Cellular and Molecular Life Sciences

, Volume 69, Issue 19, pp 3187–3206 | Cite as

The molecular mechanism of zinc and cadmium stress response in plants

  • Ya-Fen LinEmail author
  • Mark G. M. Aarts
Multi-author review


When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and metal-hypertolerant hyperaccumulator species, each having different molecular mechanisms to accomplish their resistance/tolerance to metal stress or reduce the negative consequences of metal toxicity. Plant responses to heavy metals are molecularly regulated in a process called metal homeostasis, which also includes regulation of the metal-induced reactive oxygen species (ROS) signaling pathway. ROS generation and signaling plays an important duel role in heavy metal detoxification and tolerance. In this review, we will compare the different molecular mechanisms of nutritional (Zn) and non-nutritional (Cd) metal homeostasis between metal-sensitive and metal-adapted species. We will also include the role of metal-induced ROS signal transduction in this comparison, with the aim to provide a comprehensive overview on how plants cope with Zn/Cd stress at the molecular level.


Plant stress adaptation Molecular regulation Zn Cd ROS 



The authors thank the Graduate School Experimental Plant Sciences and the EU COST Action FA0905 on “Mineral-improved crop production for healthy food and feed” for funding.


  1. 1.
    Ikenaka Y, Nakayama SMM, Muzandu K, Choongo K, Teraoka H, Mizuno N, Ishizuka M (2010) Heavy metal contamination of soil and sediment in Zambia. Afr J Environ Sci Technol 4(11):729–739Google Scholar
  2. 2.
    Zhang L, Wong MH (2007) Environmental mercury contamination in China: sources and impacts. Environ Int 33(1):108–121PubMedCrossRefGoogle Scholar
  3. 3.
    McLaughlin MJ, Hamon RE, McLaren RG, Speir TW, Rogers SL (2000) A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust J Soil Res 38:1037–1086CrossRefGoogle Scholar
  4. 4.
    Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181PubMedCrossRefGoogle Scholar
  5. 5.
    Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182PubMedCrossRefGoogle Scholar
  6. 6.
    Kien CN, Noi NV, Son LT, Ngoc HM, Tanaka S, Nishina T, Iwasaki K (2010) Heavy metal contamination of agricultural soils around a chromite mine in Vietnam. Soil Sci Plant Nutr 56(2):344–356CrossRefGoogle Scholar
  7. 7.
    Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Guha N, Freeman C, Galichet L, Cogliano V (2009) A review of human carcinogens–part C: metals, arsenic, dusts, and fibres. Lancet Oncol 10(5):453–454PubMedCrossRefGoogle Scholar
  8. 8.
    Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76(2):167–179CrossRefGoogle Scholar
  9. 9.
    Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181(4):759–776PubMedCrossRefGoogle Scholar
  10. 10.
    Marschner H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134(1):1–20Google Scholar
  11. 11.
    Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18Google Scholar
  12. 12.
    Martinez C, Motto H (2000) Solubility of lead, zinc and copper added to mineral soils. Environ Pollut 107(1):153–158PubMedCrossRefGoogle Scholar
  13. 13.
    Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Correlation with copper tolerance. Plant Physiol 109(3):945–954PubMedCrossRefGoogle Scholar
  14. 14.
    Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47(6):453–467PubMedCrossRefGoogle Scholar
  15. 15.
    Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21(6):539–566CrossRefGoogle Scholar
  16. 16.
    Jaffré T, Brooks R, Lee J, Reeves R (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193(4253):579PubMedCrossRefGoogle Scholar
  17. 17.
    Kupper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212(1):75–84PubMedCrossRefGoogle Scholar
  18. 18.
    Evangelou MW, Daghan H, Schaeffer A (2004) The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57(3):207–213PubMedCrossRefGoogle Scholar
  19. 19.
    Alloway B (1995) Heavy metals in soils. Springer, BerlinGoogle Scholar
  20. 20.
    Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12(3):259–266PubMedCrossRefGoogle Scholar
  21. 21.
    Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702PubMedCrossRefGoogle Scholar
  22. 22.
    Appenroth KJ (2010) Definition of “heavy metals” and their role in biological systems. Soil heavy metals:19–29Google Scholar
  23. 23.
    Das P, Samantaray S, Rout G (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98(1):29–36PubMedCrossRefGoogle Scholar
  24. 24.
    Siedlecka A, Krupa Z (1996) Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 34(6):833–841Google Scholar
  25. 25.
    Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11PubMedCrossRefGoogle Scholar
  26. 26.
    Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643PubMedCrossRefGoogle Scholar
  27. 27.
    Jentschke G, Godbold D (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109(2):107–116CrossRefGoogle Scholar
  28. 28.
    Adriaensen K, Vangronsveld J, Colpaert JV (2006) Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16(8):553–558PubMedCrossRefGoogle Scholar
  29. 29.
    Sousa NR, Ramos MA, Marques APGC, Castro PML (2012) The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium. Sci Total Environ 414:63–67PubMedCrossRefGoogle Scholar
  30. 30.
    Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56(4):403–407PubMedCrossRefGoogle Scholar
  31. 31.
    Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56(1):55–60PubMedCrossRefGoogle Scholar
  32. 32.
    Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69(2):220–228PubMedCrossRefGoogle Scholar
  33. 33.
    Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70(12):7413–7417PubMedCrossRefGoogle Scholar
  34. 34.
    Silar P, Dairou J (2011) Fungi as a promising tool for bioremediation of soils contaminated with aromatic amines, a major class of pollutants. Nat Rev Microbiol 9(6):477PubMedCrossRefGoogle Scholar
  35. 35.
    Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42(7):741–775CrossRefGoogle Scholar
  36. 36.
    Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223(6):1115–1122PubMedCrossRefGoogle Scholar
  37. 37.
    Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653PubMedCrossRefGoogle Scholar
  38. 38.
    Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  39. 39.
    Bertrand M, Poirier I (2005) Photosynthetic organisms and excess of metals. Photosynthetica 43(3):345–353CrossRefGoogle Scholar
  40. 40.
    Rasouli-Sadaghiani MH, Sadeghzadeh B, Sepehr E, Rengel Z (2011) Root exudation and zinc uptake by barley genotypes differing in Zn efficiency. J Plant Nutr 34(8):1120–1132CrossRefGoogle Scholar
  41. 41.
    Meier S, Alvear M, Borie F, Aguilera P, Ginocchio R, Cornejo P (2011) Influence of copper on root exudate patterns in some metallophytes and agricultural plants. Ecotoxicol Environ Saf 75(1):8–15Google Scholar
  42. 42.
    Baxter I, Hosmani PS, Rus A, Lahner B, Borevitz JO, Muthukumar B, Mickelbart MV, Schreiber L, Franke RB, Salt DE (2009) Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet 5(5):e1000492PubMedCrossRefGoogle Scholar
  43. 43.
    Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum 33(1):35–51CrossRefGoogle Scholar
  44. 44.
    Muschitz A, Faugeron C, Morvan H (2009) Response of cultured tomato cells subjected to excess zinc: role of cell wall in zinc compartmentation. Acta Physiologiae Plantarum 31(6):1197–1204CrossRefGoogle Scholar
  45. 45.
    Li T, Yang X, Meng F, Lu L (2007) Zinc adsorption and desorption characteristics in root cell wall involving zinc hyperaccumulation in Sedum alfredii Hance. J Zhejiang Univ Sci B 8(2):111–115PubMedCrossRefGoogle Scholar
  46. 46.
    Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54(1):519–546PubMedCrossRefGoogle Scholar
  47. 47.
    Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149(1):370–383PubMedCrossRefGoogle Scholar
  48. 48.
    Neutelings G (2011) Lignin variability in plant cell walls: contribution of new models. Plant Sci 181(4):379–386PubMedCrossRefGoogle Scholar
  49. 49.
    Van De Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, van Themaat EVL, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142(3):1127–1147PubMedCrossRefGoogle Scholar
  50. 50.
    Van De Mortel JE, Schat H, Moerland PD, Van Themaat EVERL, Van Der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MGM (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31(3):301–324PubMedCrossRefGoogle Scholar
  51. 51.
    Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14(6):1223–1233PubMedCrossRefGoogle Scholar
  52. 52.
    Kerkeb L, Mukherjee I, Chatterjee I, Lahner B, Salt DE, Connolly EL (2008) Iron-induced turnover of the Arabidopsis IRON-REGULATED TRANSPORTER1 metal transporter requires lysine residues. Plant Physiol 146(4):1964–1973PubMedCrossRefGoogle Scholar
  53. 53.
    Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G (2011) Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. Proc Nat Acad Sci 108(32):E450–E458PubMedCrossRefGoogle Scholar
  54. 54.
    Guerinot ML (2000) The ZIP family of metal transporters. Biochimica et Biophysica Acta (BBA)-Biomembranes 1465(1-2):190–198Google Scholar
  55. 55.
    Assunção AGL, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RGH, Van Eldik M, Fiers M, Schat H (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Nat Acad Sci 107(22):10296PubMedCrossRefGoogle Scholar
  56. 56.
    Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Nat Acad Sci 95(12):7220PubMedCrossRefGoogle Scholar
  57. 57.
    Assunção A, Martins P, De Folter S, Vooijs R, Schat H, Aarts M (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24(2):217–226CrossRefGoogle Scholar
  58. 58.
    Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142(1):148–167PubMedCrossRefGoogle Scholar
  59. 59.
    Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Nat Acad Sci 97(9):4956PubMedCrossRefGoogle Scholar
  60. 60.
    Korshunova YO, Eide D, Gregg Clark W, Lou Guerinot M, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40(1):37–44PubMedCrossRefGoogle Scholar
  61. 61.
    Lombi E, Zhao F, McGrath S, Young S, Sacchi G (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149(1):53–60CrossRefGoogle Scholar
  62. 62.
    Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128(4):1359–1367PubMedCrossRefGoogle Scholar
  63. 63.
    Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58(7):1717–1728PubMedCrossRefGoogle Scholar
  64. 64.
    Beneš I, Schreiber K, Ripperger H, Kircheiss A (1983) Metal complex formation by nicotianamine, a possible phytosiderophore. Cell Mol Life Sci 39(3):261–262CrossRefGoogle Scholar
  65. 65.
    Trampczynska A, Küpper H, Meyer-Klaucke W, Schmidt H, Clemens S (2010) Nicotianamine forms complexes with Zn (II) in vivo. Metallomics 2(1):57–66PubMedCrossRefGoogle Scholar
  66. 66.
    Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103(1):1–11PubMedCrossRefGoogle Scholar
  67. 67.
    Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119(2):471–480PubMedCrossRefGoogle Scholar
  68. 68.
    Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150(1):257–271PubMedCrossRefGoogle Scholar
  69. 69.
    Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37(2):269–281PubMedCrossRefGoogle Scholar
  70. 70.
    Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJM, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170(2):239–260PubMedCrossRefGoogle Scholar
  71. 71.
    Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK, Talke IN, Krämer U, Clemens S (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell Online. doi: 10.1105/tpc.111.095000 Google Scholar
  72. 72.
    Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat JF, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49(1):1–15PubMedCrossRefGoogle Scholar
  73. 73.
    Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. The Plant Cell Online. doi: 10.1105/tpc.111.095042 Google Scholar
  74. 74.
    Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143(4):1705–1719PubMedCrossRefGoogle Scholar
  75. 75.
    Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175PubMedCrossRefGoogle Scholar
  76. 76.
    Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35(2):334–346PubMedCrossRefGoogle Scholar
  77. 77.
    Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129(3):519–528CrossRefGoogle Scholar
  78. 78.
    Wójcik M, Tukiendorf A (2011) Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol Plant 55(1):125–132CrossRefGoogle Scholar
  79. 79.
    Cai Y, Cao F, Cheng W, Zhang G, Wu F (2011) Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against Cd stress in the two rice genotypes differing in Cd tolerance. Biol Trace Elem Res 143(2):1159–1173PubMedCrossRefGoogle Scholar
  80. 80.
    Shanmugam V, Tsednee M, Yeh K-C (2012) ZINC TOLERANCE INDUCED BY IRON 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana. Plant J 69(6):1006–1017PubMedCrossRefGoogle Scholar
  81. 81.
    Tian S, Lu L, Yang X, Huang H, Wang K, Brown P (2011) Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. Biologia Plantarum 56(2):344–350Google Scholar
  82. 82.
    Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107(4):1059–1066PubMedCrossRefGoogle Scholar
  83. 83.
    Howden R, Andersen CR, Goldsbrough PB, Cobbett CS (1995) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107(4):1067–1073PubMedCrossRefGoogle Scholar
  84. 84.
    Larsson EH, Asp H, Bornman JF (2002) Influence of prior Cd2+ exposure on the uptake of Cd2+ and other elements in the phytochelatin-deficient mutant, cad1-3, of Arabidopsis thaliana. J Exp Bot 53(368):447–453PubMedCrossRefGoogle Scholar
  85. 85.
    Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149(2):938–948PubMedCrossRefGoogle Scholar
  86. 86.
    Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Nat Acad Sci 107(49):21187–21192PubMedCrossRefGoogle Scholar
  87. 87.
    Park J, Song W-Y, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69(2):278–288PubMedCrossRefGoogle Scholar
  88. 88.
    Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53(1):159–182PubMedCrossRefGoogle Scholar
  89. 89.
    Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719PubMedCrossRefGoogle Scholar
  90. 90.
    Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832PubMedCrossRefGoogle Scholar
  91. 91.
    de Knecht JA, Koevoets PLM, Verkleij JAC, Ernst WHO (1992) Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytol 122(4):681–688Google Scholar
  92. 92.
    Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53(379):2381–2392PubMedCrossRefGoogle Scholar
  93. 93.
    Shah K (2011) Cadmium metal detoxification and hyperaccumulators. Detoxif Heavy Metals 30:181–203CrossRefGoogle Scholar
  94. 94.
    Meyer CL, Peisker D, Courbot M, Craciun AR, Cazalé AC, Desgain D, Schat H, Clemens S, Verbruggen N (2011) Isolation and characterization of Arabidopsis halleri and Thlaspi caerulescens phytochelatin synthases. Planta 234(1):83–95PubMedCrossRefGoogle Scholar
  95. 95.
    Sun RL, Zhou QX, Sun FH, Jin CX (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot 60(3):468–476CrossRefGoogle Scholar
  96. 96.
    Zhang ZC, Chen BX, Qiu BS (2010) Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant Cell Environ 33(8):1248–1255PubMedCrossRefGoogle Scholar
  97. 97.
    Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131(2):656–663PubMedCrossRefGoogle Scholar
  98. 98.
    Lee S, Petros D, Moon JS, Ko TS, Goldsbrough PB, Korban SS (2003) Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiol Biochem 41(10):903–910CrossRefGoogle Scholar
  99. 99.
    Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146(4):1697–1706PubMedCrossRefGoogle Scholar
  100. 100.
    Zimeri AM, Dhankher OP, McCaig B, Meagher RB (2005) The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol Biol 58(6):839–855PubMedCrossRefGoogle Scholar
  101. 101.
    Ren Y, Liu Y, Chen H, Li G, Zhang X, Zhao JIE (2012) Type 4 metallothionein genes are involved in regulating Zn ion accumulation in late embryo and in controlling early seedling growth in Arabidopsis. Plant Cell Environ 35(4):770–789PubMedCrossRefGoogle Scholar
  102. 102.
    Roosens NH, Leplae R, Bernard C, Verbruggen N (2005) Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case. Planta 222(4):716–729PubMedCrossRefGoogle Scholar
  103. 103.
    Hassinen V, Tervahauta A, Halimaa P, Plessl M, Peräniemi S, Schat H, Aarts MGM, Servomaa K, Kärenlampi S (2007) Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens. Planta 225(4):977–989PubMedCrossRefGoogle Scholar
  104. 104.
    Hassinen V, Tuomainen M, Peräniemi S, Schat H, Kärenlampi S, Tervahauta A (2009) Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 60(1):187–196PubMedCrossRefGoogle Scholar
  105. 105.
    Green J, Paget MS (2004) Bacterial redox sensors. Nat Rev Microbiol 2(12):954–966PubMedCrossRefGoogle Scholar
  106. 106.
    Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins—metal chelators with ROS scavenging activity? Plant Biol (Stuttg) 13(2):225–232CrossRefGoogle Scholar
  107. 107.
    Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70(1):219–229PubMedCrossRefGoogle Scholar
  108. 108.
    Steffens B, Sauter M (2009) Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21(1):184–196PubMedCrossRefGoogle Scholar
  109. 109.
    Zhu W, Zhao DX, Miao Q, Xue TT, Li XZ, Zheng CC (2009) Arabidopsis thaliana metallothionein, AtMT2a, mediates ROS balance during oxidative stress. J Plant Biol 52(6):585–592CrossRefGoogle Scholar
  110. 110.
    Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60(1):339–349PubMedCrossRefGoogle Scholar
  111. 111.
    Yang J, Wang Y, Liu G, Yang C, Li C (2011) Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd 2+, Zn 2+, Cu 2+, and NaCl in transgenic yeast. Mol Biol Rep 38(3):1567–1574PubMedCrossRefGoogle Scholar
  112. 112.
    Williams LE, Mills RF (2005) P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10(10):491–502PubMedCrossRefGoogle Scholar
  113. 113.
    Mills RF, Krijger GC, Baccarini PJ, Hall J, Williams LE (2003) Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35(2):164–176PubMedCrossRefGoogle Scholar
  114. 114.
    Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576(3):306–312PubMedCrossRefGoogle Scholar
  115. 115.
    Eren E, Argüello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting PIB-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136(3):3712–3723PubMedCrossRefGoogle Scholar
  116. 116.
    Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181(1):71–78PubMedCrossRefGoogle Scholar
  117. 117.
    Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16(5):1327–1339PubMedCrossRefGoogle Scholar
  118. 118.
    Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144(2):1052–1065PubMedCrossRefGoogle Scholar
  119. 119.
    Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453(7193):391–395PubMedCrossRefGoogle Scholar
  120. 120.
    Ó Lochlainn S, Bowen HC, Fray RG, Hammond JP, King GJ, White PJ, Graham NS, Broadley MR (2011) Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens. PLoS One 6 (3):e17814Google Scholar
  121. 121.
    Song WY, Martinoia E, Lee J, Kim D, Kim DY, Vogt E, Shim D, Choi KS, Hwang I, Lee Y (2004) A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol 135(2):1027PubMedCrossRefGoogle Scholar
  122. 122.
    Song W-Y, Choi KS, Kim DY, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim SH, Lim YP, Noh EW, Lee Y, Martinoia E (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22(7):2237–2252PubMedCrossRefGoogle Scholar
  123. 123.
    Kim D-Y, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50(2):207–218PubMedCrossRefGoogle Scholar
  124. 124.
    Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56(412):765–775PubMedCrossRefGoogle Scholar
  125. 125.
    Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiol 92(4):1086PubMedCrossRefGoogle Scholar
  126. 126.
    Kawachi M, Kobae Y, Mimura T, Maeshima M (2008) Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity. J Biol Chem 283(13):8374PubMedCrossRefGoogle Scholar
  127. 127.
    Desbrosses-Fonrouge AG, Voigt K, Schröder A, Arrivault S, Thomine S, Krämer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579(19):4165–4174PubMedCrossRefGoogle Scholar
  128. 128.
    Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45(12):1749–1758PubMedCrossRefGoogle Scholar
  129. 129.
    Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J 57(6):1116–1127PubMedCrossRefGoogle Scholar
  130. 130.
    Peer WA, Mamoudian M, Lahner B, Reeves RD, Murphy AS, Salt DE (2003) Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol 159(2):421–430CrossRefGoogle Scholar
  131. 131.
    Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Nat Acad Sci 98(17):9995PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang M, Senoura T, Yang X, Nishizawa NK (2011) Functional analysis of metal tolerance proteins isolated from Zn/Cd hyperaccumulating ecotype and non-hyperaccumulating ecotype of Sedum alfredii Hance. FEBS Lett 585(16):2604–2609PubMedCrossRefGoogle Scholar
  133. 133.
    Shahzad Z, Gosti F, Frérot H, Lacombe E, Roosens N, Saumitou-Laprade P, Berthomieu P (2010) The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genet 6(4):e1000911PubMedCrossRefGoogle Scholar
  134. 134.
    Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Krämer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39(3):425–439PubMedCrossRefGoogle Scholar
  135. 135.
    Arrivault S, Senger T, Krämer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46(5):861–879PubMedCrossRefGoogle Scholar
  136. 136.
    Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport (plant transporters and channels). FEBS Lett 581(12):2263–2272PubMedCrossRefGoogle Scholar
  137. 137.
    Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40(21):6792–6798PubMedCrossRefGoogle Scholar
  138. 138.
    Leonhardt N, Cun P, Richaud P, Vavasseur A (2012) Zn/Cd/Co/Pb P1B-ATPases in plants, physiological roles and biological interest. In: Metal toxicity in plants: perception, signaling and remediation, Springer, Berlin, pp 227–248Google Scholar
  139. 139.
    Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF (2009) Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50(12):2223–2233PubMedCrossRefGoogle Scholar
  140. 140.
    Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Nat Acad Sci 107(38):16500–16505PubMedCrossRefGoogle Scholar
  141. 141.
    Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P (2004) AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561(1):22–28PubMedCrossRefGoogle Scholar
  142. 142.
    Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149(2):894–904PubMedCrossRefGoogle Scholar
  143. 143.
    Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37(2):251–268PubMedCrossRefGoogle Scholar
  144. 144.
    Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M, Kaskie M, Ebbs S, Kochian LV, Ma JF (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66(5):852–862PubMedCrossRefGoogle Scholar
  145. 145.
    Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyard J (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281(5):2882–2892PubMedCrossRefGoogle Scholar
  146. 146.
    Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maeshima M, Lee Y (2009) AtHMA1 contributes to the detoxification of excess Zn (II) in Arabidopsis. Plant J 58(5):737–753PubMedCrossRefGoogle Scholar
  147. 147.
    Moreno I, Norambuena L, Maturana D, Toro M, Vergara C, Orellana A, Zurita-Silva A, Ordenes VR (2008) AtHMA1 is a thapsigargin-sensitive Ca2+/heavy metal pump. J Biol Chem 283(15):9633–9641PubMedCrossRefGoogle Scholar
  148. 148.
    Roux C, Castric V, Pauwels M, Wright SI, Saumitou-Laprade P, Vekemans X (2011) Does speciation between Arabidopsis halleri and Arabidopsis lyrata coincide with major changes in a molecular target of adaptation? PLoS One 6(11):e26872PubMedCrossRefGoogle Scholar
  149. 149.
    Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Nat Acad Sci 97(9):4991PubMedCrossRefGoogle Scholar
  150. 150.
    Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell Online 22(3):904–917CrossRefGoogle Scholar
  151. 151.
    Lanquar V, Ramos MS, Lelièvre F, Barbier-Brygoo H, Krieger-Liszkay A, Krämer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152(4):1986–1999PubMedCrossRefGoogle Scholar
  152. 152.
    Lanquar V, Lelièvre F, Bolte S, Hamès C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer U (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24(23):4041–4051PubMedCrossRefGoogle Scholar
  153. 153.
    Lanquar V, Lelièvre F, Barbier-Brygoo H, Thomine S (2004) Regulation and function of AtNRAMP4 metal transporter protein. Soil Sci Plant Nutr 50(7):1141–1150CrossRefGoogle Scholar
  154. 154.
    Oomen RJFJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MGM, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181(3):637–650PubMedCrossRefGoogle Scholar
  155. 155.
    Wei W, Chai T, Zhang Y, Han L, Xu J, Guan Z (2009) The Thlaspi caerulescens NRAMP homologue TcNRAMP3 is capable of divalent cation transport. Mol Biotechnol 41(1):15–21PubMedCrossRefGoogle Scholar
  156. 156.
    Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422(2):217–228PubMedCrossRefGoogle Scholar
  157. 157.
    Gadjev I, Stone JM, Gechev TS (2008) Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. Int Rev Cell Mol Biol 270:87–144PubMedCrossRefGoogle Scholar
  158. 158.
    Matilla-Vázquez M, Matilla A (2012) Role of H2O2 as signaling molecule in plants. In: Environmental adaptations and stress tolerance of plants in the era of climate change, Springer, New York, pp 361-380Google Scholar
  159. 159.
    Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50PubMedCrossRefGoogle Scholar
  160. 160.
    Cakmak I (2000) Tansley Review No. 111. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146(2):185–205CrossRefGoogle Scholar
  161. 161.
    Morina F, Jovanovic L, Mojovic M, Vidovic M, Pankovic D, Veljovic Jovanovic S (2010) Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiol Plant 140(3):209–224PubMedGoogle Scholar
  162. 162.
    Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75(11):1468–1476PubMedCrossRefGoogle Scholar
  163. 163.
    Jin XF, Yang XE, Islam E, Liu D, Mahmood Q, Li H, Li J (2008) Ultrastructural changes, zinc hyperaccumulation and its relation with antioxidants in two ecotypes of Sedum alfredii Hance. Plant Physiol Biochem 46(11):997–1006PubMedCrossRefGoogle Scholar
  164. 164.
    Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Kärenlampi S, Van Belleghem F, Smeets K, Vangronsveld J (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167(4):247–254PubMedCrossRefGoogle Scholar
  165. 165.
    Wang Z, Zhang Y, Huang Z, Huang L (2008) Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil 310(1):137–149CrossRefGoogle Scholar
  166. 166.
    Zeng XW, Qiu RL, Ying RR, Tang YT, Tang L, Fang XH (2011) The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch. in response to Zn and Cd. Chemosphere 82(3):321–328PubMedCrossRefGoogle Scholar
  167. 167.
    Wójcik M, Skórzyńska-Polit E, Tukiendorf A (2006) Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul 48(2):145–155CrossRefGoogle Scholar
  168. 168.
    Cherif J, Mediouni C, Ammar WB, Jemal F (2011) Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum). J Environ Sci (China) 23(5):837–844CrossRefGoogle Scholar
  169. 169.
    Jin XF, Liu D, Islam E, Mahmood Q, Yang XE, He ZL, Stoffella PJ (2009) Effects of zinc on root morphology and antioxidant adaptations of cadmium-treated Sedum alfredii H. J Plant Nutr 32(10):1642–1656CrossRefGoogle Scholar
  170. 170.
    Sanaeiostovar A, Khoshgoftarmanesh A, Shariatmadari H, Afyuni M, Schulin R (2012) Combined effect of zinc and cadmium levels on root antioxidative responses in three different zinc-efficient wheat genotypes. J Agron Crop Sci 197:390–399Google Scholar
  171. 171.
    Hermans C, Chen J, Coppens F, Inzé D, Verbruggen N (2011) Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytol 192(2):428–436PubMedCrossRefGoogle Scholar
  172. 172.
    Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann N Y Acad Sci 851(1):187–198PubMedCrossRefGoogle Scholar
  173. 173.
    Sandalio LM, Rodríguez-Serrano M, Gupta DK, Archilla A, Romero-Puertas MC, Río LA (2012) Reactive oxygen species and nitric oxide in plants under cadmium stress: from toxicity to signaling. In: Environmental adaptations and stress tolerance of plants in the era of climate change, pp 199–215Google Scholar
  174. 174.
    Nagae M, Nakata M, Takahashi Y (2008) Identification of negative cis-acting elements in response to copper in the chloroplastic iron superoxide dismutase gene of the moss Barbula unguiculata. Plant Physiol 146(4):1687–1696PubMedCrossRefGoogle Scholar
  175. 175.
    Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21(1):347–361PubMedCrossRefGoogle Scholar
  176. 176.
    Garnier L, SimonI-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29(10):1956–1969PubMedCrossRefGoogle Scholar
  177. 177.
    Groppa M, Ianuzzo M, Rosales E, Vázquez S, Benavides M (2012) Cadmium modulates NADPH oxidase activity and expression in sunflower leaves. Biol Plant 56(1):167–171CrossRefGoogle Scholar
  178. 178.
    Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangronsveld J, Cuypers A (2010) Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Funct Plant Biol 37(6):532–544Google Scholar
  179. 179.
    Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051–2065PubMedCrossRefGoogle Scholar
  180. 180.
    Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun 374(3):538–542PubMedCrossRefGoogle Scholar
  181. 181.
    Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64(1):97–112PubMedCrossRefGoogle Scholar
  182. 182.
    Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118(2):637–650PubMedCrossRefGoogle Scholar
  183. 183.
    Zhu C, Ding Y, Liu H (2011) MiR398 and plant stress responses. Physiologia Plantarum 143:1–9PubMedCrossRefGoogle Scholar
  184. 184.
    Ding YF, Zhu C (2009) The role of microRNAs in copper and cadmium homeostasis. Biochem Biophys Res Commun 386(1):6–10PubMedCrossRefGoogle Scholar
  185. 185.
    Romero-Pertas M, Rodríguez-Serrano M, Corpas F, Gomez M, Del Rio L, Sandalio L (2004) Cadmium-induced subcellular accumulation of O2· and H2O2 in pea leaves. Plant Cell Environ 27(9):1122–1134CrossRefGoogle Scholar
  186. 186.
    Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, Luis A, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150(1):229–243PubMedCrossRefGoogle Scholar
  187. 187.
    Costa A, Drago I, Behera S, Zottini M, Pizzo P, Schroeder JI, Pozzan T, Schiavo FL (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca2+ -dependent scavenging system. Plant J 62(5):760–772PubMedCrossRefGoogle Scholar
  188. 188.
    Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427(6977):858–861PubMedCrossRefGoogle Scholar
  189. 189.
    Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1-and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Nat Acad Sci 104(24):10270PubMedCrossRefGoogle Scholar
  190. 190.
    Jonak C, Ökrész L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5(5):415–424PubMedCrossRefGoogle Scholar
  191. 191.
    Hong-Bo S, Li-Ye C, Cheng-Jiang R, Hua L, Dong-Gang G, Wei-Xiang L (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 30(1):23–30PubMedCrossRefGoogle Scholar
  192. 192.
    Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498PubMedCrossRefGoogle Scholar
  193. 193.
    Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413(2):217–226PubMedCrossRefGoogle Scholar
  194. 194.
    Rodriguez S, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649PubMedCrossRefGoogle Scholar
  195. 195.
    Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136(2):3276–3283PubMedCrossRefGoogle Scholar
  196. 196.
    Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS, Kim HS, Kim SH, Park HC, Yun DJ (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71(5–6):614–618PubMedCrossRefGoogle Scholar
  197. 197.
    Lin CW, Chang HB, Huang HJ (2005) Zinc induces mitogen-activated protein kinase activation mediated by reactive oxygen species in rice roots. Plant Physiol Biochem 43(10):963–968PubMedCrossRefGoogle Scholar
  198. 199.
    Blomster T, Salojärvi J, Sipari N, Brosché M, Ahlfors R, Keinänen M, Overmyer K, Kangasjärvi J (2011) Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiol 157(4):1866–1883PubMedCrossRefGoogle Scholar
  199. 199.
    Elobeid M, Polle A (2012) Interference of heavy metal toxicity with auxin physiology. Metal Toxicity in Plants: Perception, Signaling and Remediation:249-259Google Scholar
  200. 200.
    Clijsters H, Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7(1):31–40CrossRefGoogle Scholar
  201. 201.
    Sharma SK, Goloubinoff P, Christen P (2008) Heavy metal ions are potent inhibitors of protein folding. Biochem Biophys Res Commun 372(2):341–345PubMedCrossRefGoogle Scholar
  202. 202.
    Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1(6):529–539PubMedCrossRefGoogle Scholar
  203. 203.
    Miao Y, Laun TM, Smykowski A, Zentgraf U (2007) Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol Biol 65(1):63–76PubMedCrossRefGoogle Scholar
  204. 204.
    Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55(6):853–867PubMedGoogle Scholar
  205. 205.
    Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168(1):17–20PubMedCrossRefGoogle Scholar
  206. 206.
    Békésiová B, Hraška Š, Libantová J, Moravčíková J, Matušíková I (2008) Heavy-metal stress induced accumulation of chitinase isoforms in plants. Mol Biol Rep 35(4):579–588PubMedCrossRefGoogle Scholar
  207. 207.
    de las Mercedes Dana M, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142(2):722–730PubMedCrossRefGoogle Scholar
  208. 208.
    Brotman Y, Landau U, Pnini S, Lisec J, Balazadeh S, Mueller-Roeber B, Zilberstein A, Willmitzer L, Chet I, Viterbo A (2012) The LysM Receptor-Like Kinase LysM RLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in Arabidopsis plants. Mol Plant. doi: 10.1093/mp/sss021 PubMedGoogle Scholar
  209. 209.
    Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86(11–12):377–384PubMedCrossRefGoogle Scholar
  210. 210.
    Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6(7):2180–2198PubMedCrossRefGoogle Scholar
  211. 211.
    Chen PY, Lee KT, Chi WC, Hirt H, Chang CC, Huang HJ (2008) Possible involvement of MAP kinase pathways in acquired metal-tolerance induced by heat in plants. Planta 228(3):499–509PubMedCrossRefGoogle Scholar
  212. 212.
    Pitzschke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MEKK1–MKK1/2–MPK4 pathway in ROS signalling. Mol Plant 2(1):120–137PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands

Personalised recommendations