, Schrewe A, Stigloher C, Topp S, Gailus-Durner V, Naton B, Beckers J, Fuchs H, Ivandic B, Klopstock T, Schulz H, Wolf E, Wurst W, Bally-Cuif L, de Angelis MH, Graw J (2008) Pleiotropic effects in Eya3 knockout mice. BMC Dev Biol 8:118. doi:10.1186/1471-213X-8-118 PubMedGoogle Scholar
  109. 109.
    Yang DK, Choi BY, Lee YH, Kim YG, Cho MC, Hong SE, Kim do H, Hajjar RJ, Park WJ (2007) Gene profiling during regression of pressure overload-induced cardiac hypertrophy. Physiol Genomics 30(1):1–7. doi:10.1152/physiolgenomics.00246.2006 PubMedGoogle Scholar
  110. 110.
    Lee SH, Yang DK, Choi BY, Lee Y-H, Kim S-Y, Jeong D, Hajjar RJ, Park WJ (2009) The transcription factor Eya2 prevents pressure overload-induced adverse cardiac remodeling. J Mol Cell Cardiol 46(4):596–605PubMedGoogle Scholar
  111. 111.
    Lee SH, Kim J, Ryu JY, Lee S, Yang DK, Jeong D, Kim JM, Hajjar RJ, Park WJ (2012) Transcription coactivator Eya2 is a critical regulator of physiological hypertrophy. J Mol Cell Cardiol 52(3):718–726. doi:10.1016/j.yjmcc.2011.12.002 PubMedGoogle Scholar
  112. 112.
    McMullen JR, Jennings GL (2007) Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 34(4):255–262. doi:10.1111/j.1440-1681.2007.04585.x PubMedGoogle Scholar
  113. 113.
    Walker MB, Trainor PA (2006) Craniofacial malformations: intrinsic vs extrinsic neural crest cell defects in Treacher Collins and 22q11 deletion syndromes. Clin Genet 69(6):471–479. doi:10.1111/j.0009-9163.2006.00615.x PubMedGoogle Scholar
  114. 114.
    Mercer C, Gilbert R, Loughlin S, Foulds N (2006) Patient with an EYA1 mutation with features of branchio-oto-renal and oto-facio-cervical syndrome. Clin Dysmorphol 15(4):211–212. doi:10.1097/01.mcd.0000204986.54366.7c PubMedGoogle Scholar
  115. 115.
    Estefania E, Ramirez-Camacho R, Gomar M, Trinidad A, Arellano B, Garcia-Berrocal JR, Verdaguer JM, Vilches C (2006) Point mutation of an EYA1-gene splice site in a patient with oto-facio-cervical syndrome. Ann Hum Genet 70(Pt 1):140–144. doi:10.1111/j.1529-8817.2005.00204.x PubMedGoogle Scholar
  116. 116.
    Schlosser G (2006) Induction and specification of cranial placodes. Dev Biol 294(2):303–351. doi:10.1016/j.ydbio.2006.03.009 PubMedGoogle Scholar
  117. 117.
    Zou D, Silvius D, Fritzsch B, Xu PX (2004) Eya1 and Six1 are essential for early steps of sensory neurogenesis in mammalian cranial placodes. Development 131(22):5561–5572. doi:10.1242/dev.01437 PubMedGoogle Scholar
  118. 118.
    Schlosser G, Awtry T, Brugmann SA, Jensen ED, Neilson K, Ruan G, Stammler A, Voelker D, Yan B, Zhang C, Klymkowsky MW, Moody SA (2008) Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion. Dev Biol 320(1):199–214. doi:10.1016/j.ydbio.2008.05.523 PubMedGoogle Scholar
  119. 119.
    Nakao N, Ono H, Yamamura T, Anraku T, Takagi T, Higashi K, Yasuo S, Katou Y, Kageyama S, Uno Y, Kasukawa T, Iigo M, Sharp PJ, Iwasawa A, Suzuki Y, Sugano S, Niimi T, Mizutani M, Namikawa T, Ebihara S, Ueda HR, Yoshimura T (2008) Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452(7185):317–322. doi:10.1038/nature06738 PubMedGoogle Scholar
  120. 120.
    Masumoto KH, Ukai-Tadenuma M, Kasukawa T, Nagano M, Uno KD, Tsujino K, Horikawa K, Shigeyoshi Y, Ueda HR (2010) Acute induction of Eya3 by late-night light stimulation triggers TSHbeta expression in photoperiodism. Curr Biol 20(24):2199–2206. doi:10.1016/j.cub.2010.11.038 PubMedGoogle Scholar
  121. 121.
    Dupre SM, Miedzinska K, Duval CV, Yu L, Goodman RL, Lincoln GA, Davis JR, McNeilly AS, Burt DD, Loudon AS (2010) Identification of Eya3 and TAC1 as long-day signals in the sheep pituitary. Curr Biol 20(9):829–835. doi:10.1016/j.cub.2010.02.066 PubMedGoogle Scholar
  122. 122.
    Dardente H, Wyse CA, Birnie MJ, Dupre SM, Loudon AS, Lincoln GA, Hazlerigg DG (2010) A molecular switch for photoperiod responsiveness in mammals. Curr Biol 20(24):2193–2198. doi:10.1016/j.cub.2010.10.048 PubMedGoogle Scholar
  123. 123.
    Brady AK, Snyder KA, Vize PD (2011) Circadian cycles of gene expression in the coral, Acropora millepora. PLoS One 6(9):e25072. doi:10.1371/journal.pone.0025072 PubMedGoogle Scholar
  124. 124.
    Spruijt L, Hoefsloot LH, van Schaijk GH, van Waardenburg D, Kremer B, Brackel HJ, de Die-Smulders CE (2006) Identification of a novel EYA1 mutation presenting in a newborn with laryngomalacia, glossoptosis, retrognathia, and pectus excavatum. Am J Med Genet A 140(12):1343–1345. doi:10.1002/ajmg.a.31285 PubMedGoogle Scholar
  125. 125.
    Buller C, Xu X, Marquis V, Schwanke R, Xu PX (2001) Molecular effects of Eya1 domain mutations causing organ defects in BOR syndrome. Hum Mol Genet 10(24):2775–2781PubMedGoogle Scholar
  126. 126.
    Rayapureddi JP, Hegde RS (2006) Branchio-oto-renal syndrome associated mutations in Eyes absent 1 result in loss of phosphatase activity. FEBS Lett 580(16):3853–3859PubMedGoogle Scholar
  127. 127.
    Miller G, Fuchs R, Lai E (1997) IMAGE cDNA clones, UniGene clustering, and ACeDB: an integrated resource for expressed sequence information. Genome Res 7(10):1027–1032PubMedGoogle Scholar
  128. 128.
    Zou H, Osborn NK, Harrington JJ, Klatt KK, Molina JR, Burgart LJ, Ahlquist DA (2005) Frequent methylation of eyes absent 4 gene in Barrett’s esophagus and esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 14(4):830–834. doi:10.1158/1055-9965.EPI-04-0506 PubMedGoogle Scholar
  129. 129.
    Schatz P, Distler J, Berlin K, Schuster M (2006) Novel method for high throughput DNA methylation marker evaluation using PNA-probe library hybridization and MALDI-TOF detection. Nucleic Acids Res 34(8):e59. doi:10.1093/nar/gkl218 PubMedGoogle Scholar
  130. 130.
    Osborn NK, Zou H, Molina JR, Lesche R, Lewin J, Lofton-Day C, Klatt KK, Harrington JJ, Burgart LJ, Ahlquist DA (2006) Aberrant methylation of the eyes absent 4 gene in ulcerative colitis-associated dysplasia. Clin Gastroenterol Hepatol 4(2):212–218. doi:10.1016/j.cgh.2005.11.009 PubMedGoogle Scholar
  131. 131.
    Kim YH, Lee HC, Kim SY, Yeom YI, Ryu KJ, Min BH, Kim DH, Son HJ, Rhee PL, Kim JJ, Rhee JC, Kim HC, Chun HK, Grady WM, Kim YS (2011) Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations. Ann Surg Oncol 18(8):2338–2347. doi:10.1245/s10434-011-1573-y PubMedGoogle Scholar
  132. 132.
    Li H, Diao TY, Zhou ZY, Yang FY, Ma Q, Li QH (2009) Relationship between the expression of hTERT and EYA4 mRNA in peripheral blood mononuclear cells with the progressive stages of carcinogenesis of the esophagus. J Exp Clin Cancer Res 28:145. doi:10.1186/1756-9966-28-145 PubMedGoogle Scholar
  133. 133.
    Zhang L, Yang N, Huang J, Buckanovich RJ, Liang S, Barchetti A, Vezzani C, O’Brien-Jenkins A, Wang J, Ward MR, Courreges MC, Fracchioli S, Medina A, Katsaros D, Weber BL, Coukos G (2005) Transcriptional coactivator Drosophila eyes absent homologue 2 is up-regulated in epithelial ovarian cancer and promotes tumor growth. Cancer Res 65(3):925–932PubMedGoogle Scholar
  134. 134.
    Guo J, Liang C, Ding L, Zhou N, Ye Q (2009) Drosophila Eyes absent homologue 2 is up-regulated in lung adenocarcinoma. Chin Ger J Clin Oncol 8(12):681–684. doi:10.1007/s10330-009-0166-8 Google Scholar
  135. 135.
    Farabaugh SM, Micalizzi DS, Jedlicka P, Zhao R, Ford HL (2012) Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-beta signaling, epithelial-mesenchymal transition, and cancer stem cell properties. Oncogene 31(5):552–62. doi:10.1038/onc.2011.259 PubMedGoogle Scholar
  136. 136.
    Drake KM, Ruteshouser EC, Natrajan R, Harbor P, Wegert J, Gessler M, Pritchard-Jones K, Grundy P, Dome J, Huff V, Jones C, Aldred MA (2009) Loss of heterozygosity at 2q37 in sporadic Wilms’ tumor: putative role for miR-562. Clin Cancer Res 15(19):5985–5992. doi:10.1158/1078-0432.CCR-09-1065 PubMedGoogle Scholar
  137. 137.
    Li CM, Guo M, Borczuk A, Powell CA, Wei M, Thaker HM, Friedman R, Klein U, Tycko B (2002) Gene expression in Wilms’ tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am J Pathol 160(6):2181–2190PubMedGoogle Scholar
  138. 138.
    Matsusaka K, Kaneda A, Nagae G, Ushiku T, Kikuchi Y, Hino R, Uozaki H, Seto Y, Takada K, Aburatani H, Fukayama M (2011) Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res 71(23):7187–7197. doi:10.1158/0008-5472.CAN-11-1349 PubMedGoogle Scholar
  139. 139.
    Zou H, Harrington JJ, Shire AM, Rego RL, Wang L, Campbell ME, Oberg AL, Ahlquist DA (2007) Highly methylated genes in colorectal neoplasia: implications for screening. Cancer Epidemiol Biomarkers Prev 16(12):2686–2696. doi:10.1158/1055-9965.EPI-07-0518 PubMedGoogle Scholar
  140. 140.
    Gutierrez ML, Munoz-Bellvis L, Abad Mdel M, Bengoechea O, Gonzalez–Gonzalez M, Orfao A, Sayagues JM (2011) Association between genetic subgroups of pancreatic ductal adenocarcinoma defined by high density 500 K SNP-arrays and tumor histopathology. PLoS One 6(7):e22315. doi:10.1371/journal.pone.0022315 PubMedGoogle Scholar
  141. 141.
    Nan F, Lu Q, Zhou J, Cheng L, Popov VM, Wei S, Kong B, Pestell RG, Lisanti MP, Jiang J, Wang C (2009) Altered expression of DACH1 and cyclin D1 in endometrial cancer. Cancer Biol Ther 8(16):1534–1539PubMedGoogle Scholar
  142. 142.
    Popov VM, Wu K, Zhou J, Powell MJ, Mardon G, Wang C, Pestell RG (2010) The Dachshund gene in development and hormone-responsive tumorigenesis. Trends Endocrinol Metab 21(1):41–49. doi:10.1016/j.tem.2009.08.002 PubMedGoogle Scholar
  143. 143.
    Wu K, Katiyar S, Li A, Liu M, Ju X, Popov VM, Jiao X, Lisanti MP, Casola A, Pestell RG (2008) Dachshund inhibits oncogene-induced breast cancer cellular migration and invasion through suppression of interleukin-8. Proc Natl Acad Sci USA 105(19):6924–6929PubMedGoogle Scholar
  144. 144.
    Wu K, Li A, Rao M, Liu M, Dailey V, Yang Y, Di Vizio D, Wang C, Lisanti MP, Sauter G, Russell RG, Cvekl A, Pestell RG (2006) DACH1 is a cell fate determination factor that inhibits cyclin D1 and breast tumor growth. Mol Cell Biol 26(19):7116–7129PubMedGoogle Scholar
  145. 145.
    Smith AN, Miller LA, Song N, Taketo MM, Lang RA (2005) The duality of beta-catenin function: a requirement in lens morphogenesis and signaling suppression of lens fate in periocular ectoderm. Dev Biol 285(2):477–489PubMedGoogle Scholar
  146. 146.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013 PubMedGoogle Scholar
  147. 147.
    Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584. doi:10.1146/annurev-cellbio-092910-154002 PubMedGoogle Scholar
  148. 148.
    Sarasin A, Kauffmann A (2008) Overexpression of DNA repair genes is associated with metastasis: a new hypothesis. Mutat Res 659(1–2):49–55. doi:10.1016/j.mrrev.2007.12.002 PubMedGoogle Scholar
  149. 149.
    Kauffmann A, Rosselli F, Lazar V, Winnepenninckx V, Mansuet-Lupo A, Dessen P, van den Oord JJ, Spatz A, Sarasin A (2008) High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene 27(5):565–573. doi:10.1038/sj.onc.1210700 PubMedGoogle Scholar
  150. 150.
    Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discovery 1(9):727–730. doi:10.1038/nrd892 Google Scholar
  151. 151.
    Park H, Jung SK, Yu KR, Kim JH, Kim YS, Ko JH, Park BC, Kim SJ (2011) Structure-based virtual screening approach to the discovery of novel inhibitors of eyes absent 2 phosphatase with various metal chelating moieties. Chem Biol Drug Des 78(4):642–650. doi:10.1111/j.1747-0285.2011.01192.x PubMedGoogle Scholar
  152. 152.
    Kozmik Z, Holland ND, Kreslova J, Oliveri D, Schubert M, Jonasova K, Holland LZ, Pestarino M, Benes V, Candiani S (2007) Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev Biol 306(1):143–159. doi:10.1016/j.ydbio.2007.03.009 PubMedGoogle Scholar
  153. 153.
    Hu S, Mamedova A, Hegde RS (2008) DNA-binding and regulation mechanisms of the SIX family of retinal determination proteins. Biochemistry 47(11):3586–3594. doi:10.1021/bi702186s PubMedGoogle Scholar
  154. 154.
    Embry AC, Glick JL, Linder ME, Casey PJ (2004) Reciprocal signaling between the transcriptional co-factor Eya2 and specific members of the G alpha i family. Mol Pharmacol 66(5):1325–1331. doi:10.1124/Mol.104.004093 PubMedGoogle Scholar
  155. 155.
    Xu PX, Zheng W, Laclef C, Maire P, Maas RL, Peters H, Xu X (2002) Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129(13):3033–3044PubMedGoogle Scholar
  156. 156.
    Grifone R, Demignon J, Giordani J, Niro C, Souil E, Bertin F, Laclef C, Xu PX, Maire P (2007) Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev Biol 302(2):602–616PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Division of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations