Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 8, pp 1381–1392 | Cite as

Chromosomal translocations among the healthy human population: implications in oncogenesis

  • Mridula Nambiar
  • Sathees C. Raghavan
Review

Abstract

Chromosomal translocations are characteristic features of many cancers, especially lymphoma and leukemia. However, recent reports suggest that many chromosomal translocations can be found in healthy individuals, although the significance of this observation is still not clear. In this review, we summarize recent studies on chromosomal translocations in healthy individuals carried out in different geographical areas of the world and discuss the relevance of the observation with respect to oncogenesis.

Keywords

Leukemia Lymphoma Neoplasia Carcinoma Sarcoma Genomic instability V(D)J recombination 

Notes

Acknowledgments

We thank Mr. Kohal Das, Ms. Nishana M. and Ms. Divyaanka Iyyer for critical reading of the manuscript. Our work is supported by grants from DBT, India BT/PR13722/BRB/10/781/2010 for SCR. MN is supported by IISc Research Associate Fellowship.

References

  1. 1.
    Rowley JD (2001) Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer 1:245–250PubMedCrossRefGoogle Scholar
  2. 2.
    Rabbitts TH (1994) Chromosomal translocations in human cancer. Nature 372:143–149PubMedCrossRefGoogle Scholar
  3. 3.
    Korsmeyer SJ (1992) Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes. Annu Rev Immunol 10:785–807PubMedCrossRefGoogle Scholar
  4. 4.
    Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497Google Scholar
  5. 5.
    Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, Korsmeyer SJ (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41:899–906PubMedCrossRefGoogle Scholar
  6. 6.
    Armstrong SA et al (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30:41–47PubMedCrossRefGoogle Scholar
  7. 7.
    Jager U et al (2000) Follicular lymphomas’ BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 95:3520–3529PubMedGoogle Scholar
  8. 8.
    Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79:7837–7841PubMedCrossRefGoogle Scholar
  9. 9.
    Cleary ML, Sklar J (1985) DNA rearrangements in non-Hodgkin’s lymphomas. Cancer Surv 4:331–348PubMedGoogle Scholar
  10. 10.
    Lieber MR (1993) In: Kirsch I (ed) The Causes and Consequences of Chromosomal Aberrations. CRC Press, USA, pp 239–275Google Scholar
  11. 11.
    Nambiar M, Kari V, Raghavan SC (2008) Chromosomal translocations in cancer. Biochim Biophys Acta 1786:139–152PubMedGoogle Scholar
  12. 12.
    Nambiar M, Choudhary B, Rao CR, Raghavan SC (2008) Amplification of chromosomal translocation junctions from paraffin-embedded tissues of follicular lymphoma patients. Biomed Mater 3:034103PubMedCrossRefGoogle Scholar
  13. 13.
    Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM (1984) Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224:1403–1406PubMedCrossRefGoogle Scholar
  14. 14.
    Tsujimoto Y, Jaffe E, Cossman J, Gorham J, Nowell PC, Croce CM (1985) Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature 315:340–343PubMedCrossRefGoogle Scholar
  15. 15.
    Raghavan SC, Lieber MR (2006) DNA structures at chromosomal translocation sites. BioEssays 28:480–494PubMedCrossRefGoogle Scholar
  16. 16.
    Tomlins SA et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648PubMedCrossRefGoogle Scholar
  17. 17.
    Tomlins SA et al (2006) TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 66:3396–3400PubMedCrossRefGoogle Scholar
  18. 18.
    Tomlins SA et al (2007) Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448:595–599PubMedCrossRefGoogle Scholar
  19. 19.
    Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8:497–511PubMedCrossRefGoogle Scholar
  20. 20.
    Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2006) Evidence of recurrent gene fusions in common epithelial tumors. Trends Mol Med 12:529–536PubMedCrossRefGoogle Scholar
  21. 21.
    Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G (1985) Structural organization of the bcr gene and its role in the Ph’ translocation. Nature 315:758–761PubMedCrossRefGoogle Scholar
  22. 22.
    Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36:93–99PubMedCrossRefGoogle Scholar
  23. 23.
    Groffen J, Heisterkamp N (1987) The BCR/ABL hybrid gene. Bailliere’s Clin Haematol 1:983–999CrossRefGoogle Scholar
  24. 24.
    McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP, Korsmeyer SJ (1989) Bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57:79–88PubMedCrossRefGoogle Scholar
  25. 25.
    Korsmeyer SJ (1999) BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59:1693s–1700sPubMedGoogle Scholar
  26. 26.
    Graninger W, Seto M, Boutain B, Goldman P, Korsmeyer SJ (1987) Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in normal and neoplastic cells. J Clin Invest 80:1512–1515PubMedCrossRefGoogle Scholar
  27. 27.
    Bakhshi A et al (1987) Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci USA 84:2396–2400PubMedCrossRefGoogle Scholar
  28. 28.
    Raghavan SC, Swanson PC, Wu X, Hsieh CL, Lieber MR (2004) A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature 428:88–93PubMedCrossRefGoogle Scholar
  29. 29.
    Nambiar M, Raghavan SC (2012) Mechanism of fragility at BCL2 gene minor breakpoint cluster region during t(14;18) chromosomal translocation. J Biol Chem 287:8688–8701PubMedCrossRefGoogle Scholar
  30. 30.
    Nambiar M, Goldsmith G, Moorthy BT, Lieber MR, Joshi VM, Choudhary B, Hosur RV, Raghavan SC (2011) Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic Acids Res 39:936–948PubMedCrossRefGoogle Scholar
  31. 31.
    Dalla-Favera R et al (1994) Identification of genetic lesions associated with diffuse large-cell lymphoma. Ann Oncol 5(Suppl 1):55–60PubMedCrossRefGoogle Scholar
  32. 32.
    Cesarman E, Dalla-Favera R, Bentley D, Groudine M (1987) Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science 238:1272–1275PubMedCrossRefGoogle Scholar
  33. 33.
    Gelmann EP, Psallidopoulos MC, Papas TS, Dalla-Favera R (1983) Identification of reciprocal translocation sites within the c-myc oncogene and immunoglobulin mu locus in a Burkitt lymphoma. Nature 306:799–803PubMedCrossRefGoogle Scholar
  34. 34.
    Ye BH, Chaganti S, Chang CC, Niu H, Corradini P, Chaganti RS, Dalla-Favera R (1995) Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. EMBO J 14:6209–6217PubMedGoogle Scholar
  35. 35.
    Hamlyn PH, Rabbitts TH (1983) Translocation joins c-myc and immunoglobulin gamma 1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene. Nature 304:135–139PubMedCrossRefGoogle Scholar
  36. 36.
    Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827PubMedCrossRefGoogle Scholar
  37. 37.
    Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, Palanisamy N, Chinnaiyan AM (2009) Induced chromosomal proximity and gene fusions in prostate cancer. Science 326:1230PubMedCrossRefGoogle Scholar
  38. 38.
    Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA, Schalken JA (2009) ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 56:275–286PubMedCrossRefGoogle Scholar
  39. 39.
    Nussenzweig A, Nussenzweig MC (2010) Origin of chromosomal translocations in lymphoid cancer. Cell 141:27–38PubMedCrossRefGoogle Scholar
  40. 40.
    Brenner JC, Chinnaiyan AM (2009) Translocations in epithelial cancers. Biochim Biophys Acta 1796:201–215PubMedGoogle Scholar
  41. 41.
    Nambiar M, Raghavan SC (2011) How does DNA break during chromosomal translocations? Nucleic Acids Res 39:5813–5825PubMedCrossRefGoogle Scholar
  42. 42.
    Janz S, Potter M, Rabkin CS (2003) Lymphoma- and leukemia-associated chromosomal translocations in healthy individuals. Genes Chromosomes Cancer 36:211–223PubMedCrossRefGoogle Scholar
  43. 43.
    Rabkin CS, Hirt C, Janz S, Dolken G (2008) t(14;18) Translocations and risk of follicular lymphoma. J Natl Cancer Inst Monogr 39:48–51PubMedCrossRefGoogle Scholar
  44. 44.
    Schuler F, Hirt C, Dolken G (2003) Chromosomal translocation t(14;18) in healthy individuals. Semin Cancer Biol 13:203–209PubMedCrossRefGoogle Scholar
  45. 45.
    Basecke J, Griesinger F, Trumper L, Brittinger G (2002) Leukemia- and lymphoma-associated genetic aberrations in healthy individuals. Ann Hematol 81:64–75PubMedCrossRefGoogle Scholar
  46. 46.
    Brassesco MS, Montaldi AP, Gras DE, de Paula Queiroz RG, Martinez-Rossi NM, Tone LG, Sakamoto-Hojo ET (2009) MLL leukemia-associated rearrangements in peripheral blood lymphocytes from healthy individuals. Genet Mol Biol 32:234–241PubMedGoogle Scholar
  47. 47.
    Biernaux C, Loos M, Sels A, Huez G, Stryckmans P (1995) Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 86:3118–3122PubMedGoogle Scholar
  48. 48.
    Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV (1998) The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92:3362–3367PubMedGoogle Scholar
  49. 49.
    Trumper L, Pfreundschuh M, Bonin FV, Daus H (1998) Detection of the t(2;5)-associated NPM/ALK fusion cDNA in peripheral blood cells of healthy individuals. Br J Haematol 103:1138–1144PubMedCrossRefGoogle Scholar
  50. 50.
    Maes B, Vanhentenrijk V, Wlodarska I, Cools J, Peeters B, Marynen P, de Wolf-Peeters C (2001) The NPM-ALK and the ATIC-ALK fusion genes can be detected in non-neoplastic cells. Am J Pathol 158:2185–2193PubMedCrossRefGoogle Scholar
  51. 51.
    Hirt C, Schuler F, Dolken L, Schmidt CA, Dolken G (2004) Low prevalence of circulating t(11;14)(q13;q32)-positive cells in the peripheral blood of healthy individuals as detected by real-time quantitative PCR. Blood 104:904–905PubMedCrossRefGoogle Scholar
  52. 52.
    Nambiar M, Raghavan SC (2010) Prevalence and analysis of t(14;18) and t(11;14) chromosomal translocations in healthy Indian population. Ann Hematol 89:35–43PubMedCrossRefGoogle Scholar
  53. 53.
    Lecluse Y, Lebailly P, Roulland S, Gac AC, Nadel B, Gauduchon P (2009) t(11;14)-positive clones can persist over a long period of time in the peripheral blood of healthy individuals. Leukemia 23:1190–1193PubMedCrossRefGoogle Scholar
  54. 54.
    Roulland S, Lebailly P, Lecluse Y, Heutte N, Nadel B, Gauduchon P (2006) Long-term clonal persistence and evolution of t(14;18)-bearing B cells in healthy individuals. Leukemia 20:158–162PubMedCrossRefGoogle Scholar
  55. 55.
    Liu Y, Hernandez AM, Shibata D, Cortopassi GA (1994) BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci USA 91:8910–8914PubMedCrossRefGoogle Scholar
  56. 56.
    Dolken G, Illerhaus G, Hirt C, Mertelsmann R (1996) BCL-2/JH rearrangements in circulating B cells of healthy blood donors and patients with nonmalignant diseases. J Clin Oncol 14:1333–1344PubMedGoogle Scholar
  57. 57.
    Fuscoe JC, Setzer RW, Collard DD, Moore MM (1996) Quantification of t(14;18) in the lymphocytes of healthy adult humans as a possible biomarker for environmental exposures to carcinogens. Carcinogenesis 17:1013–1020PubMedCrossRefGoogle Scholar
  58. 58.
    Limpens J, Stad R, Vos C, de Vlaam C, de Jong D, van Ommen GJ, Schuuring E, Kluin PM (1995) Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood 85:2528–2536PubMedGoogle Scholar
  59. 59.
    Summers KE, Goff LK, Wilson AG, Gupta RK, Lister TA, Fitzgibbon J (2001) Frequency of the Bcl-2/IgH rearrangement in normal individuals: implications for the monitoring of disease in patients with follicular lymphoma. J Clin Oncol 19:420–424PubMedGoogle Scholar
  60. 60.
    Schmitt C et al (2006) The bcl-2/IgH rearrangement in a population of 204 healthy individuals: occurrence, age and gender distribution, breakpoints, and detection method validity. Leuk Res 30:745–750PubMedCrossRefGoogle Scholar
  61. 61.
    Yasukawa M, Bando S, Dolken G, Sada E, Yakushijin Y, Fujita S, Makino H (2001) Low frequency of BCL-2/J(H) translocation in peripheral blood lymphocytes of healthy Japanese individuals. Blood 98:486–488PubMedCrossRefGoogle Scholar
  62. 62.
    Aster JC, Kobayashi Y, Shiota M, Mori S, Sklar J (1992) Detection of the t(14;18) at similar frequencies in hyperplastic lymphoid tissues from American and Japanese patients. Am J Pathol 141:291–299PubMedGoogle Scholar
  63. 63.
    Biagi JJ, Seymour JF (2002) Insights into the molecular pathogenesis of follicular lymphoma arising from analysis of geographic variation. Blood 99:4265–4275PubMedCrossRefGoogle Scholar
  64. 64.
    Sahni CS, Desai SB (2007) Distribution and clinicopathologic characteristics of non-Hodgkin’s lymphoma in India: a study of 935 cases using WHO classification of lymphoid neoplasms (2000). Leuk Lymphoma 48:122–133PubMedCrossRefGoogle Scholar
  65. 65.
    Naresh KN, Srinivas V, Soman CS (2000) Distribution of various subtypes of non-Hodgkin’s lymphoma in India: a study of 2773 lymphomas using R.E.A.L. and WHO Classifications. Ann Oncol 11:63–67PubMedCrossRefGoogle Scholar
  66. 66.
    McDonnell TJ, Korsmeyer SJ (1991) Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 349:254–256PubMedCrossRefGoogle Scholar
  67. 67.
    Dolken G, Dolken L, Hirt C, Fusch C, Rabkin CS, Schuler F (2008) Age-dependent prevalence and frequency of circulating t(14;18)-positive cells in the peripheral blood of healthy individuals. J Natl Cancer Inst Monogr 39:44–47PubMedCrossRefGoogle Scholar
  68. 68.
    Ji W, Qu G, Ye P, Zhang X-Y, Halabi S, Ehrlich M (1995) Frequent detection of Bcl-2/JH translocations in human blood and organ samples by a quantitative polymerase chain reaction assay. Cancer Res 55:2876–2882PubMedGoogle Scholar
  69. 69.
    Bell DA, Liu Y, Cortopassi GA (1995) Occurrence of bcl-2 oncogene translocation with increased frequency in the peripheral blood of heavy smokers. J Natl Cancer Inst 87:223–224PubMedCrossRefGoogle Scholar
  70. 70.
    Zuckerman E, Zuckerman T, Sahar D, Streichman S, Attias D, Sabo E, Yeshurun D, Rowe JM (2001) The effect of antiviral therapy on t(14;18) translocation and immunoglobulin gene rearrangement in patients with chronic hepatitis C virus infection. Blood 97:1555–1559PubMedCrossRefGoogle Scholar
  71. 71.
    Zignego AL et al (2000) T(14;18) translocation in chronic hepatitis C virus infection. Hepatology 31:474–479PubMedCrossRefGoogle Scholar
  72. 72.
    McHale CM et al (2008) Chromosome translocations in workers exposed to benzene. J Natl Cancer Inst Monogr 39:74–77PubMedCrossRefGoogle Scholar
  73. 73.
    Roulland S, Lebailly P, Lecluse Y, Briand M, Pottier D, Gauduchon P (2004) Characterization of the t(14;18) BCL2-IGH translocation in farmers occupationally exposed to pesticides. Cancer Res 64:2264–2269PubMedCrossRefGoogle Scholar
  74. 74.
    Zahm SH, Blair A (1992) Pesticides and non-Hodgkin’s lymphoma. Cancer Res 52:5485s–5488sPubMedGoogle Scholar
  75. 75.
    Garry VF, Tarone RE, Long L, Griffith J, Kelly JT, Burroughs B (1996) Pesticide appliers with mixed pesticide exposure: G-banded analysis and possible relationship to non-Hodgkin’s lymphoma. Cancer Epidemiol Biomarkers Prev 5:11–16PubMedGoogle Scholar
  76. 76.
    McDuffie HH et al (2001) Non-Hodgkin’s lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. Cancer Epidemiol Biomarkers Prev 10:1155–1163PubMedGoogle Scholar
  77. 77.
    Garry VF, Griffith J, Danzl TJ, Nelson RL, Whorton EB, Krueger LA, Cervenka J (1989) Human genotoxicity: pesticide applicators and phosphine. Science 246:251–255PubMedCrossRefGoogle Scholar
  78. 78.
    Yunis JJ, Soreng AL, Bowe AE (1987) Fragile sites are targets of diverse mutagens and carcinogens. Oncogene 1:59–69PubMedGoogle Scholar
  79. 79.
    Agopian J et al (2009) Agricultural pesticide exposure and the molecular connection to lymphomagenesis. J Exp Med 206:1473–1483PubMedCrossRefGoogle Scholar
  80. 80.
    Miller RA (1996) The aging immune system: primer and prospectus. Science 273:70–74PubMedCrossRefGoogle Scholar
  81. 81.
    Szabo P, Zhao K, Kirman I, Le Maoult J, Dyall R, Cruikshank W, Weksler ME (1998) Maturation of B cell precursors is impaired in thymic-deprived nude and old mice. J Immunol 161:2248–2253PubMedGoogle Scholar
  82. 82.
    Ghia P, Melchers F, Rolink AG (2000) Age-dependent changes in B lymphocyte development in man and mouse. Exp Gerontol 35:159–165PubMedCrossRefGoogle Scholar
  83. 83.
    Labrie JE 3rd, Borghesi L, Gerstein RM (2005) Bone marrow microenvironmental changes in aged mice compromise V(D)J recombinase activity and B cell generation. Semin Immunol 17:347–355PubMedCrossRefGoogle Scholar
  84. 84.
    Murray JM et al (2006) V(D)J recombinase-mediated processing of coding junctions at cryptic recombination signal sequences in peripheral T cells during human development. J Immunol 177:5393–5404PubMedGoogle Scholar
  85. 85.
    Yoshioka M, O’Neill JP, Vacek PM, Finette BA (2001) Gestational age and gender-specific in utero V(D)J recombinase-mediated deletions. Cancer Res 61:3432–3438PubMedGoogle Scholar
  86. 86.
    Finette BA, Kendall H, Vacek PM (2002) Mutational spectral analysis at the HPRT locus in healthy children. Mutat Res 505:27–41PubMedCrossRefGoogle Scholar
  87. 87.
    Scotland RS, Stables MJ, Madalli S, Watson P, Gilroy DW (2011) Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood 118:5918–5927PubMedCrossRefGoogle Scholar
  88. 88.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  89. 89.
    Lapidot T et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648PubMedCrossRefGoogle Scholar
  90. 90.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737PubMedCrossRefGoogle Scholar
  91. 91.
    Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23:7274–7282PubMedCrossRefGoogle Scholar
  92. 92.
    Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  93. 93.
    Liu R et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226PubMedCrossRefGoogle Scholar
  94. 94.
    Passegue E, Jamieson CH, Ailles LE, Weissman IL (2003) Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 100(Suppl 1):11842–11849PubMedCrossRefGoogle Scholar
  95. 95.
    Hotfilder M et al (2005) Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+CD19− cells. Cancer Res 65:1442–1449PubMedCrossRefGoogle Scholar
  96. 96.
    Castor A et al (2005) Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11:630–637PubMedCrossRefGoogle Scholar
  97. 97.
    Roulland S et al (2006) Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis. J Exp Med 203:2425–2431PubMedCrossRefGoogle Scholar
  98. 98.
    Hirt C, Dolken G, Janz S, Rabkin CS (2007) Distribution of t(14;18)-positive, putative lymphoma precursor cells among B-cell subsets in healthy individuals. Br J Haematol 138:349–353PubMedCrossRefGoogle Scholar
  99. 99.
    Takacova S, Slany R, Bartkova J, Stranecky V, Dolezel P, Luzna P, Bartek J, Divoky V (2012) DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo. Cancer Cell 21:517–531PubMedCrossRefGoogle Scholar
  100. 100.
    Hamilton A et al (2012) Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 119:1501–1510PubMedCrossRefGoogle Scholar
  101. 101.
    Drynan LF, Pannell R, Forster A, Chan NM, Cano F, Daser A, Rabbitts TH (2005) Mll fusions generated by Cre-loxP-mediated de novo translocations can induce lineage reassignment in tumorigenesis. EMBO J 24:3136–3146PubMedCrossRefGoogle Scholar
  102. 102.
    Paltiel O, Zelenetz A, Sverdlin I, Gordon L, Ben-Yehuda D (2000) Translocation t(14;18) in healthy individuals: preliminary study of its association with family history and agricultural exposure. Ann Oncol 11(Suppl 1):75–80PubMedCrossRefGoogle Scholar
  103. 103.
    Henriksson G, Brant M, Sandor Z, Manthorpe R, Bredberg A (1999) Sjögren's syndrome: lymphoma predisposition coupled with a reduced frequency of t(14;18) translocations in blood lymphocytes. Mol Carcinog 24:226–231PubMedCrossRefGoogle Scholar
  104. 104.
    Scheerer JB, Xi L, Knapp GW, Setzer RW, Bigbee WL, Fuscoe JC (1999) Quantification of illegitimate V(D)J recombinase-mediated mutations in lymphocytes of newborns and adults. Mutat Res 431:291–303PubMedCrossRefGoogle Scholar
  105. 105.
    Rauzy O, Galoin S, Chale JJ, Adoue D, Albarede JL, Delsol G, al Saati T (1998) Detection of t(14;18) carrying cells in bone marrow and peripheral blood from patients affected by non-lymphoid diseases. Mol Pathol 51:333–338PubMedCrossRefGoogle Scholar
  106. 106.
    Liu Y, Cortopassi G, Goedert JJ, Rabkin CS (1997) Frequency of Bcl-2 rearrangements in peripheral blood of HIV-infected individuals. Br J Haematol 99:465–466PubMedGoogle Scholar
  107. 107.
    Molina TJ, Devez F, Bigorgne C, Le Tourneau A, Joulin V, Audouin J, Diebold J (1996) Detection of bcl-2 rearrangement in HIV-related follicular lymphoid hyperplasia. Br J Haematol 94:705–708PubMedCrossRefGoogle Scholar
  108. 108.
    Cole J, Green MH, Bridges BA, Waugh AP, Beare DM, Henshaw D, Last R, Liu Y, Cortopassi G (1996) Lack of evidence for an association between the frequency of mutants or translocations in circulating lymphocytes and exposure to radon gas in the home. Radiat Res 145:61–69PubMedCrossRefGoogle Scholar
  109. 109.
    Corbally N, Grogan L, Keane MM, Devaney DM, Dervan PA, Carney DN (1994) Bcl-2 rearrangement in Hodgkin's disease and reactive lymph nodes. Am J Clin Pathol 101:756–760PubMedGoogle Scholar
  110. 110.
    Limpens J, de Jong D, van Krieken JH, Price CG, Young BD, van Ommen GJ, Kluin PM (1991) Bcl-2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene 6:2271–2276PubMedGoogle Scholar
  111. 111.
    Ladetto M, Mantoan B, De Marco F, Drandi D, Aguzzi C, Astolfi M, Vallet S, Ricca I, Dell' Aquila M, Pagliano G, Monitillo L, Pollio B, Santo L, Cristiano C, Rocci A, Francese R, Bodoni CL, Borchiellini A, Schinco P, Boccadoro M, Tarella C (2006) Cells carrying nonlymphoma-associated bcl-2/IgH rearrangements (NLABR) are phenotypically related to follicular lymphoma and can establish as long-term persisting clonal populations. Exp Hematol 34:1680–1686PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of BiochemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations