Cellular and Molecular Life Sciences

, Volume 70, Issue 7, pp 1171–1183

The selective BH4-domain biology of Bcl-2-family members: IP3Rs and beyond

  • Giovanni Monaco
  • Tim Vervliet
  • Haidar Akl
  • Geert Bultynck
Review

Abstract

Anti-apoptotic Bcl-2-family members not only neutralize pro-apoptotic proteins but also directly regulate intracellular Ca2+ signaling from the endoplasmic reticulum (ER), critically controlling cellular health, survival, and death initiation. Furthermore, distinct Bcl-2-family members may selectively regulate inositol 1,4,5-trisphosphate receptor (IP3R): Bcl-2 likely acts as an endogenous inhibitor of the IP3R, preventing pro-apoptotic Ca2+ transients, while Bcl-XL likely acts as an endogenous IP3R-sensitizing protein promoting pro-survival Ca2+ oscillations. Furthermore, distinct functional domains in Bcl-2 and Bcl-XL may underlie the divergence in IP3R regulation. The Bcl-2 homology (BH) 4 domain, which targets the central modulatory domain of the IP3R, is likely to be Bcl-2’s determining factor. In contrast, the hydrophobic cleft targets the C-terminal Ca2+-channel tail and might be more crucial for Bcl-XL’s function. Furthermore, one amino acid critically different in the sequence of Bcl-2’s and Bcl-XL’s BH4 domains underpins their selective effect on Ca2+ signaling and distinct biological properties of Bcl-2 versus Bcl-XL. This difference is evolutionary conserved across five classes of vertebrates and may represent a fundamental divergence in their biological function. Moreover, these insights open novel avenues to selectively suppress malignant Bcl-2 function in cancer cells by targeting its BH4 domain, while maintaining essential Bcl-XL functions in normal cells. Thus, IP3R-derived molecules that mimic the BH4 domain’s binding site on the IP3R may function synergistically with BH3-mimetic molecules selectivity suppressing Bcl-2’s proto-oncogenic activity. Finally, a more general role for the BH4 domain on IP3Rs, rather than solely anti-apoptotic, may not be excluded as part of a complex network of molecular interactions.

Keywords

Bcl-2 Bcl-XL BH4-domain targets Inositol 1,4,5-trisphosphate receptors Ca2+ signaling Apoptosis 

References

  1. 1.
    Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18:157–164PubMedCrossRefGoogle Scholar
  2. 2.
    Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122:437–441PubMedCrossRefGoogle Scholar
  3. 3.
    Chipuk JE et al (2010) The BCL-2 family reunion. Mol Cell 37:299–310PubMedCrossRefGoogle Scholar
  4. 4.
    Edlich F et al (2011) Bcl-XL retrotranslocates Bax from the mitochondria into the cytosol. Cell 145:104–116PubMedCrossRefGoogle Scholar
  5. 5.
    Soriano ME, Scorrano L (2011) Traveling Bax and forth from mitochondria to control apoptosis. Cell 145:15–17PubMedCrossRefGoogle Scholar
  6. 6.
    Kim H et al (2009) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36:487–499PubMedCrossRefGoogle Scholar
  7. 7.
    Yao Y, Marassi FM (2009) BAX and BAK caught in the act. Mol Cell 36:353–354PubMedCrossRefGoogle Scholar
  8. 8.
    Forte M, Bernardi P (2005) Genetic dissection of the permeability transition pore. J Bioenerg Biomembr 37:121–128PubMedCrossRefGoogle Scholar
  9. 9.
    Baumgartner HK et al (2009) Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284:20796–20803PubMedCrossRefGoogle Scholar
  10. 10.
    Roy SS et al (2009) Bad targets the permeability transition pore independent of Bax or Bak to switch between Ca2+-dependent cell survival and death. Mol Cell 33:377–388PubMedCrossRefGoogle Scholar
  11. 11.
    Deng J et al (2007) BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12:171–185PubMedCrossRefGoogle Scholar
  12. 12.
    Certo M et al (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–365PubMedCrossRefGoogle Scholar
  13. 13.
    Chen L et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403PubMedCrossRefGoogle Scholar
  14. 14.
    Kim H et al (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8:1348–1358PubMedCrossRefGoogle Scholar
  15. 15.
    Kuwana T et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535PubMedCrossRefGoogle Scholar
  16. 16.
    Opferman JT et al (2003) Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426:671–676PubMedCrossRefGoogle Scholar
  17. 17.
    Del Gaizo Moore V et al (2007) Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest 117:112–121PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang L, Ming L, Yu J (2007) BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resist Updat 10:207–217PubMedCrossRefGoogle Scholar
  19. 19.
    Park CM et al (2008) Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J Med Chem 51:6902–6915PubMedCrossRefGoogle Scholar
  20. 20.
    Tse C et al (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421–3428PubMedCrossRefGoogle Scholar
  21. 21.
    Baffy G et al (1993) Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J Biol Chem 268:6511–6519PubMedGoogle Scholar
  22. 22.
    Lam M et al (1994) Evidence that Bcl-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Nat Acad Sci USA 91:6569–6573PubMedCrossRefGoogle Scholar
  23. 23.
    Thomenius MJ, Distelhorst CW (2003) Bcl-2 on the endoplasmic reticulum: protecting the mitochondria from a distance. J Cell Sci 116:4493–4499PubMedCrossRefGoogle Scholar
  24. 24.
    Rong Y, Distelhorst CW (2008) Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70:73–91PubMedCrossRefGoogle Scholar
  25. 25.
    Pinton P, Rizzuto R (2006) Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 13:1409–1418PubMedCrossRefGoogle Scholar
  26. 26.
    De Smedt H, Verkhratsky A, Muallem S (2011) Ca2+ signaling mechanisms of cell survival and cell death: an introduction. Cell Calcium 50:207–210PubMedCrossRefGoogle Scholar
  27. 27.
    Zhivotovsky B, Orrenius S (2011) Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50:211–221PubMedCrossRefGoogle Scholar
  28. 28.
    Romagnoli A et al (2007) Endoplasmic reticulum/mitochondria calcium cross-talk. Novartis Found Symp 287:122–131 (discussion 131–9)PubMedCrossRefGoogle Scholar
  29. 29.
    Zecchini E et al (2007) Mitochondrial calcium signalling: message of life and death. Ital J Biochem 56:235–242PubMedGoogle Scholar
  30. 30.
    Giorgi C et al (2008) Ca2+ signaling, mitochondria and cell death. Curr Mol Med 8:119–130PubMedCrossRefGoogle Scholar
  31. 31.
    Pinton P et al (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418PubMedCrossRefGoogle Scholar
  32. 32.
    Giorgi C et al (2009) Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol 41:1817–1827PubMedCrossRefGoogle Scholar
  33. 33.
    Rizzuto R et al (2009) Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–1351PubMedCrossRefGoogle Scholar
  34. 34.
    Verfaillie T et al (2012) PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS based ER stress. Cell Death Differ. doi:10.1038/cdd.2012.74
  35. 35.
    Pinton P et al (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 20:2690–2701PubMedCrossRefGoogle Scholar
  36. 36.
    Cardenas C et al (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270–283PubMedCrossRefGoogle Scholar
  37. 37.
    Higo T et al (2010) Mechanism of ER stress-induced brain damage by IP3 receptor. Neuron 68:865–878PubMedCrossRefGoogle Scholar
  38. 38.
    Criollo A et al (2007) Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ 14:1029–1039PubMedGoogle Scholar
  39. 39.
    Vicencio JM et al (2009) The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 16:1006–1017PubMedCrossRefGoogle Scholar
  40. 40.
    Decuypere JP et al (2011) IP 3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy 7:1472–1489PubMedCrossRefGoogle Scholar
  41. 41.
    Decuypere JP, Bultynck G, Parys JB (2011) A dual role for Ca2+ in autophagy regulation. Cell Calcium 50:242–250PubMedCrossRefGoogle Scholar
  42. 42.
    De Stefani D et al (2012) VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ 19:267–273PubMedCrossRefGoogle Scholar
  43. 43.
    Baughman JM et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345PubMedCrossRefGoogle Scholar
  44. 44.
    De Stefani D et al (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340PubMedCrossRefGoogle Scholar
  45. 45.
    Jean-Quartier C et al (2012) Studying mitochondrial Ca2+ uptake: a revisit. Mol Cell Endocrinol 353:114–127PubMedCrossRefGoogle Scholar
  46. 46.
    Sammels E et al (2010) Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 47:297–314PubMedCrossRefGoogle Scholar
  47. 47.
    Decuypere JP et al (2011) The IP3 receptor-mitochondria connection in apoptosis and autophagy. Biochim Biophys Acta 1813:1003–1013PubMedCrossRefGoogle Scholar
  48. 48.
    Decuypere JP et al (2011) IP3 receptors, mitochondria, and Ca signaling: implications for aging. J Aging Res 2011:920178PubMedGoogle Scholar
  49. 49.
    Mekahli D et al (2011) Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 3:1–30. pii:a004317Google Scholar
  50. 50.
    Marchi S et al (2012) Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis. Cell Death Dis 3:e304PubMedCrossRefGoogle Scholar
  51. 51.
    Szado T et al (2008) Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Nat Acad Sci USA 105:2427–2432PubMedCrossRefGoogle Scholar
  52. 52.
    Carnero A (2010) The PKB/AKT pathway in cancer. Curr Pharm Des 16:34–44PubMedCrossRefGoogle Scholar
  53. 53.
    Giorgi C et al (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330:1247–1251PubMedCrossRefGoogle Scholar
  54. 54.
    Jones AW, Szabadkai G (2010) Ca2+ transfer from the ER to mitochondria: channeling cell death by a tumor suppressor. Dev Cell 19:789–790PubMedCrossRefGoogle Scholar
  55. 55.
    Pinton P, Giorgi C, Pandolfi PP (2011) The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites. Cell Death Differ 18:1450–1456PubMedCrossRefGoogle Scholar
  56. 56.
    Rimessi A et al (2009) Intramitochondrial calcium regulation by the FHIT gene product sensitizes to apoptosis. Proc Nat Acad Sci USA 106:12753–12758PubMedCrossRefGoogle Scholar
  57. 57.
    Arbel N, Shoshan-Barmatz V (2010) Voltage-dependent anion channel 1-based peptides interact with Bcl-2 to prevent antiapoptotic activity. J Biol Chem 285:6053–6062PubMedCrossRefGoogle Scholar
  58. 58.
    Palmer AE et al (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Nat Acad Sci USA 101:17404–17409PubMedCrossRefGoogle Scholar
  59. 59.
    Kim HR et al (2008) Bax Inhibitor-1 Is a pH-dependent regulator of Ca2+ channel activity in the endoplasmic reticulum. J Biol Chem 283:15946–15955PubMedCrossRefGoogle Scholar
  60. 60.
    Xu C et al (2008) BI-1 regulates endoplasmic reticulum Ca2+ homeostasis downstream of Bcl-2 family proteins. J Biol Chem 283:11477–11484PubMedCrossRefGoogle Scholar
  61. 61.
    Bultynck G et al (2012) The C terminus of Bax inhibitor-1 forms a Ca2+-permeable channel pore. J Biol Chem 287:2544–2557PubMedCrossRefGoogle Scholar
  62. 62.
    Kiviluoto S et al (2012) Bax Inhibitor-1 is a novel IP3 receptor-interacting and-sensitizing protein. Cell Death Dis 3:e367Google Scholar
  63. 63.
    Sano R et al (2012) Endoplasmic reticulum protein BI-1 regulates Ca2+-mediated bioenergetics to promote autophagy. Genes Dev 26:1041–1054PubMedCrossRefGoogle Scholar
  64. 64.
    Pinton P et al (2000) Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862PubMedCrossRefGoogle Scholar
  65. 65.
    Scorrano L et al (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139PubMedCrossRefGoogle Scholar
  66. 66.
    Oakes SA et al (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Nat Acad Sci USA 102:105–110PubMedCrossRefGoogle Scholar
  67. 67.
    He H et al (1997) Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol 138:1219–1228PubMedCrossRefGoogle Scholar
  68. 68.
    Erin N, Billingsley ML (2004) Domoic acid enhances Bcl-2-calcineurin-inositol-1,4,5-trisphosphate receptor interactions and delayed neuronal death in rat brain slices. Brain Res 1014:45–52PubMedCrossRefGoogle Scholar
  69. 69.
    Erin N, Bronson SK, Billingsley ML (2003) Calcium-dependent interaction of calcineurin with Bcl-2 in neuronal tissue. Neuroscience 117:541–555PubMedCrossRefGoogle Scholar
  70. 70.
    Xu L et al (2007) Suppression of IP3-mediated calcium release and apoptosis by Bcl-2 involves the participation of protein phosphatase 1. Mol Cell Biochem 295:153–165PubMedCrossRefGoogle Scholar
  71. 71.
    Chen R et al (2004) Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 166:193–203PubMedCrossRefGoogle Scholar
  72. 72.
    White C et al (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nat Cell Biol 7:1021–1028PubMedCrossRefGoogle Scholar
  73. 73.
    Eckenrode EF et al (2010) Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem 285:13678–13684PubMedCrossRefGoogle Scholar
  74. 74.
    Li C et al (2002) Bcl-XL affects Ca2+ homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Nat Acad Sci USA 99:9830–9835PubMedCrossRefGoogle Scholar
  75. 75.
    Kuo TH et al (1998) Modulation of endoplasmic reticulum calcium pump by Bcl-2. Oncogene 17:1903–1910PubMedCrossRefGoogle Scholar
  76. 76.
    Kobrinsky EM, Kirchberger MA (2001) Evidence for a role of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in thapsigargin and Bcl-2 induced changes in Xenopus laevis oocyte maturation. Oncogene 20:933–941PubMedCrossRefGoogle Scholar
  77. 77.
    Vento MT et al (2010) Praf2 is a novel Bcl-XL/Bcl-2 interacting protein with the ability to modulate survival of cancer cells. PLoS One 5:e15636PubMedCrossRefGoogle Scholar
  78. 78.
    Dremina ES et al (2004) Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem J 383:361–370PubMedCrossRefGoogle Scholar
  79. 79.
    Dremina ES, Sharov VS, Schoneich C (2006) Displacement of SERCA from SR lipid caveolae-related domains by Bcl-2: a possible mechanism for SERCA inactivation. Biochemistry 45:175–184PubMedCrossRefGoogle Scholar
  80. 80.
    Dremina ES, Sharov VS, Schoneich C (2012) Heat-shock proteins attenuate SERCA inactivation by the anti-apoptotic protein Bcl-2: possible implications for the ER Ca2+-mediated apoptosis. Biochem J 444:127–139PubMedCrossRefGoogle Scholar
  81. 81.
    Ahmad S et al (2009) Bcl-2 suppresses sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression in cystic fibrosis airways: role in oxidant-mediated cell death. Am J Respir Crit Care Med 179:816–826PubMedCrossRefGoogle Scholar
  82. 82.
    Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11:3155–3162PubMedCrossRefGoogle Scholar
  83. 83.
    Galluzzi L et al (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death. Cell Death Differ 19:107–120PubMedCrossRefGoogle Scholar
  84. 84.
    Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–14381PubMedCrossRefGoogle Scholar
  85. 85.
    Ladasky JJ et al (2006) Bap31 enhances the endoplasmic reticulum export and quality control of human class I MHC molecules. J Immunol 177:6172–6181PubMedGoogle Scholar
  86. 86.
    Wang B et al (2008) BAP31 interacts with Sec61 translocons and promotes retrotranslocation of CFTRDeltaF508 via the derlin-1 complex. Cell 133:1080–1092PubMedCrossRefGoogle Scholar
  87. 87.
    Wang B et al (2003) Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of cytochrome c from mitochondria. J Biol Chem 278:14461–14468PubMedCrossRefGoogle Scholar
  88. 88.
    Breckenridge DG et al (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160:1115–1127PubMedCrossRefGoogle Scholar
  89. 89.
    Heath-Engel HM, Wang B, Shore GC (2012) Bcl2 at the endoplasmic reticulum protects against a Bax/Bak-independent paraptosis-like cell death pathway initiated via p20Bap31. Biochim Biophys Acta 1823:335–347PubMedCrossRefGoogle Scholar
  90. 90.
    Lur G et al (2009) Ribosome-free terminals of rough ER allow formation of STIM1 puncta and segregation of STIM1 from IP3 receptors. Curr Biol 19:1648–1653PubMedCrossRefGoogle Scholar
  91. 91.
    Ferdek PE et al (2012) A novel role for Bcl-2 in regulation of cellular calcium extrusion. Curr Biol 22:1241–1246PubMedCrossRefGoogle Scholar
  92. 92.
    Gerasimenko J et al (2010) Inhibitors of Bcl-2 protein family deplete ER Ca2+ stores in pancreatic acinar cells. Pflugers Arch 460:891–900PubMedCrossRefGoogle Scholar
  93. 93.
    Zhong F et al (2006) Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J Cell Biol 172:127–137PubMedCrossRefGoogle Scholar
  94. 94.
    Hanson CJ et al (2008) Bcl-2 suppresses Ca2+ release through inositol 1,4,5-trisphosphate receptors and inhibits Ca2+ uptake by mitochondria without affecting ER calcium store content. Cell Calcium 44:324–338PubMedCrossRefGoogle Scholar
  95. 95.
    Rong YP et al (2008) Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol Cell 31:255–265PubMedCrossRefGoogle Scholar
  96. 96.
    Rong YP et al (2009) The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Nat Acad Sci USA 106:14397–14402PubMedCrossRefGoogle Scholar
  97. 97.
    Distelhorst CW, Bootman MD (2011) Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca(2+) signaling and disease. Cell Calcium 50:234–241PubMedCrossRefGoogle Scholar
  98. 98.
    Li C et al (2007) Apoptosis regulation by Bcl-x(L) modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating. Proc Nat Acad Sci USA 104:12565–12570PubMedCrossRefGoogle Scholar
  99. 99.
    Chan J et al (2010) Structural studies of inositol 1,4,5-trisphosphate receptor: coupling ligand binding to channel gating. J Biol Chem 285:36092–36099PubMedCrossRefGoogle Scholar
  100. 100.
    Foskett JK et al (2009) Bcl-xL regulation of InsP3 receptor gating mediated by dual Ca2+ release channel BH3 domains. Biophys J 96:391aCrossRefGoogle Scholar
  101. 101.
    Monaco G et al (2012) Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl. Cell Death Differ 19:295–309PubMedCrossRefGoogle Scholar
  102. 102.
    Rong YP et al (2009) Targeting Bcl-2 based on the interaction of its BH4 domain with the inositol 1,4,5-trisphosphate receptor. Biochim Biophys Acta 1793:971–978PubMedCrossRefGoogle Scholar
  103. 103.
    Zhong F et al (2011) Induction of Ca2+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood 117:2924–2934PubMedCrossRefGoogle Scholar
  104. 104.
    Popgeorgiev N et al (2011) The apoptotic regulator Nrz controls cytoskeletal dynamics via the regulation of Ca2+ trafficking in the zebrafish blastula. Dev Cell 20:663–676PubMedCrossRefGoogle Scholar
  105. 105.
    Solnica-Krezel L (2006) Gastrulation in zebrafish: all just about adhesion? Curr Opin Genet Dev 16:433–441PubMedCrossRefGoogle Scholar
  106. 106.
    Arnaud E et al (2006) The zebrafish bcl-2 homologue Nrz controls development during somitogenesis and gastrulation via apoptosis-dependent and -independent mechanisms. Cell Death Differ 13:1128–1137PubMedCrossRefGoogle Scholar
  107. 107.
    Bonneau B et al (2011) Cytoskeleton dynamics in early zebrafish development: a matter of phosphorylation? BioArchitecture 1:1–5CrossRefGoogle Scholar
  108. 108.
    Allen DG et al (2010) Calcium and the damage pathways in muscular dystrophy. Can J Physiol Pharmacol 88:83–91PubMedCrossRefGoogle Scholar
  109. 109.
    Basset O et al (2006) Bcl-2 overexpression prevents calcium overload and subsequent apoptosis in dystrophic myotubes. Biochem J 395:267–276PubMedCrossRefGoogle Scholar
  110. 110.
    Velmurugan GV, C White (2011) Calcium homeostasis in vascular smooth muscle cells is altered in type 2 diabetes by Bcl-2 protein modulation of InsP3R calcium release channels. Am J Physiol Heart Circ Physiol 302(1):H124–H134Google Scholar
  111. 111.
    Machado-Vieira R et al (2011) The Bcl-2 gene polymorphism rs956572AA increases inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum calcium release in subjects with bipolar disorder. Biol Psychiatry 69:344–352PubMedCrossRefGoogle Scholar
  112. 112.
    Uemura T et al (2011) Bcl-2 SNP rs956572 associates with disrupted intracellular calcium homeostasis in bipolar I disorder. Bipolar Disord 13:41–51PubMedCrossRefGoogle Scholar
  113. 113.
    Salvadore G et al (2009) Bcl-2 polymorphism influences gray matter volume in the ventral striatum in healthy humans. Biol Psychiatry 66:804–807PubMedCrossRefGoogle Scholar
  114. 114.
    Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159PubMedCrossRefGoogle Scholar
  115. 115.
    Lock R et al (2008) Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr Blood Cancer 50:1181–1189PubMedCrossRefGoogle Scholar
  116. 116.
    Vogler M et al (2009) Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 16:360–367PubMedCrossRefGoogle Scholar
  117. 117.
    Azmi AS, Mohammad RM (2009) Non-peptidic small molecule inhibitors against Bcl-2 for cancer therapy. J Cell Physiol 218:13–21PubMedCrossRefGoogle Scholar
  118. 118.
    High LM et al (2010) The Bcl-2 homology domain 3 mimetic ABT-737 targets the apoptotic machinery in acute lymphoblastic leukemia resulting in synergistic in vitro and in vivo interactions with established drugs. Mol Pharmacol 77:483–494PubMedCrossRefGoogle Scholar
  119. 119.
    Ackler S et al (2010) The Bcl-2 inhibitor ABT-263 enhances the response of multiple chemotherapeutic regimens in hematologic tumors in vivo. Cancer Chemother Pharmacol 66:869–880PubMedCrossRefGoogle Scholar
  120. 120.
    Vogler M et al (2011) BCL2/BCL-XL inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood 117:7145–7154PubMedCrossRefGoogle Scholar
  121. 121.
    Schoenwaelder SM et al (2011) Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood 118:1663–1674PubMedCrossRefGoogle Scholar
  122. 122.
    Mason KD et al (2007) Programmed anuclear cell death delimits platelet life span. Cell 128:1173–1186PubMedCrossRefGoogle Scholar
  123. 123.
    Eno CO et al (2012) Distinct roles of mitochondria- and ER-localized Bcl-xL in apoptosis resistance and Ca2+ homeostasis. Mol Biol Cell 23:2605–2618PubMedCrossRefGoogle Scholar
  124. 124.
    Haughn L et al (2003) BCL-2 and BCL-XL restrict lineage choice during hematopoietic differentiation. J Biol Chem 278:25158–25165PubMedCrossRefGoogle Scholar
  125. 125.
    Katz C et al (2008) Molecular basis of the interaction between the antiapoptotic Bcl-2 family proteins and the proapoptotic protein ASPP2. Proc Natl Acad Sci USA 105:12277–12282PubMedCrossRefGoogle Scholar
  126. 126.
    Shimizu S et al (2000) BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci USA 97:3100–3105PubMedCrossRefGoogle Scholar
  127. 127.
    Shoshan-Barmatz V et al (2006) The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 12:2249–2270PubMedCrossRefGoogle Scholar
  128. 128.
    Shoshan-Barmatz V et al (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31:227–285PubMedCrossRefGoogle Scholar
  129. 129.
    Zaid H et al (2005) The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ 12:751–760PubMedCrossRefGoogle Scholar
  130. 130.
    Abu-Hamad S, Sivan S, Shoshan-Barmatz V (2006) The expression level of the voltage-dependent anion channel controls life and death of the cell. Proc Natl Acad Sci USA 103:5787–5792PubMedCrossRefGoogle Scholar
  131. 131.
    Tornero D, Posadas I, Cena V (2011) Bcl-x(L) blocks a mitochondrial inner membrane channel and prevents Ca2+ overload-mediated cell death. PLoS One 6:e20423PubMedCrossRefGoogle Scholar
  132. 132.
    Keinan N, Tyomkin D, Shoshan-Barmatz V (2010) Oligomerization of the mitochondrial protein voltage-dependent anion channel is coupled to the induction of apoptosis. Mol Cell Biol 30:5698–5709PubMedCrossRefGoogle Scholar
  133. 133.
    Abu-Hamad S et al (2008) Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem 283:13482–13490PubMedCrossRefGoogle Scholar
  134. 134.
    Abu-Hamad S et al (2009) The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci 122:1906–1916PubMedCrossRefGoogle Scholar
  135. 135.
    Geula S, Ben-Hail D, Shoshan-Barmatz V (2012) Structure-based analysis of VDAC1: n-terminus location, translocation, channel gating and association with anti-apoptotic proteins. Biochem J 444:475–485PubMedCrossRefGoogle Scholar
  136. 136.
    Malia TJ, Wagner G (2007) NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL. Biochemistry 46:514–525PubMedCrossRefGoogle Scholar
  137. 137.
    Xu Q, Reed JC (1998) Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1:337–346PubMedCrossRefGoogle Scholar
  138. 138.
    Chae HJ et al (2004) BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol Cell 15:355–366PubMedCrossRefGoogle Scholar
  139. 139.
    Ahn T et al (2010) Cardiolipin, phosphatidylserine, and BH4 domain of Bcl-2 family regulate Ca2+/H+ antiporter activity of human Bax inhibitor-1. Cell Calcium 47:387–396PubMedCrossRefGoogle Scholar
  140. 140.
    Westphalen BC et al (2005) BI-1 protects cells from oxygen glucose deprivation by reducing the calcium content of the endoplasmic reticulum. Cell Death Differ 12:304–306PubMedCrossRefGoogle Scholar
  141. 141.
    Henke N et al (2011) The ancient cell death suppressor BAX inhibitor-1. Cell Calcium 50:251–260PubMedCrossRefGoogle Scholar
  142. 142.
    de Mattia F et al (2009) Human Golgi antiapoptotic protein modulates intracellular calcium fluxes. Mol Biol Cell 20:3638–3645PubMedCrossRefGoogle Scholar
  143. 143.
    Rojas-Rivera D et al (2012) TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis. Cell Death Differ 19:1013–1016PubMedCrossRefGoogle Scholar
  144. 144.
    Sullivan A, Lu X (2007) ASPP: a new family of oncogenes and tumour suppressor genes. Br J Cancer 96:196–200PubMedCrossRefGoogle Scholar
  145. 145.
    Vives V, Slee EA, Lu X (2006) ASPP2: a gene that controls life and death in vivo. Cell Cycle 5:2187–2190PubMedCrossRefGoogle Scholar
  146. 146.
    Benyamini H, Friedler A (2011) The ASPP interaction network: electrostatic differentiation between pro- and anti-apoptotic proteins. J Mol Recognit 24:266–274PubMedCrossRefGoogle Scholar
  147. 147.
    Kampa KM, Bonin M, Lopez CD (2009) New insights into the expanding complexity of the tumor suppressor ASPP2. Cell Cycle 8:2871–2876PubMedCrossRefGoogle Scholar
  148. 148.
    Ahn J et al (2009) Insight into the structural basis of pro- and antiapoptotic p53 modulation by ASPP proteins. J Biol Chem 284:13812–13822PubMedCrossRefGoogle Scholar
  149. 149.
    Benyamini H et al (2009) A model for the interaction between NF-kappa-B and ASPP2 suggests an I-kappa-B-like binding mechanism. Proteins 77:602–611PubMedCrossRefGoogle Scholar
  150. 150.
    Rotem S et al (2008) The structure and interactions of the proline-rich domain of ASPP2. J Biol Chem 283:18990–18999PubMedCrossRefGoogle Scholar
  151. 151.
    Rotem S, Katz C, Friedler A (2007) Insights into the structure and protein-protein interactions of the pro-apoptotic protein ASPP2. Biochem Soc Trans 35:966–969PubMedCrossRefGoogle Scholar
  152. 152.
    Díez J, Walter D, Muñoz-Pinedo C, Gabaldón T (2010) DeathBase: a database on structure, evolution and function of proteins involved in apoptosis and other forms of cell death. Cell Death Differ 17:735–736PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Giovanni Monaco
    • 1
  • Tim Vervliet
    • 1
  • Haidar Akl
    • 1
  • Geert Bultynck
    • 1
  1. 1.Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular MedicineKU LeuvenLeuvenBelgium

Personalised recommendations