Advertisement

Cellular and Molecular Life Sciences

, Volume 69, Issue 21, pp 3601–3612 | Cite as

The Akt-associated microRNAs

  • Min Xu
  • Yin-Yuan MoEmail author
Multi-author review

Abstract

As master gene regulators, microRNAs are involved in diverse cellular pathways. It is well known that microRNAs are often dysregulated in many types of cancer and other human diseases. In cancer, microRNAs may function as oncogenes or tumor suppressors. Interestingly, recent evidence suggests that microRNA-mediated gene regulation interconnects with the Akt pathway, forming an Akt–microRNA regulatory network. MicroRNAs and Akt in this network work together to exert their cellular functions. Thus, a better understanding of this Akt–microRNA regulatory network is critical to successful targeting of the PI3K/Akt pathway for cancer therapy. We review recent advances in the understanding of how microRNAs affect Akt activity as well as how microRNAs are regulated through the Akt pathway. We also briefly discuss the clinical implication of gene regulation mediated through Akt-associated microRNAs.

Keywords

Akt microRNAs Akt–microRNA regulatory network miR-145 miR-101 

Notes

Acknowledgments

This work was supported by KG100027 from Susan G. Komen for the Cure and R01CA154989.

References

  1. 1.
    Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355PubMedGoogle Scholar
  2. 2.
    Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85PubMedGoogle Scholar
  3. 3.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105PubMedGoogle Scholar
  4. 4.
    Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319(5871):1785–1786PubMedGoogle Scholar
  5. 5.
    Hobert O (2007) miRNAs play a tune. Cell 131(1):22–24PubMedGoogle Scholar
  6. 6.
    Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353(17):1768–1771PubMedGoogle Scholar
  7. 7.
    Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060PubMedGoogle Scholar
  8. 8.
    He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833PubMedGoogle Scholar
  9. 9.
    O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843PubMedGoogle Scholar
  10. 10.
    Xi Y, Shalgi R, Fodstad O, Pilpel Y, Ju J (2006) Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res 12(7 Pt 1):2014–2024PubMedGoogle Scholar
  11. 11.
    He X, He L, Hannon GJ (2007) The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res 67(23):11099–11101PubMedGoogle Scholar
  12. 12.
    Sachdeva M, Zhu S, Wu F et al (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Nat Acad Sci U S A 106(9):3207–3212Google Scholar
  13. 13.
    Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453(7192):223–227PubMedGoogle Scholar
  14. 14.
    Saito Y, Liang G, Egger G et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443PubMedGoogle Scholar
  15. 15.
    Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66(3):1277–1281PubMedGoogle Scholar
  16. 16.
    Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14(8):1539–1549PubMedGoogle Scholar
  17. 17.
    Piskounova E, Viswanathan SR, Janas M et al (2008) Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem 283(31):21310–21314PubMedGoogle Scholar
  18. 18.
    Rybak A, Fuchs H, Smirnova L et al (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10(8):987–993PubMedGoogle Scholar
  19. 19.
    Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320(5872):97–100PubMedGoogle Scholar
  20. 20.
    Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A 102(34):12135–12140PubMedGoogle Scholar
  21. 21.
    Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132(5):875–886PubMedGoogle Scholar
  22. 22.
    Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86PubMedGoogle Scholar
  23. 23.
    Kasashima K, Nakamura Y, Kozu T (2004) Altered expression profiles of microRNAs during TPA-induced differentiation of HL-60 cells. Biochem Biophys Res Commun 322(2):403–410PubMedGoogle Scholar
  24. 24.
    Esau C, Kang X, Peralta E et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365PubMedGoogle Scholar
  25. 25.
    Nguyen HT, Frasch M (2006) MicroRNAs in muscle differentiation: lessons from Drosophila and beyond. Curr Opin Genet Dev 16(5):533–539PubMedGoogle Scholar
  26. 26.
    Hackl H, Burkard TR, Sturn A et al (2005) Molecular processes during fat cell development revealed by gene expression profiling and functional annotation. Genome Biol 6(13):R108PubMedGoogle Scholar
  27. 27.
    Boutz PL, Chawla G, Stoilov P, Black DL (2007) MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev 21(1):71–84PubMedGoogle Scholar
  28. 28.
    Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323PubMedGoogle Scholar
  29. 29.
    Chang TC, Wentzel EA, Kent OA et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752PubMedGoogle Scholar
  30. 30.
    Raver-Shapira N, Marciano E, Meiri E et al (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743PubMedGoogle Scholar
  31. 31.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033PubMedGoogle Scholar
  32. 32.
    Meng F, Henson R, Lang M et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130(7):2113–2129PubMedGoogle Scholar
  33. 33.
    Zhang B, Pan X, Anderson TA (2006) MicroRNA: a new player in stem cells. J Cell Physiol 209(2):266–269PubMedGoogle Scholar
  34. 34.
    Hatfield SD, Shcherbata HR, Fischer KA et al (2005) Stem cell division is regulated by the microRNA pathway. Nature 435(7044):974–978PubMedGoogle Scholar
  35. 35.
    Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific microRNAs. Dev Cell 5(2):351–358PubMedGoogle Scholar
  36. 36.
    Suh MR, Lee Y, Kim JY et al (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270(2):488–498PubMedGoogle Scholar
  37. 37.
    Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G (2003) Numerous microRNPs in neuronal cells containing novel microRNAs. RNA 9(2):180–186PubMedGoogle Scholar
  38. 38.
    Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94(6):776–780PubMedGoogle Scholar
  39. 39.
    Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122(1):6–7PubMedGoogle Scholar
  40. 40.
    Hammond SM (2006) MicroRNAs as oncogenes. Curr Opin Genet Dev 16(1):4–9PubMedGoogle Scholar
  41. 41.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269PubMedGoogle Scholar
  42. 42.
    Gregory RI, Shiekhattar R (2005) MicroRNA biogenesis and cancer. Cancer Res 65(9):3509–3512PubMedGoogle Scholar
  43. 43.
    Calin GA, Liu CG, Sevignani C et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101(32):11755–11760PubMedGoogle Scholar
  44. 44.
    Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529PubMedGoogle Scholar
  45. 45.
    Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647PubMedGoogle Scholar
  46. 46.
    Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949PubMedGoogle Scholar
  47. 47.
    Hayashita Y, Osada H, Tatematsu Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632PubMedGoogle Scholar
  48. 48.
    Voorhoeve PM, le Sage C, Schrier M et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181PubMedGoogle Scholar
  49. 49.
    Si ML, Zhu S, Wu H et al (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803PubMedGoogle Scholar
  50. 50.
    Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336PubMedGoogle Scholar
  51. 51.
    Zhu S, Wu H, Wu F et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3):350–359PubMedGoogle Scholar
  52. 52.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688PubMedGoogle Scholar
  53. 53.
    Tavazoie SF, Alarcón C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152PubMedGoogle Scholar
  54. 54.
    Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838PubMedGoogle Scholar
  55. 55.
    Calin GA, Ferracin M, Cimmino A et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801PubMedGoogle Scholar
  56. 56.
    Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198PubMedGoogle Scholar
  57. 57.
    Bottoni A, Zatelli MC, Ferracin M et al (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210(2):370–377PubMedGoogle Scholar
  58. 58.
    Wang T, Zhang X, Obijuru L et al (2007) A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer 46(4):336–347PubMedGoogle Scholar
  59. 59.
    Debernardi S, Skoulakis S, Molloy G et al (2007) MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21(5):912–916PubMedGoogle Scholar
  60. 60.
    Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120(5):1046–1054PubMedGoogle Scholar
  61. 61.
    Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261PubMedGoogle Scholar
  62. 62.
    Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644PubMedGoogle Scholar
  63. 63.
    Engelman JA (2009) Targeting PI3K signaling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562PubMedGoogle Scholar
  64. 64.
    Beaulieu JM, Sotnikova TD, Marion S et al (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122(2):261–273PubMedGoogle Scholar
  65. 65.
    Maira SM, Galetic I, Brazil DP et al (2001) Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 294(5541):374–380PubMedGoogle Scholar
  66. 66.
    Huang H, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120(Pt 15):2479–2487PubMedGoogle Scholar
  67. 67.
    Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98(20):11598–11603PubMedGoogle Scholar
  68. 68.
    Zhou BP, Liao Y, Xia W et al (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3(11):973–982PubMedGoogle Scholar
  69. 69.
    Segura MF, Hanniford D, Menendez S et al (2009) Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A 106(6):1814–1819PubMedGoogle Scholar
  70. 70.
    Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563PubMedGoogle Scholar
  71. 71.
    Lin H, Dai T, Xiong H et al (2010) Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS ONE 5(12):e15797PubMedGoogle Scholar
  72. 72.
    Wang K, Li PF (2010) Foxo3a regulates apoptosis by negatively targeting miR-21. J Biol Chem 285(22):16958–16966PubMedGoogle Scholar
  73. 73.
    Gan B, Lim C, Chu G et al (2010) FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis. Cancer Cell 18(5):472–484PubMedGoogle Scholar
  74. 74.
    de Zhuo X, Niu XH, Chen YC et al (2010) Vitamin D3 up-regulated protein 1 (VDUP1) is regulated by FOXO3A and miR-17-5p at the transcriptional and post-transcriptional levels, respectively, in senescent fibroblasts. J Biol Chem 285(41):31491–31501Google Scholar
  75. 75.
    Meek DW, Knippschild U (2003) Posttranslational modification of MDM2. Mol Cancer Res 1(14):1017–1026PubMedGoogle Scholar
  76. 76.
    Suzuki HI, Yamagata K, Sugimoto K et al (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533PubMedGoogle Scholar
  77. 77.
    He L, He X, Lim LP et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134PubMedGoogle Scholar
  78. 78.
    Bommer GT, Gerin I, Feng Y et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307PubMedGoogle Scholar
  79. 79.
    Xiao J, Lin H, Luo X, Wang Z (2011) miR-605 joins p53 network to form a p53:miR-605:mdm2 positive feedback loop in response to stress. EMBO J 30(24):5021PubMedGoogle Scholar
  80. 80.
    Yan HL, Xue G, Mei Q et al (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28(18):2719–2732PubMedGoogle Scholar
  81. 81.
    Saleh AD, Savage JE, Cao L et al (2011) Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PLoS ONE 6(10):e24429PubMedGoogle Scholar
  82. 82.
    Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070PubMedGoogle Scholar
  83. 83.
    Sempere LF, Christensen M, Silahtaroglu A et al (2007) Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67(24):11612–11620PubMedGoogle Scholar
  84. 84.
    Bandres E, Cubedo E, Agirre X et al (2006) Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5(1):29PubMedGoogle Scholar
  85. 85.
    Izzotti A, Calin GA, Arrigo P et al (2009) Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 23(3):806–812PubMedGoogle Scholar
  86. 86.
    La Rocca G, Badin M, Shi B, Xu SQ, Deangelis T, Sepp-Lorenzinoi L, Baserga R (2009) Mechanism of growth inhibition by microRNA 145: the role of the IGF-I receptor signaling pathway. J Cell Physiol 220(2):485–491PubMedGoogle Scholar
  87. 87.
    Shi B, Sepp-Lorenzino L, Prisco M et al (2007) Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 282(45):32582–32590PubMedGoogle Scholar
  88. 88.
    Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T (2007) Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci 98(12):1914–1920PubMedGoogle Scholar
  89. 89.
    Wang S, Bian C, Yang Z, et al (2009) miR-145 inhibits breast cancer cell growth through RTKN. Int J Oncol 34(5):1461–1466PubMedGoogle Scholar
  90. 90.
    Spizzo R, Nicoloso MS, Lupini L et al (2009) miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ 17(2):246–254PubMedGoogle Scholar
  91. 91.
    Cho WC, Chow AS, Au JS (2009) Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer 45(12):2197–2206PubMedGoogle Scholar
  92. 92.
    Zhong M, Ma X, Sun C, Chen L (2010) MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer. Chem Biol Interact 184(3):431–438PubMedGoogle Scholar
  93. 93.
    Ostenfeld MS, Bramsen JB, Lamy P et al (2009) miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene 29(7):1073–1084PubMedGoogle Scholar
  94. 94.
    Gregersen LH, Jacobsen AB, Frankel LB et al (2010) MicroRNA-145 targets YES and STAT1 in colon cancer cells. PLoS ONE 5(1):e8836PubMedGoogle Scholar
  95. 95.
    Shi M, Du L, Liu D et al (2012) Glucocorticoid regulation of a novel HPV E6-p53-miR-145 pathway modulates invasion and therapy resistance of cervical cancer cells. J Pathol. doi:  10.1002/path.3997
  96. 96.
    Sachdeva M, Liu Q, Cao J, Lu Z, Mo YY (2012) Negative regulation of miR-145 by C/EBP-beta through the Akt pathway in cancer cells. Nucleic Acids Res 40(14):6683–6692PubMedGoogle Scholar
  97. 97.
    Zhang J, Sun Q, Zhang Z et al (2012) Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene. doi:  10.1038/onc.2012.28
  98. 98.
    Kent OA, Chivukula RR, Mullendore M et al (2010) Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev 24(24):2754–2759PubMedGoogle Scholar
  99. 99.
    Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658PubMedGoogle Scholar
  100. 100.
    Ma X, Kumar M, Choudhury SN et al (2011) Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc Natl Acad Sci U S A 108(25):10144–10149PubMedGoogle Scholar
  101. 101.
    Garofalo M, Di Leva G, Romano G et al (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16(6):498–509PubMedGoogle Scholar
  102. 102.
    Bar N, Dikstein R (2010) miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics. PLoS ONE 5(5):e10859PubMedGoogle Scholar
  103. 103.
    Small EM, O'Rourke JR, Moresi V et al (2010) Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc Natl Acad Sci U S A 107(9):4218–4223PubMedGoogle Scholar
  104. 104.
    Poliseno L, Salmena L, Riccardi L et al (2010) Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3(117):ra29PubMedGoogle Scholar
  105. 105.
    Beezhold K, Liu J, Kan H et al (2011) miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. Toxicol Sci 123(2):411–420PubMedGoogle Scholar
  106. 106.
    Wong QW, Ching AK, Chan AW et al (2010) MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res 16(3):867–875PubMedGoogle Scholar
  107. 107.
    Hamano R, Miyata H, Yamasaki M et al (2011) Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway. Clin Cancer Res 17(9):3029–3038PubMedGoogle Scholar
  108. 108.
    Varambally S, Cao Q, Mani RS et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908):1695–1699PubMedGoogle Scholar
  109. 109.
    Friedman JM, Liang G, Liu CC et al (2009) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69(6):2623–2629PubMedGoogle Scholar
  110. 110.
    Su H, Yang JR, Xu T et al (2009) MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 69(3):1135–1142PubMedGoogle Scholar
  111. 111.
    Kottakis F, Polytarchou C, Foltopoulou P et al (2011) FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell 43(2):285–298PubMedGoogle Scholar
  112. 112.
    Yan D, Ng WL, Zhang X et al (2010) Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS ONE 5(7):e11397PubMedGoogle Scholar
  113. 113.
    Sachdeva M, Wu H, Ru P et al (2011) MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene 30(7):822–831PubMedGoogle Scholar
  114. 114.
    Brooks SC, Locke ER, Soule HD (1973) Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J Biol Chem 248(17):6251–6253PubMedGoogle Scholar
  115. 115.
    Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H (2008) miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res 68(13):5004–5008PubMedGoogle Scholar
  116. 116.
    Adams BD, Furneaux H, White BA (2007) The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21(5):1132–1147PubMedGoogle Scholar
  117. 117.
    Miller TE, Ghoshal K, Ramaswamy B et al (2008) MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 283(44):29897–29903PubMedGoogle Scholar
  118. 118.
    Zhao JJ, Lin J, Yang H et al (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283(45):31079–31086PubMedGoogle Scholar
  119. 119.
    Pandey DP, Picard D (2009) miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 29(13):3783–3790PubMedGoogle Scholar
  120. 120.
    Anderson JM (1996) Cell signaling: mAGUK magic. Curr Biol 6(4):382–384PubMedGoogle Scholar
  121. 121.
    Wu X, Hepner K, Castelino-Prabhu S et al (2000) Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci U S A 97(8):4233–4238PubMedGoogle Scholar
  122. 122.
    Los M, Maddika S, Erb B, Schulze-Osthoff K (2009) Switching Akt: from survival signaling to deadly response. Bioessays 31(5):492–495PubMedGoogle Scholar
  123. 123.
    Ragimov N, Krauskopf A, Navot N et al (1993) Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basal transcription factors to the TATA motif. Oncogene 8(5):1183–1193PubMedGoogle Scholar
  124. 124.
    Ho JS, Ma W, Mao DY, Benchimol S (2005) p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25(17):7423–7431PubMedGoogle Scholar
  125. 125.
    Lowe SW, Sherr CJ (2003) Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13(1):77–83PubMedGoogle Scholar
  126. 126.
    Sachdeva M, Mo YY (2009) p53 and c-myc: how does the cell balance “yin” and “yang”? Cell Cycle 8(9):1303PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of GastroenterologyAffiliated Hospital of Jiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer CenterThe University of TexasHoustonUSA
  3. 3.Cancer InstituteUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations