Cellular and Molecular Life Sciences

, Volume 69, Issue 23, pp 3989–3997 | Cite as

A matricellular protein and EGF-like repeat signalling in the social amoebozoan Dictyostelium discoideum

  • Robert J. HuberEmail author
  • Danton H. O’Day


Matricellular proteins interact with the extracellular matrix (ECM) and modulate cellular processes by binding to cell surface receptors and initiating intracellular signal transduction. Their association with the ECM and the ability of some members of this protein family to regulate cell motility have opened up new avenues of research to investigate their functions in normal and diseased cells. In this review, we summarize the research on CyrA, an ECM calmodulin-binding protein in Dictyostelium. CyrA is proteolytically cleaved into smaller EGF-like (EGFL) repeat containing cleavage products during development. The first EGFL repeat of CyrA binds to the cell surface and activates a novel signalling pathway that modulates cell motility in this model organism. The similarity of CyrA to the most well-characterized matricellular proteins in mammals allows it to be designated as the first matricellular protein identified in Dictyostelium.


Matricellular EGF-like repeat Extracellular matrix Signal transduction Cell motility Dictyostelium CyrA 



Acyl-CoA binding protein A


A disintegrin and mettaloproteinase with thrombospondin motifs


cAMP receptor A


cAMP receptor C




CaM-binding protein


Cysteine-rich protein A


40 kDa CyrA cleavage product


45 kDa CyrA cleavage product


Extracellular matrix


Epidermal growth factor-like


CyrA EGFL repeat 1


EGF receptor


Endoplasmic reticulum


Myosin II heavy chain


Matrix metalloproteinase 2


Paxillin B




Protein kinase A


Phospholipase A2


Phospholipase C


Spore differentiation factor 2


Secreted protein acidic and rich in cysteine


Talin B


14th EGFL repeat of tenascin C

Tenascin C

Tenascin cytotactin




Vinculin B



This review was supported by a Discovery Grant (D.H.O’D.; A6807) and a Canada Graduate Scholarship (R.J.H.) from the Natural Sciences and Engineering Research Council of Canada.


  1. 1.
    Bornstein P, Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14:608–616PubMedCrossRefGoogle Scholar
  2. 2.
    Mosher DF, Adams JC (2012) Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal. Matrix Biol 31:155–161PubMedCrossRefGoogle Scholar
  3. 3.
    Roberts DD (2011) Emerging functions of matricellular proteins. Cell Mol Life Sci 68:3133–3136PubMedCrossRefGoogle Scholar
  4. 4.
    Adams JC, Lawler J (2011) The thrombospondins. Cold Spring Harb Perspect Biol 3:a009712PubMedCrossRefGoogle Scholar
  5. 5.
    Bradshaw AD (2012) Diverse biological functions of the SPARC family of proteins. Int J Biochem Cell Biol 44:480–488PubMedCrossRefGoogle Scholar
  6. 6.
    Özbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC (2010) The evolution of extracellular matrix. Mol Biol Cell 21:4300–4305PubMedCrossRefGoogle Scholar
  7. 7.
    Murphy-Ullrich JE (2001) The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J Clin Invest 107:785–790PubMedCrossRefGoogle Scholar
  8. 8.
    Brekken RA, Sage EH (2000) SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 19:569–580PubMedCrossRefGoogle Scholar
  9. 9.
    Yanagisawa H, Schluterman MK, Brekken RA (2009) Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Commun Signal 3:337–347PubMedCrossRefGoogle Scholar
  10. 10.
    Weaver MS, Workman G, Cardo-Vila M, Arap W, Pasqualini R, Sage EH (2010) Processing of the matricellular protein hevin in mouse brain is dependent on ADAMTS4. J Biol Chem 285:5868–5877PubMedCrossRefGoogle Scholar
  11. 11.
    Apte SS (2009) A disintegrin-like and metalloproteinase (reprolysin-type) with thrombospondin type I motif (ADAMTS) superfamily-functions and mechanisms. J Biol Chem 284:31493–31497PubMedCrossRefGoogle Scholar
  12. 12.
    Appella E, Weber I, Blasi F (1988) Structure and function of epidermal growth factor-like regions in proteins. FEBS Lett 231:1–4PubMedCrossRefGoogle Scholar
  13. 13.
    Grotendorst GR, Soma Y, Takehara K, Charette M (1989) EGF and TGF-alpha are potent chemoattractants for endothelial cells and EGF-like peptides are present at sites of tissue regeneration. J Cell Physiol 139:617–623PubMedCrossRefGoogle Scholar
  14. 14.
    Linggi B, Carpenter G (2006) ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol 16:649–656PubMedCrossRefGoogle Scholar
  15. 15.
    Rao Z, Handford P, Mayhew M, Knott V, Browniee GC, Stuart D (1995) The structure of a Ca2+-binding epidermal growth factor-like domain: its role in protein–protein interactions. Cell 82:131–141PubMedCrossRefGoogle Scholar
  16. 16.
    Campbell I, Bork P (1993) Epidermal growth factor-like modules. Curr Opin Struct Biol 3:385–392CrossRefGoogle Scholar
  17. 17.
    Kurucz E, Márkus R, Zsámboki J, Folkl-Medzihradszky K, Darula Z, Vilmos P, Udvardy A, Krausz I, Lukacsovich T, Gateff E, Zettervall CJ, Hultmark D, Andó I (2007) Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr Biol 17:649–654PubMedCrossRefGoogle Scholar
  18. 18.
    Glöckner G, Eichinger L, Szafranski K, Pachebat JA, Bankier AT, Dear PH, Lehmann R, Baumgart C, Parra G, Abril JF, Guigó R, Kumpf K, Tunggal B, Cox E, Quail MA, Platzer M, Rosenthal A, Noegel AA (2002) Sequence and analysis of chromosome 2 of Dictyostelium discoideum. Nature 418:79–85PubMedCrossRefGoogle Scholar
  19. 19.
    Fey P, Stephens S, Titus MA, Chisholm RL (2002) SadA, a novel adhesion receptor in Dictyostelium. J Cell Biol 159:1109–1119PubMedCrossRefGoogle Scholar
  20. 20.
    Huber RJ, O’Day DH (2009) An EGF-like peptide sequence from Dictyostelium enhances cell motility and chemotaxis. Biochem Biophys Res Commun 379:470–475PubMedCrossRefGoogle Scholar
  21. 21.
    Suarez A, Huber RJ, Myre MA, O’Day DH (2011) An extracellular matrix, calmodulin-binding protein from Dictyostelium with EGF-like repeats that enhance cell motility. Cell Signal 23:1197–1206PubMedCrossRefGoogle Scholar
  22. 22.
    Jones FS, Jones PL (2000) The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodelling. Dev Dyn 218:235–259PubMedCrossRefGoogle Scholar
  23. 23.
    Wallner K, Li C, Shah PK, Wu KJ, Schwartz SM, Sharifi BG (2004) EGF-Like domain of tenascin-C is proapoptotic for cultured smooth muscle cells. Arterioscler Thromb Vasc Biol 24:1416–1421PubMedCrossRefGoogle Scholar
  24. 24.
    Chen P, Gupta K, Wells A (1994) Cell movement elicited by epidermal growth factor receptor requires kinase and autophosphorylation but is separable from mitogenesis. J Cell Biol 124:547–555PubMedCrossRefGoogle Scholar
  25. 25.
    Tsunoda T, Inada H, Kalembeyi I, Imanaka-Yoshida K, Sakakibara M, Okada R, Katsuta K, Sakakura T, Majima Y, Yoshida T (2003) Involvement of large tenascin-C splice variants in breast cancer progression. Am J Pathol 162:1857–1867PubMedCrossRefGoogle Scholar
  26. 26.
    Iyer AK, Kien TT, Borysenko CW, Cascio M, Camacho CJ, Blair HC, Bahar I, Wells A (2007) Tenascin cytotactin epidermal growth factor-like repeat binds epidermal growth factor receptor with low affinity. J Cell Physiol 211:748–758PubMedCrossRefGoogle Scholar
  27. 27.
    Iyer AKV, Tran KT, Griffith L, Wells A (2008) Cell surface restriction of EGFR by a tenascin cytotactin-encoded EGF-like repeat is preferential for motility-related signalling. J Cell Physiol 214:504–512PubMedCrossRefGoogle Scholar
  28. 28.
    Swindle CS, Tran KT, Johnson TD, Banerjee P, Mayes AM, Griffith L, Wells A (2001) Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J Cell Biol 154:459–468PubMedCrossRefGoogle Scholar
  29. 29.
    Liu A, Garg P, Yang S, Gong P, Pallero MA, Annis DS, Liu Y, Passaniti A, Mann D, Mosher DF, Murphy-Ullrich JE, Goldblum SE (2009) Epidermal growth factor-like repeats of thrombospondins activate phospholipase Cgamma and increase epithelial cell migration through indirect epidermal growth factor receptor activation. J Biol Chem 284:6389–6402PubMedCrossRefGoogle Scholar
  30. 30.
    Fitchev PP, Wcislak SM, Lee C, Bergh A, Brendler CB, Stellmach VM, Crawford SE, Mavroudis CD, Cornwell ML, Doll JA (2010) Thrombospondin-1 regulates the normal prostate in vivo through angiogenesis and TGF-β activation. Lab Invest 90:1078–1090PubMedCrossRefGoogle Scholar
  31. 31.
    Schenk S, HIntermann E, Bilban M, Koshikawa N, Hojilla C, Khokha R, Quaranta V (2003) Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMPdependent mammary gland involution. J Cell Biol 161:197–209PubMedCrossRefGoogle Scholar
  32. 32.
    Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin 5. Science 277:225–228PubMedCrossRefGoogle Scholar
  33. 33.
    Yamamoto H, Itoh F, Iku S, Hosokawa M, Imai K (2001) Expression of the gamma (2) chain of laminin-5 at the invasive front is associated with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Clin Cancer Res 7:896–900PubMedGoogle Scholar
  34. 34.
    Niki T, Kohno T, Iba S, Moriya Y, Takahashi Y, Saito M, Maeshima A, Yamada T, Matsumo Y, Fukayama M, Yokota J, Hirohashi S (2002) Frequent co-localization of cox-2 and laminin-5 gamma2 chain at the invasive front of early-stage lung adenocarcinomas. Am J Pathol 160:1129–1141PubMedCrossRefGoogle Scholar
  35. 35.
    Williams JG (2010) Dictyostelium finds new roles to model. Genetics 185:717–726PubMedCrossRefGoogle Scholar
  36. 36.
    Schaap P (2011) Evolutionary crossroads in developmental biology: Dictyostelium discoideum. Development 138:387–396PubMedCrossRefGoogle Scholar
  37. 37.
    Jin T, Hereld D (2006) Moving toward understanding eukaryotic chemotaxis. Eur J Cell Biol 85:905–913PubMedCrossRefGoogle Scholar
  38. 38.
    Insall R, Andrew N (2007) Chemotaxis in Dictyostelium: how to walk straight using parallel pathways. Curr Opin Microbiol 10:578–581PubMedCrossRefGoogle Scholar
  39. 39.
    Chen LF, Iijima M, Tang M, Landree MA, Huang YE, Xiong Y, Iglesias PA, Devreotes PN (2007) PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev Cell 12:603–614PubMedCrossRefGoogle Scholar
  40. 40.
    Van Haastert PJM, Keizer-Gunnink I, Kortholt A (2007) Essential role of PI3-kinase and phospholipase A2 in Dictyostelium discoideum chemotaxis. J Cell Biol 177:809–816PubMedCrossRefGoogle Scholar
  41. 41.
    Chen L, Janetopoulos C, Huang YE, Iijima M, Borleis J, Devreotes PN (2003) Two phases of actin polymerization display different dependencies on PI (3, 4, 5) P3 accumulation and have unique roles during chemotaxis. Mol Biol Cell 14:5028–5037PubMedCrossRefGoogle Scholar
  42. 42.
    Takeda K, Sasaki AT, Ha H, Seung H-A, Firtel RA (2007) Role of phosphatidylinositol 3-kinases in chemotaxis in Dictyostelium. J Biol Chem 282:11874–11884PubMedCrossRefGoogle Scholar
  43. 43.
    Veltman DM, Keizer-Gunnik I, Van Haastert PJM (2008) Four key signaling pathways mediating chemotaxis in Dictyostelium discoideum. J Cell Biol 180:747–753PubMedCrossRefGoogle Scholar
  44. 44.
    Lusche DF, Wessels D, Soll DR (2009) The effects of extracellular calcium on motility, pseudopod and uropod formation, chemotaxis, and the cortical localization of myosin II in Dictyostelium discoideum. Cell Motil Cytoskeleton 66:567–587PubMedCrossRefGoogle Scholar
  45. 45.
    Gauthier ML, O’Day DH (2001) Detection of calmodulin-binding proteins and calmodulin-dependent phosphorylation linked to calmodulin-dependent chemotaxis to folic and cAMP in Dictyostelium. Cell Signal 13:575–584PubMedCrossRefGoogle Scholar
  46. 46.
    Scherer A, Kuhl S, Wessels D, Lusche DF, Raisley B, Soll DR (2010) Ca2+ chemotaxis in Dictyostelium discoideum. J Cell Sci 123:3756–3767PubMedCrossRefGoogle Scholar
  47. 47.
    Browning DD, The T, O`Day DH (1995) Comparative analysis of chemotaxis in Dictyostelium using a radial bioassay method: protein tyrosine kinase activity is required for chemotaxis to folate but not to cAMP. Cell Signal 7:481–489PubMedCrossRefGoogle Scholar
  48. 48.
    Wilkins MR, Williams KL (1995) The extracellular matrix of the Dictyostelium discoideum slug. Experientia 51:1189–1196PubMedCrossRefGoogle Scholar
  49. 49.
    Morrison A, Blanton RL, Grimson M, Fuchs M, Williams KL, Williams J (1994) Disruption of the gene encoding the EcmA, extracellular matrix protein of Dictyostelium, alters slug morphology. Dev Biol 163:457–466PubMedCrossRefGoogle Scholar
  50. 50.
    Breen EJ, Vardy PH, Williams KL (1987) Movement of the multicellular slug stage of Dictyostelium discoideum: an analytical approach. Development 101:313–321Google Scholar
  51. 51.
    Grant WN, Williams KL (1983) Monoclonal antibody characterization of the slime sheath: the extracellular matrix of Dictyostelium discoideum. EMBO J 2:935–940PubMedGoogle Scholar
  52. 52.
    Breen EJ, Williams KL (1988) Movement of the Dictyostelium discoideum slug: models, musings and images. Dev Genet 9:539–548PubMedCrossRefGoogle Scholar
  53. 53.
    Kowal AS, Chisholm RL (2011) Uncovering a role for the tail of the Dictyostelium discoideum SadA protein in cell-substrate adhesion. Eukaryot Cell 10:662–671PubMedCrossRefGoogle Scholar
  54. 54.
    Huber RJ, Suarez A, O’Day DH (2012) CyrA, a matricellular protein that modulates cell motility in Dictyostelium discoideum. Matrix Biol 31:271–280PubMedCrossRefGoogle Scholar
  55. 55.
    Müller-Taubenberger A, Lupas AN, Li H, Ecke M, Simmeth E, Gerisch G (2001) Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. EMBO J 20:6772–6782PubMedCrossRefGoogle Scholar
  56. 56.
    Anjard C, Loomis WF (2005) Peptide signaling during terminal differentiation of Dictyostelium. Proc Natl Acad Sci USA 102:7607–7611PubMedCrossRefGoogle Scholar
  57. 57.
    Bakthavatsalam D, Gomer RH (2010) The secreted proteome profile of developing Dictyostelium discoideum cells. Proteomics 10:2556–2559PubMedCrossRefGoogle Scholar
  58. 58.
    Handford PA, Mayhew M, Baron M, Winship PR, Campbell ID, Brownlee GG (1991) Key residues involved in calcium-binding motifs EGF-like domains. Nature 351:164–167PubMedCrossRefGoogle Scholar
  59. 59.
    Periz J, Gill AC, Knott V, Handford PA, Tomley FM (2005) Calcium binding activity of the epidermal growth factor-like domains of the apicomplexan microneme protein EtMIC4. Mol Biochem Parasitol 143:192–199PubMedCrossRefGoogle Scholar
  60. 60.
    Huber RJ, O’Day DH (2011) EGF-like peptide-enhanced cell motility in Dictyostelium functions independently of the cAMP-mediated pathway and requires active Ca2+/calmodulin signaling. Cell Signal 23:731–738PubMedCrossRefGoogle Scholar
  61. 61.
    Nikolaeva I, Huber RJ, O’Day DH (2012) EGF-like peptide of Dictyostelium discoideum is not a chemoattractant but it does restore folate-mediated chemotaxis in the presence of signal transduction inhibitors. Peptides 34:145–149PubMedCrossRefGoogle Scholar
  62. 62.
    Huber RJ, O’Day DH (2012) EGF-like peptide-enhanced cell movement in Dictyostelium is mediated by protein kinases and the activity of several cytoskeletal proteins. Cell Signal 24:1770–1780PubMedCrossRefGoogle Scholar
  63. 63.
    Bryant JA, Finn RS, Slamon DJ, Cloughesy TF, Charles AC (2004) EGF activates intracellular and intercellular calcium signaling by distinct pathways in tumor cells. Cancer Biol Ther 3:1243–1249PubMedCrossRefGoogle Scholar
  64. 64.
    Kato K, Ueoka Y, Tamura T, Nishida J, Wake N (1998) Oncogenic Ras modulates epidermal growth factor responsiveness in endometrial carcinomas. Eur J Cancer 34:737–744PubMedCrossRefGoogle Scholar
  65. 65.
    Bolourani P, Spiegelman GB, Weeks G (2006) Delineation of the roles played by RasG and RasC in cAMP-dependent signal transduction during the early development of Dictyostelium discoideum. Mol Biol Cell 17:4543–4550PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang H, Heid PJ, Wessels D, Daniels KJ, Pham T, Loomis WF, Soll DR (2003) Constitutively active protein kinase A disrupts motility and chemotaxis in Dictyostelium discoideum. Eukaryot Cell 2:62–75PubMedCrossRefGoogle Scholar
  67. 67.
    Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS (2007) Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 19:2013–2023PubMedCrossRefGoogle Scholar
  68. 68.
    Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310PubMedCrossRefGoogle Scholar
  69. 69.
    Wu L, Valkema R, Van Haastert PJ, Devreotes PN (1995) The G protein beta subunit is essential for multiple responses to chemoattractants in Dictyostelium. J Cell Biol 129:1667–1675PubMedCrossRefGoogle Scholar
  70. 70.
    Sasaki AT, Janetopoulos C, Lee S, Charest PG, Takeda K, Sundheimer LW, Meili R, Devreotes PN, Firtel RA (2007) G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility. J Cell Biol 178:185–191PubMedCrossRefGoogle Scholar
  71. 71.
    Varnum A, Soll DR (1981) Chemoresponsiveness to cAMP and folic acid during growth, development, and dedifferentiation in Dictyostelium discoideum. Differentiation 18:151–160PubMedCrossRefGoogle Scholar
  72. 72.
    Gallant ND, Michael KE, García AJ (2005) Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol Biol Cell 16:4329–4340PubMedCrossRefGoogle Scholar
  73. 73.
    Ziegler WH, Liddington RC, Critchley DR (2006) The structure and regulation of vinculin. Trends Cell Biol 16:453–460PubMedCrossRefGoogle Scholar
  74. 74.
    Diasio RB, Fourie J (2006) Targeting the epidermal growth factor receptor in the treatment of colorectal cancer. Drugs 66:1441–1463PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
  2. 2.Department of BiologyUniversity of Toronto MississaugaMississaugaCanada

Personalised recommendations