Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 4, pp 559–579 | Cite as

Regulatory mechanisms of kinetochore–microtubule interaction in mitosis

  • Kozo Tanaka
Review

Abstract

Interaction of microtubules with kinetochores is fundamental to chromosome segregation. Kinetochores initially associate with lateral surfaces of microtubules and subsequently become attached to microtubule ends. During these interactions, kinetochores can move by sliding along microtubules or by moving together with depolymerizing microtubule ends. The interplay between kinetochores and microtubules leads to the establishment of bi-orientation, which is the attachment of sister kinetochores to microtubules from opposite spindle poles, and subsequent chromosome segregation. Molecular mechanisms underlying these processes have been intensively studied over the past 10 years. Emerging evidence suggests that the KNL1–Mis12–Ndc80 (KMN) network plays a central role in connecting kinetochores to microtubules, which is under fine regulation by a mitotic kinase, Aurora B. However, a growing number of additional molecules are being shown to be involved in the kinetochore–microtubule interaction. Here I overview the current range of regulatory mechanisms of the kinetochore–microtubule interaction, and discuss how these multiple molecules contribute cooperatively to allow faithful chromosome segregation.

Keywords

Kinetochore Microtubule Spindle Chromosome segregation Bi-orientation Mitosis 

Notes

Acknowledgments

The author thanks M Ikeda, K Iemura, T Hirota, and L Clayton for careful reading of the manuscript. This work was supported by a Grant-in-Aid for Scientific Research from the Japanese Society of Promotion of Science; a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan; and grants from the Mitsubishi Foundation, the Naito Foundation, Takeda Science Foundation, Princess Takamatsu Cancer Research Fund (10-24210), Daiichi-Sankyo Foundation of Life Science, and Gonryo Medical Foundation.

References

  1. 1.
    Flemming W (1879) Beitrage zur kenntnis der zelle und ihrer lebenserscheinungen. Arch Mikrosk Anat 18:302–436CrossRefGoogle Scholar
  2. 2.
    McAinsh AD, Tytell JD, Sorger PK (2003) Structure, function, and regulation of budding yeast kinetochores. Annu Rev Cell Dev Biol 19:519–539PubMedCrossRefGoogle Scholar
  3. 3.
    Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–421PubMedCrossRefGoogle Scholar
  4. 4.
    Marshall OJ, Chueh AC, Wong LH, Choo KH (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282PubMedCrossRefGoogle Scholar
  5. 5.
    Black BE, Bassett EA (2008) The histone variant CENP-A and centromere specification. Curr Opin Cell Biol 20:91–100PubMedCrossRefGoogle Scholar
  6. 6.
    Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315PubMedCrossRefGoogle Scholar
  7. 7.
    Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM (2011) Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145:410–422PubMedCrossRefGoogle Scholar
  8. 8.
    Coffman VC, Wu P, Parthun MR, Wu JQ (2011) CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast. J Cell Biol 195:563–572PubMedCrossRefGoogle Scholar
  9. 9.
    Lawrimore J, Bloom KS, Salmon ED (2011) Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. J Cell Biol 195:573–582PubMedCrossRefGoogle Scholar
  10. 10.
    Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330PubMedCrossRefGoogle Scholar
  11. 11.
    Maddox PS, Oegema K, Desai A, Cheeseman IM (2004) “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res 12:641–653PubMedCrossRefGoogle Scholar
  12. 12.
    Rieder CL (1982) The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol 79:1–58PubMedCrossRefGoogle Scholar
  13. 13.
    Rieder CL, Salmon ED (1998) The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol 8:310–318PubMedCrossRefGoogle Scholar
  14. 14.
    Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117PubMedCrossRefGoogle Scholar
  15. 15.
    Winey M, Mamay CL, O’Toole ET, Mastronarde DN, Giddings TH Jr, McDonald KL, McIntosh JR (1995) Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 129:1601–1615PubMedCrossRefGoogle Scholar
  16. 16.
    O’Toole ET, Winey M, McIntosh JR (1999) High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol Biol Cell 10:2017–2031PubMedGoogle Scholar
  17. 17.
    Ding R, McDonald KL, McIntosh JR (1993) Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J Cell Biol 120:141–151PubMedCrossRefGoogle Scholar
  18. 18.
    McEwen BF, Heagle AB, Cassels GO, Buttle KF, Rieder CL (1997) Kinetochore fiber maturation in PtK1 cells and its implications for the mechanisms of chromosome congression and anaphase onset. J Cell Biol 137:1567–1580PubMedCrossRefGoogle Scholar
  19. 19.
    Dong Y, Vanden Beldt KJ, Meng X, Khodjakov A, McEwen BF (2007) The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat Cell Biol 9:516–522PubMedCrossRefGoogle Scholar
  20. 20.
    McIntosh JR, Grishchuk EL, Morphew MK, Efremov AK, Zhudenkov K, Volkov VA, Cheeseman IM, Desai A, Mastronarde DN, Ataullakhanov FI (2008) Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 135:322–333PubMedCrossRefGoogle Scholar
  21. 21.
    Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore–microtubule interface. Nat Rev Mol Cell Biol 9:33–46PubMedCrossRefGoogle Scholar
  22. 22.
    Joglekar AP, Bouck D, Finley K, Liu X, Wan Y, Berman J, He X, Salmon ED, Bloom KS (2008) Molecular architecture of the kinetochore–microtubule attachment site is conserved between point and regional centromeres. J Cell Biol 181:587–594PubMedCrossRefGoogle Scholar
  23. 23.
    Johnston K, Joglekar A, Hori T, Suzuki A, Fukagawa T, Salmon ED (2010) Vertebrate kinetochore protein architecture: protein copy number. J Cell Biol 189:937–943PubMedCrossRefGoogle Scholar
  24. 24.
    Wan X, O’Quinn RP, Pierce HL, Joglekar AP, Gall WE, DeLuca JG, Carroll CW, Liu ST, Yen TJ, McEwen BF, Stukenberg PT, Desai A, Salmon ED (2009) Protein architecture of the human kinetochore microtubule attachment site. Cell 137:672–684PubMedCrossRefGoogle Scholar
  25. 25.
    Suzuki A, Hori T, Nishino T, Usukura J, Miyagi A, Morikawa K, Fukagawa T (2011) Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins. J Cell Biol 193:125–140PubMedCrossRefGoogle Scholar
  26. 26.
    Perpelescu M, Fukagawa T (2011) The ABCs of CENPs. Chromosoma 120:425–446PubMedCrossRefGoogle Scholar
  27. 27.
    Tanaka TU, Stark MJ, Tanaka K (2005) Kinetochore capture and bi-orientation on the mitotic spindle. Nat Rev Mol Cell Biol 6:929–942PubMedCrossRefGoogle Scholar
  28. 28.
    Kawashima S, Nakabayashi Y, Matsubara K, Sano N, Enomoto T, Tanaka K, Seki M, Horikoshi M (2011) Global analysis of core histones reveals nucleosomal surfaces required for chromosome bi-orientation. EMBO J 30:3353–3367PubMedCrossRefGoogle Scholar
  29. 29.
    Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242PubMedCrossRefGoogle Scholar
  30. 30.
    Kirschner M, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–342PubMedCrossRefGoogle Scholar
  31. 31.
    Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9:309–322PubMedCrossRefGoogle Scholar
  32. 32.
    Moore A, Wordeman L (2004) The mechanism, function and regulation of depolymerizing kinesins during mitosis. Trends Cell Biol 14:537–546PubMedCrossRefGoogle Scholar
  33. 33.
    Tanenbaum ME, Macurek L, van der Vaart B, Galli M, Akhmanova A, Medema RH (2011) A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases. Curr Biol 21:1356–1365PubMedCrossRefGoogle Scholar
  34. 34.
    Tulu US, Rusan NM, Wadsworth P (2003) Peripheral, non-centrosome-associated microtubules contribute to spindle formation in centrosome-containing cells. Curr Biol 13:1894–1899PubMedCrossRefGoogle Scholar
  35. 35.
    Wollman R, Cytrynbaum EN, Jones JT, Meyer T, Scholey JM, Mogilner A (2005) Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. Curr Biol 15:828–832PubMedCrossRefGoogle Scholar
  36. 36.
    Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9:464–477PubMedCrossRefGoogle Scholar
  37. 37.
    Carazo-Salas RE, Karsenti E (2003) Long-range communication between chromatin and microtubules in Xenopus egg extracts. Curr Biol 13:1728–1733PubMedCrossRefGoogle Scholar
  38. 38.
    Tanaka TU (2010) Kinetochore–microtubule interactions: steps towards bi-orientation. EMBO J 29:4070–4082PubMedCrossRefGoogle Scholar
  39. 39.
    Tulu US, Fagerstrom C, Ferenz NP, Wadsworth P (2006) Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr Biol 16:536–541PubMedCrossRefGoogle Scholar
  40. 40.
    Mishra RK, Chakraborty P, Arnaoutov A, Fontoura BM, Dasso M (2010) The Nup107-160 complex and gamma-TuRC regulate microtubule polymerization at kinetochores. Nat Cell Biol 12:164–169PubMedCrossRefGoogle Scholar
  41. 41.
    Maiato H, Rieder CL, Khodjakov A (2004) Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167:831–840PubMedCrossRefGoogle Scholar
  42. 42.
    Winey M, O’Toole ET (2001) The spindle cycle in budding yeast. Nat Cell Biol 3:E23–E27PubMedCrossRefGoogle Scholar
  43. 43.
    Kitamura E, Tanaka K, Kitamura Y, Tanaka TU (2007) Kinetochore microtubule interaction during S phase in Saccharomyces cerevisiae. Genes Dev 21:3319–3330PubMedCrossRefGoogle Scholar
  44. 44.
    Tanaka K, Mukae N, Dewar H, van Breugel M, James EK, Prescott AR, Antony C, Tanaka TU (2005) Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434:987–994PubMedCrossRefGoogle Scholar
  45. 45.
    Kitamura E, Tanaka K, Komoto S, Kitamura Y, Antony C, Tanaka TU (2010) Kinetochores generate microtubules with distal plus ends: their roles and limited lifetime in mitosis. Dev Cell 18:248–259PubMedCrossRefGoogle Scholar
  46. 46.
    Vorozhko VV, Emanuele MJ, Kallio MJ, Stukenberg PT, Gorbsky GJ (2008) Multiple mechanisms of chromosome movement in vertebrate cells mediated through the Ndc80 complex and dynein/dynactin. Chromosoma 117:169–179PubMedCrossRefGoogle Scholar
  47. 47.
    Alexander SP, Rieder CL (1991) Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers. J Cell Biol 113:805–815PubMedCrossRefGoogle Scholar
  48. 48.
    Yang Z, Tulu US, Wadsworth P, Rieder CL (2007) Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr Biol 17:973–980PubMedCrossRefGoogle Scholar
  49. 49.
    Gandhi SR, Gierlinski M, Mino A, Tanaka K, Kitamura E, Clayton L, Tanaka TU (2011) Kinetochore-dependent microtubule rescue ensures their efficient and sustained interactions in early mitosis. Dev Cell 21:920–933PubMedCrossRefGoogle Scholar
  50. 50.
    McDonald HB, Stewart RJ, Goldstein LS (1990) The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63:1159–1165PubMedCrossRefGoogle Scholar
  51. 51.
    Endow SA, Komma DJ (1996) Centrosome and spindle function of the Drosophila Ncd microtubule motor visualized in live embryos using Ncd–GFP fusion proteins. J Cell Sci 109(Pt 10):2429–2442PubMedGoogle Scholar
  52. 52.
    Tanaka K, Kitamura E, Kitamura Y, Tanaka TU (2007) Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J Cell Biol 178:269–281PubMedCrossRefGoogle Scholar
  53. 53.
    Meraldi P, Sorger PK (2005) A dual role for Bub1 in the spindle checkpoint and chromosome congression. EMBO J 24:1621–1633PubMedCrossRefGoogle Scholar
  54. 54.
    Logarinho E, Resende T, Torres C, Bousbaa H (2008) The human spindle assembly checkpoint protein Bub3 is required for the establishment of efficient kinetochore–microtubule attachments. Mol Biol Cell 19:1798–1813PubMedCrossRefGoogle Scholar
  55. 55.
    Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD (2008) Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J Cell Biol 181:421–429PubMedCrossRefGoogle Scholar
  56. 56.
    Lawo S, Bashkurov M, Mullin M, Ferreria MG, Kittler R, Habermann B, Tagliaferro A, Poser I, Hutchins JR, Hegemann B, Pinchev D, Buchholz F, Peters JM, Hyman AA, Gingras AC, Pelletier L (2009) HAUS, the 8-subunit human Augmin complex, regulates centrosome and spindle integrity. Curr Biol 19:816–826PubMedCrossRefGoogle Scholar
  57. 57.
    Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD, Obuse C, Goshima G (2009) The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. Proc Natl Acad Sci USA 106:6998–7003PubMedCrossRefGoogle Scholar
  58. 58.
    Tooley J, Stukenberg PT (2011) The Ndc80 complex: integrating the kinetochore’s many movements. Chromosome Res 19:377–391PubMedCrossRefGoogle Scholar
  59. 59.
    Kiyomitsu T, Obuse C, Yanagida M (2007) Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev Cell 13:663–676PubMedCrossRefGoogle Scholar
  60. 60.
    Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:983–997PubMedCrossRefGoogle Scholar
  61. 61.
    Screpanti E, De Antoni A, Alushin GM, Petrovic A, Melis T, Nogales E, Musacchio A (2011) Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr Biol 21:391–398PubMedCrossRefGoogle Scholar
  62. 62.
    Przewloka MR, Venkei Z, Bolanos-Garcia VM, Debski J, Dadlez M, Glover DM (2011) CENP-C is a structural platform for kinetochore assembly. Curr Biol 21:399–405PubMedCrossRefGoogle Scholar
  63. 63.
    Nishino T, Takeuchi K, Gascoigne KE, Suzuki A, Hori T, Oyama T, Morikawa K, Cheeseman IM, Fukagawa T (2012) CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148:487–501PubMedCrossRefGoogle Scholar
  64. 64.
    Buttrick GJ, Millar JB (2011) Ringing the changes: emerging roles for DASH at the kinetochore–microtubule interface. Chromosome Res 19:393–407PubMedCrossRefGoogle Scholar
  65. 65.
    Maure JF, Komoto S, Oku Y, Mino A, Pasqualato S, Natsume K, Clayton L, Musacchio A, Tanaka TU (2011) The Ndc80 loop region facilitates formation of kinetochore attachment to the dynamic microtubule plus end. Curr Biol 21:207–213PubMedCrossRefGoogle Scholar
  66. 66.
    Cheeseman IM, Brew C, Wolyniak M, Desai A, Anderson S, Muster N, Yates JR, Huffaker TC, Drubin DG, Barnes G (2001) Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J Cell Biol 155:1137–1145PubMedCrossRefGoogle Scholar
  67. 67.
    Cheeseman IM, Enquist-Newman M, Muller-Reichert T, Drubin DG, Barnes G (2001) Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J Cell Biol 152:197–212PubMedCrossRefGoogle Scholar
  68. 68.
    Asbury CL, Gestaut DR, Powers AF, Franck AD, Davis TN (2006) The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc Natl Acad Sci USA 103:9873–9878PubMedCrossRefGoogle Scholar
  69. 69.
    Franck AD, Powers AF, Gestaut DR, Gonen T, Davis TN, Asbury CL (2007) Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nat Cell Biol 9:832–837PubMedCrossRefGoogle Scholar
  70. 70.
    Sanchez-Perez I, Renwick SJ, Crawley K, Karig I, Buck V, Meadows JC, Franco-Sanchez A, Fleig U, Toda T, Millar JB (2005) The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast. EMBO J 24:2931–2943PubMedCrossRefGoogle Scholar
  71. 71.
    Hanisch A, Sillje HH, Nigg EA (2006) Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. EMBO J 25:5504–5515PubMedCrossRefGoogle Scholar
  72. 72.
    Daum JR, Wren JD, Daniel JJ, Sivakumar S, McAvoy JN, Potapova TA, Gorbsky GJ (2009) Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis. Curr Biol 19:1467–1472PubMedCrossRefGoogle Scholar
  73. 73.
    Gaitanos TN, Santamaria A, Jeyaprakash AA, Wang B, Conti E, Nigg EA (2009) Stable kinetochore–microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J 28:1442–1452PubMedCrossRefGoogle Scholar
  74. 74.
    Raaijmakers JA, Tanenbaum ME, Maia AF, Medema RH (2009) RAMA1 is a novel kinetochore protein involved in kinetochore–microtubule attachment. J Cell Sci 122:2436–2445PubMedCrossRefGoogle Scholar
  75. 75.
    Welburn JP, Grishchuk EL, Backer CB, Wilson-Kubalek EM, Yates JR 3rd, Cheeseman IM (2009) The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev Cell 16:374–385PubMedCrossRefGoogle Scholar
  76. 76.
    Loncarek J, Kisurina-Evgenieva O, Vinogradova T, Hergert P, La Terra S, Kapoor TM, Khodjakov A (2007) The centromere geometry essential for keeping mitosis error free is controlled by spindle forces. Nature 450:745–749PubMedCrossRefGoogle Scholar
  77. 77.
    Indjeian VB, Murray AW (2007) Budding yeast mitotic chromosomes have an intrinsic bias to biorient on the spindle. Curr Biol 17:1837–1846PubMedCrossRefGoogle Scholar
  78. 78.
    Kapoor TM, Lampson MA, Hergert P, Cameron L, Cimini D, Salmon ED, McEwen BF, Khodjakov A (2006) Chromosomes can congress to the metaphase plate before biorientation. Science 311:388–391PubMedCrossRefGoogle Scholar
  79. 79.
    Lampson MA, Cheeseman IM (2011) Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol 21:133–140PubMedCrossRefGoogle Scholar
  80. 80.
    Ciferri C, Pasqualato S, Screpanti E, Varetti G, Santaguida S, Dos Reis G, Maiolica A, Polka J, De Luca JG, De Wulf P, Salek M, Rappsilber J, Moores CA, Salmon ED, Musacchio A (2008) Implications for kinetochore–microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133:427–439PubMedCrossRefGoogle Scholar
  81. 81.
    Nicklas RB (1997) How cells get the right chromosomes. Science 275:632–637PubMedCrossRefGoogle Scholar
  82. 82.
    Dewar H, Tanaka K, Nasmyth K, Tanaka TU (2004) Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428:93–97PubMedCrossRefGoogle Scholar
  83. 83.
    Biggins S, Murray AW (2001) The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev 15:3118–3129PubMedCrossRefGoogle Scholar
  84. 84.
    Tanaka TU, Rachidi N, Janke C, Pereira G, Galova M, Schiebel E, Stark MJ, Nasmyth K (2002) Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore–spindle pole connections. Cell 108:317–329PubMedCrossRefGoogle Scholar
  85. 85.
    Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters JM (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161:281–294PubMedCrossRefGoogle Scholar
  86. 86.
    Lampson MA, Renduchitala K, Khodjakov A, Kapoor TM (2004) Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol 6:232–237PubMedCrossRefGoogle Scholar
  87. 87.
    Liu D, Vader G, Vromans MJ, Lampson MA, Lens SM (2009) Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323:1350–1353PubMedCrossRefGoogle Scholar
  88. 88.
    Wang E, Ballister ER, Lampson MA (2011) Aurora B dynamics at centromeres create a diffusion-based phosphorylation gradient. J Cell Biol 194:539–549PubMedCrossRefGoogle Scholar
  89. 89.
    Welburn JP, Vleugel M, Liu D, Yates JR 3rd, Lampson MA, Fukagawa T, Cheeseman IM (2010) Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore–microtubule interface. Mol Cell 38:383–392PubMedCrossRefGoogle Scholar
  90. 90.
    Liu D, Vleugel M, Backer CB, Hori T, Fukagawa T, Cheeseman IM, Lampson MA (2010) Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Biol 188:809–820PubMedCrossRefGoogle Scholar
  91. 91.
    Cimini D, Wan X, Hirel CB, Salmon ED (2006) Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr Biol 16:1711–1718PubMedCrossRefGoogle Scholar
  92. 92.
    Knowlton AL, Lan W, Stukenberg PT (2006) Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr Biol 16:1705–1710PubMedCrossRefGoogle Scholar
  93. 93.
    Nicklas RB, Ward SC (1994) Elements of error correction in mitosis: microtubule capture, release, and tension. J Cell Biol 126:1241–1253PubMedCrossRefGoogle Scholar
  94. 94.
    Bakhoum SF, Thompson SL, Manning AL, Compton DA (2009) Genome stability is ensured by temporal control of kinetochore–microtubule dynamics. Nat Cell Biol 11:27–35PubMedCrossRefGoogle Scholar
  95. 95.
    Salimian KJ, Ballister ER, Smoak EM, Wood S, Panchenko T, Lampson MA, Black BE (2011) Feedback control in sensing chromosome biorientation by the Aurora B kinase. Curr Biol 21:1158–1165PubMedCrossRefGoogle Scholar
  96. 96.
    Andrews PD, Ovechkina Y, Morrice N, Wagenbach M, Duncan K, Wordeman L, Swedlow JR (2004) Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6:253–268PubMedCrossRefGoogle Scholar
  97. 97.
    Lan W, Zhang X, Kline-Smith SL, Rosasco SE, Barrett-Wilt GA, Shabanowitz J, Hunt DF, Walczak CE, Stukenberg PT (2004) Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 14:273–286PubMedGoogle Scholar
  98. 98.
    Ohi R, Sapra T, Howard J, Mitchison TJ (2004) Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell 15:2895–2906PubMedCrossRefGoogle Scholar
  99. 99.
    Oguchi Y, Uchimura S, Ohki T, Mikhailenko SV, Ishiwata S (2011) The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends. Nat Cell Biol 13:846–852PubMedCrossRefGoogle Scholar
  100. 100.
    Ganem NJ, Upton K, Compton DA (2005) Efficient mitosis in human cells lacking poleward microtubule flux. Curr Biol 15:1827–1832PubMedCrossRefGoogle Scholar
  101. 101.
    Cheeseman IM, Anderson S, Jwa M, Green EM, Kang J, Yates JR 3rd, Chan CS, Drubin DG, Barnes G (2002) Phospho-regulation of kinetochore–microtubule attachments by the Aurora kinase Ipl1p. Cell 111:163–172PubMedCrossRefGoogle Scholar
  102. 102.
    Lampert F, Hornung P, Westermann S (2010) The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex. J Cell Biol 189:641–649PubMedCrossRefGoogle Scholar
  103. 103.
    Tien JF, Umbreit NT, Gestaut DR, Franck AD, Cooper J, Wordeman L, Gonen T, Asbury CL, Davis TN (2010) Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. J Cell Biol 189:713–723PubMedCrossRefGoogle Scholar
  104. 104.
    Chan YW, Jeyaprakash AA, Nigg EA, Santamaria A (2012) Aurora B controls kinetochore–microtubule attachments by inhibiting Ska complex–KMN network interaction. J Cell Biol 196:563–571PubMedCrossRefGoogle Scholar
  105. 105.
    Kawashima SA, Yamagishi Y, Honda T, Ishiguro K, Watanabe Y (2010) Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327:172–177PubMedCrossRefGoogle Scholar
  106. 106.
    Wang F, Dai J, Daum JR, Niedzialkowska E, Banerjee B, Stukenberg PT, Gorbsky GJ, Higgins JM (2010) Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330:231–235PubMedCrossRefGoogle Scholar
  107. 107.
    Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, Funabiki H (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330:235–239PubMedCrossRefGoogle Scholar
  108. 108.
    Yamagishi Y, Honda T, Tanno Y, Watanabe Y (2010) Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330:239–243PubMedCrossRefGoogle Scholar
  109. 109.
    Salic A, Waters JC, Mitchison TJ (2004) Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118:567–578PubMedCrossRefGoogle Scholar
  110. 110.
    Dai J, Sultan S, Taylor SS, Higgins JM (2005) The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev 19:472–488PubMedCrossRefGoogle Scholar
  111. 111.
    Huang H, Feng J, Famulski J, Rattner JB, Liu ST, Kao GD, Muschel R, Chan GK, Yen TJ (2007) Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J Cell Biol 177:413–424PubMedCrossRefGoogle Scholar
  112. 112.
    Jelluma N, Brenkman AB, van den Broek NJ, Cruijsen CW, van Osch MH, Lens SM, Medema RH, Kops GJ (2008) Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell 132:233–246PubMedCrossRefGoogle Scholar
  113. 113.
    Hewitt L, Tighe A, Santaguida S, White AM, Jones CD, Musacchio A, Green S, Taylor SS (2010) Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J Cell Biol 190:25–34PubMedCrossRefGoogle Scholar
  114. 114.
    Maciejowski J, George KA, Terret ME, Zhang C, Shokat KM, Jallepalli PV (2010) Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J Cell Biol 190:89–100PubMedCrossRefGoogle Scholar
  115. 115.
    Santaguida S, Tighe A, D’Alise AM, Taylor SS, Musacchio A (2010) Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J Cell Biol 190:73–87PubMedCrossRefGoogle Scholar
  116. 116.
    Indjeian VB, Stern BM, Murray AW (2005) The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307:130–133PubMedCrossRefGoogle Scholar
  117. 117.
    Maure JF, Kitamura E, Tanaka TU (2007) Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism. Curr Biol 17:2175–2182PubMedCrossRefGoogle Scholar
  118. 118.
    Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2:21–32PubMedCrossRefGoogle Scholar
  119. 119.
    Barr FA, Sillje HH, Nigg EA (2004) Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5:429–440PubMedCrossRefGoogle Scholar
  120. 120.
    Carmena M, Pinson X, Platani M, Salloum Z, Xu Z, Clark A, Macisaac F, Ogawa H, Eggert U, Glover DM, Archambault V, Earnshaw WC (2012) The chromosomal passenger complex activates polo kinase at centromeres. PLoS Biol 10:e1001250PubMedCrossRefGoogle Scholar
  121. 121.
    O’Regan L, Blot J, Fry AM (2007) Mitotic regulation by NIMA-related kinases. Cell Div 2:25PubMedCrossRefGoogle Scholar
  122. 122.
    Du J, Cai X, Yao J, Ding X, Wu Q, Pei S, Jiang K, Zhang Y, Wang W, Shi Y, Lai Y, Shen J, Teng M, Huang H, Fei Q, Reddy ES, Zhu J, Jin C, Yao X (2008) The mitotic checkpoint kinase NEK2A regulates kinetochore microtubule attachment stability. Oncogene 27:4107–4114PubMedCrossRefGoogle Scholar
  123. 123.
    Wei R, Ngo B, Wu G, Lee WH (2011) Phosphorylation of the Ndc80 complex protein, HEC1, by Nek2 kinase modulates chromosome alignment and signaling of the spindle assembly checkpoint. Mol Biol Cell 22:3584–3594PubMedCrossRefGoogle Scholar
  124. 124.
    Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA, Watanabe Y (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441:46–52PubMedCrossRefGoogle Scholar
  125. 125.
    Riedel CG, Katis VL, Katou Y, Mori S, Itoh T, Helmhart W, Galova M, Petronczki M, Gregan J, Cetin B, Mudrak I, Ogris E, Mechtler K, Pelletier L, Buchholz F, Shirahige K, Nasmyth K (2006) Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441:53–61PubMedCrossRefGoogle Scholar
  126. 126.
    Tang Z, Shu H, Qi W, Mahmood NA, Mumby MC, Yu H (2006) PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev Cell 10:575–585PubMedCrossRefGoogle Scholar
  127. 127.
    Foley EA, Maldonado M, Kapoor TM (2011) Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat Cell Biol 13:1265–1271PubMedCrossRefGoogle Scholar
  128. 128.
    Kim Y, Holland AJ, Lan W, Cleveland DW (2010) Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell 142:444–455PubMedCrossRefGoogle Scholar
  129. 129.
    Posch M, Khoudoli GA, Swift S, King EM, Deluca JG, Swedlow JR (2010) Sds22 regulates aurora B activity and microtubule-kinetochore interactions at mitosis. J Cell Biol 191:61–74PubMedCrossRefGoogle Scholar
  130. 130.
    Meadows JC, Shepperd LA, Vanoosthuyse V, Lancaster TC, Sochaj AM, Buttrick GJ, Hardwick KG, Millar JB (2011) Spindle checkpoint silencing requires association of PP1 to both Spc7 and kinesin-8 motors. Dev Cell 20:739–750PubMedCrossRefGoogle Scholar
  131. 131.
    Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19:1937–1942PubMedCrossRefGoogle Scholar
  132. 132.
    Magidson V, O’Connell CB, Loncarek J, Paul R, Mogilner A, Khodjakov A (2011) The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 146:555–567PubMedCrossRefGoogle Scholar
  133. 133.
    Cai S, O’Connell CB, Khodjakov A, Walczak CE (2009) Chromosome congression in the absence of kinetochore fibres. Nat Cell Biol 11:832–838PubMedCrossRefGoogle Scholar
  134. 134.
    Tokai N, Fujimoto-Nishiyama A, Toyoshima Y, Yonemura S, Tsukita S, Inoue J, Yamamota T (1996) Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J 15:457–467PubMedGoogle Scholar
  135. 135.
    Levesque AA, Compton DA (2001) The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J Cell Biol 154:1135–1146PubMedCrossRefGoogle Scholar
  136. 136.
    Kitajima TS, Ohsugi M, Ellenberg J (2011) Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 146:568–581PubMedCrossRefGoogle Scholar
  137. 137.
    Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393PubMedCrossRefGoogle Scholar
  138. 138.
    Luo X, Tang Z, Rizo J, Yu H (2002) The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol Cell 9:59–71PubMedCrossRefGoogle Scholar
  139. 139.
    Sironi L, Mapelli M, Knapp S, De Antoni A, Jeang KT, Musacchio A (2002) Crystal structure of the tetrameric Mad1–Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J 21:2496–2506PubMedCrossRefGoogle Scholar
  140. 140.
    Fava LL, Kaulich M, Nigg EA, Santamaria A (2011) Probing the in vivo function of Mad1:C-Mad2 in the spindle assembly checkpoint. EMBO J 30:3322–3336PubMedCrossRefGoogle Scholar
  141. 141.
    Pinsky BA, Kung C, Shokat KM, Biggins S (2006) The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nat Cell Biol 8:78–83PubMedCrossRefGoogle Scholar
  142. 142.
    Maresca TJ, Salmon ED (2010) Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J Cell Sci 123:825–835PubMedCrossRefGoogle Scholar
  143. 143.
    Maldonado M, Kapoor TM (2011) Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation. Nat Cell Biol 13:475–482PubMedCrossRefGoogle Scholar
  144. 144.
    Santaguida S, Vernieri C, Villa F, Ciliberto A, Musacchio A (2011) Evidence that Aurora B is implicated in spindle checkpoint signalling independently of error correction. EMBO J 30:1508–1519PubMedCrossRefGoogle Scholar
  145. 145.
    Saurin AT, van der Waal MS, Medema RH, Lens SM, Kops GJ (2011) Aurora B potentiates Mps1 activation to ensure rapid checkpoint establishment at the onset of mitosis. Nat Commun 2:316PubMedCrossRefGoogle Scholar
  146. 146.
    Gregan J, Polakova S, Zhang L, Tolic-Norrelykke IM, Cimini D (2011) Merotelic kinetochore attachment: causes and effects. Trends Cell Biol 21:374–381PubMedCrossRefGoogle Scholar
  147. 147.
    Cimini D, Cameron LA, Salmon ED (2004) Anaphase spindle mechanics prevent mis-segregation of merotelically oriented chromosomes. Curr Biol 14:2149–2155PubMedCrossRefGoogle Scholar
  148. 148.
    Thompson SL, Compton DA (2011) Chromosome missegregation in human cells arises through specific types of kinetochore–microtubule attachment errors. Proc Natl Acad Sci USA 108:17974–17978PubMedCrossRefGoogle Scholar
  149. 149.
    Thompson SL, Compton DA (2008) Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol 180:665–672PubMedCrossRefGoogle Scholar
  150. 150.
    Karess R (2005) Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol 15:386–392PubMedCrossRefGoogle Scholar
  151. 151.
    Barisic M, Geley S (2011) Spindly switch controls anaphase: spindly and RZZ functions in chromosome attachment and mitotic checkpoint control. Cell Cycle 10:449–456PubMedCrossRefGoogle Scholar
  152. 152.
    Mansfeld J, Collin P, Collins MO, Choudhary JS, Pines J (2011) APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat Cell Biol 13:1234–1243PubMedCrossRefGoogle Scholar
  153. 153.
    Varetti G, Guida C, Santaguida S, Chiroli E, Musacchio A (2011) Homeostatic control of mitotic arrest. Mol Cell 44:710–720PubMedCrossRefGoogle Scholar
  154. 154.
    Westhorpe FG, Tighe A, Lara-Gonzalez P, Taylor SS (2011) p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J Cell Sci 124:3905–3916PubMedCrossRefGoogle Scholar
  155. 155.
    Jia L, Li B, Warrington RT, Hao X, Wang S, Yu H (2011) Defining pathways of spindle checkpoint silencing: functional redundancy between Cdc20 ubiquitination and p31(comet). Mol Biol Cell 22:4227–4235PubMedCrossRefGoogle Scholar
  156. 156.
    Gao YF, Li T, Chang Y, Wang YB, Zhang WN, Li WH, He K, Mu R, Zhen C, Man JH, Pan X, Chen L, Yu M, Liang B, Chen Y, Xia Q, Zhou T, Gong WL, Li AL, Li HY, Zhang XM (2011) Cdk1-phosphorylated CUEDC2 promotes spindle checkpoint inactivation and chromosomal instability. Nat Cell Biol 13:924–933PubMedCrossRefGoogle Scholar
  157. 157.
    Garnett MJ, Mansfeld J, Godwin C, Matsusaka T, Wu J, Russell P, Pines J, Venkitaraman AR (2009) UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nat Cell Biol 11:1363–1369PubMedCrossRefGoogle Scholar
  158. 158.
    Summers MK, Pan B, Mukhyala K, Jackson PK (2008) The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol Cell 31:544–556PubMedCrossRefGoogle Scholar
  159. 159.
    Williamson A, Wickliffe KE, Mellone BG, Song L, Karpen GH, Rape M (2009) Identification of a physiological E2 module for the human anaphase-promoting complex. Proc Natl Acad Sci USA 106:18213–18218PubMedCrossRefGoogle Scholar
  160. 160.
    Wu T, Merbl Y, Huo Y, Gallop JL, Tzur A, Kirschner MW (2010) UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex. Proc Natl Acad Sci USA 107:1355–1360PubMedCrossRefGoogle Scholar
  161. 161.
    Lesage B, Qian J, Bollen M (2011) Spindle checkpoint silencing: PP1 tips the balance. Curr Biol 21:R898–R903PubMedCrossRefGoogle Scholar
  162. 162.
    Vanoosthuyse V, Hardwick KG (2009) A novel protein phosphatase 1-dependent spindle checkpoint silencing mechanism. Curr Biol 19:1176–1181PubMedCrossRefGoogle Scholar
  163. 163.
    Pinsky BA, Nelson CR, Biggins S (2009) Protein phosphatase 1 regulates exit from the spindle checkpoint in budding yeast. Curr Biol 19:1182–1187PubMedCrossRefGoogle Scholar
  164. 164.
    Rosenberg JS, Cross FR, Funabiki H (2011) KNL1/Spc105 recruits PP1 to silence the spindle assembly checkpoint. Curr Biol 21:942–947PubMedCrossRefGoogle Scholar
  165. 165.
    Espeut J, Cheerambathur DK, Krenning L, Oegema K, Desai A (2012) Microtubule binding by KNL-1 contributes to spindle checkpoint silencing at the kinetochore. J Cell Biol 196:469–482PubMedCrossRefGoogle Scholar
  166. 166.
    Maresca TJ, Salmon ED (2009) Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J Cell Biol 184:373–381PubMedCrossRefGoogle Scholar
  167. 167.
    Uchida KS, Takagaki K, Kumada K, Hirayama Y, Noda T, Hirota T (2009) Kinetochore stretching inactivates the spindle assembly checkpoint. J Cell Biol 184:383–390PubMedCrossRefGoogle Scholar
  168. 168.
    Kiermaier E, Woehrer S, Peng Y, Mechtler K, Westermann S (2009) A Dam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast. Nat Cell Biol 11:1109–1115PubMedCrossRefGoogle Scholar
  169. 169.
    Lacefield S, Lau DT, Murray AW (2009) Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast. Nat Cell Biol 11:1116–1120PubMedCrossRefGoogle Scholar
  170. 170.
    Ashar HR, James L, Gray K, Carr D, Black S, Armstrong L, Bishop WR, Kirschmeier P (2000) Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem 275:30451–30457PubMedCrossRefGoogle Scholar
  171. 171.
    Hussein D, Taylor SS (2002) Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis. J Cell Sci 115:3403–3414PubMedGoogle Scholar
  172. 172.
    Schafer-Hales K, Iaconelli J, Snyder JP, Prussia A, Nettles JH, El-Naggar A, Khuri FR, Giannakakou P, Marcus AI (2007) Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Mol Cancer Ther 6:1317–1328PubMedCrossRefGoogle Scholar
  173. 173.
    Maffini S, Maia AR, Manning AL, Maliga Z, Pereira AL, Junqueira M, Shevchenko A, Hyman A, Yates JR 3rd, Galjart N, Compton DA, Maiato H (2009) Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux. Curr Biol 19:1566–1572PubMedCrossRefGoogle Scholar
  174. 174.
    Sardar HS, Luczak VG, Lopez MM, Lister BC, Gilbert SP (2010) Mitotic kinesin CENP-E promotes microtubule plus-end elongation. Curr Biol 20:1648–1653PubMedCrossRefGoogle Scholar
  175. 175.
    Varis A, Salmela AL, Kallio MJ (2006) Cenp-F (mitosin) is more than a mitotic marker. Chromosoma 115:288–295PubMedCrossRefGoogle Scholar
  176. 176.
    Yang Z, Guo J, Chen Q, Ding C, Du J, Zhu X (2005) Silencing mitosin induces misaligned chromosomes, premature chromosome decondensation before anaphase onset, and mitotic cell death. Mol Cell Biol 25:4062–4074PubMedCrossRefGoogle Scholar
  177. 177.
    Holt SV, Vergnolle MA, Hussein D, Wozniak MJ, Allan VJ, Taylor SS (2005) Silencing Cenp-F weakens centromeric cohesion, prevents chromosome alignment and activates the spindle checkpoint. J Cell Sci 118:4889–4900PubMedCrossRefGoogle Scholar
  178. 178.
    Bomont P, Maddox P, Shah JV, Desai AB, Cleveland DW (2005) Unstable microtubule capture at kinetochores depleted of the centromere-associated protein CENP-F. EMBO J 24:3927–3939PubMedCrossRefGoogle Scholar
  179. 179.
    Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, Morrison A, Clevers H, Medema RH (2005) FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol 7:126–136PubMedCrossRefGoogle Scholar
  180. 180.
    Vergnolle MA, Taylor SS (2007) Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr Biol 17:1173–1179PubMedCrossRefGoogle Scholar
  181. 181.
    Feng J, Huang H, Yen TJ (2006) CENP-F is a novel microtubule-binding protein that is essential for kinetochore attachments and affects the duration of the mitotic checkpoint delay. Chromosoma 115:320–329PubMedCrossRefGoogle Scholar
  182. 182.
    Lampson MA, Kapoor TM (2005) The human mitotic checkpoint protein BubR1 regulates chromosome–spindle attachments. Nat Cell Biol 7:93–98PubMedCrossRefGoogle Scholar
  183. 183.
    Logarinho E, Bousbaa H (2008) Kinetochore–microtubule interactions “in check” by Bub1, Bub3 and BubR1: the dual task of attaching and signalling. Cell Cycle 7:1763–1768PubMedCrossRefGoogle Scholar
  184. 184.
    Bolanos-Garcia VM, Blundell TL (2011) BUB1 and BUBR1: multifaceted kinases of the cell cycle. Trends Biochem Sci 36:141–150PubMedCrossRefGoogle Scholar
  185. 185.
    Elowe S (2011) Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol Cell Biol 31:3085–3093PubMedCrossRefGoogle Scholar
  186. 186.
    Kabeche L, Compton DA (2012) Checkpoint-independent stabilization of kinetochore–microtubule attachments by Mad2 in human cells. Curr Biol 22:638–644PubMedCrossRefGoogle Scholar
  187. 187.
    Morrison EE (2007) Action and interactions at microtubule ends. Cell Mol Life Sci 64:307–317PubMedCrossRefGoogle Scholar
  188. 188.
    Tanenbaum ME, Galjart N, van Vugt MA, Medema RH (2006) CLIP-170 facilitates the formation of kinetochore–microtubule attachments. EMBO J 25:45–57PubMedCrossRefGoogle Scholar
  189. 189.
    Li H, Liu XS, Yang X, Wang Y, Turner JR, Liu X (2010) Phosphorylation of CLIP-170 by Plk1 and CK2 promotes timely formation of kinetochore–microtubule attachments. EMBO J 29:2953–2965PubMedCrossRefGoogle Scholar
  190. 190.
    Maiato H, Fairley EA, Rieder CL, Swedlow JR, Sunkel CE, Earnshaw WC (2003) Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113:891–904PubMedCrossRefGoogle Scholar
  191. 191.
    Pereira AL, Pereira AJ, Maia AR, Drabek K, Sayas CL, Hergert PJ, Lince-Faria M, Matos I, Duque C, Stepanova T, Rieder CL, Earnshaw WC, Galjart N, Maiato H (2006) Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function. Mol Biol Cell 17:4526–4542PubMedCrossRefGoogle Scholar
  192. 192.
    Manning AL, Bakhoum SF, Maffini S, Correia-Melo C, Maiato H, Compton DA (2010) CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore–microtubule dynamics to promote mitotic progression and fidelity. EMBO J 29:3531–3543PubMedCrossRefGoogle Scholar
  193. 193.
    Green RA, Wollman R, Kaplan KB (2005) APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell 16:4609–4622PubMedCrossRefGoogle Scholar
  194. 194.
    Draviam VM, Shapiro I, Aldridge B, Sorger PK (2006) Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. EMBO J 25:2814–2827PubMedCrossRefGoogle Scholar
  195. 195.
    Mayr MI, Hummer S, Bormann J, Gruner T, Adio S, Woehlke G, Mayer TU (2007) The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 17:488–498PubMedCrossRefGoogle Scholar
  196. 196.
    Stumpff J, von Dassow G, Wagenbach M, Asbury C, Wordeman L (2008) The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev Cell 14:252–262PubMedCrossRefGoogle Scholar
  197. 197.
    Jaqaman K, King EM, Amaro AC, Winter JR, Dorn JF, Elliott HL, McHedlishvili N, McClelland SE, Porter IM, Posch M, Toso A, Danuser G, McAinsh AD, Meraldi P, Swedlow JR (2010) Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases. J Cell Biol 188:665–679PubMedCrossRefGoogle Scholar
  198. 198.
    Stumpff J, Du Y, English CA, Maliga Z, Wagenbach M, Asbury CL, Wordeman L, Ohi R (2011) A tethering mechanism controls the processivity and kinetochore–microtubule plus-end enrichment of the kinesin-8 Kif18A. Mol Cell 43:764–775PubMedCrossRefGoogle Scholar
  199. 199.
    Weaver LN, Ems-McClung SC, Stout JR, LeBlanc C, Shaw SL, Gardner MK, Walczak CE (2011) Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation. Curr Biol 21:1500–1506PubMedCrossRefGoogle Scholar
  200. 200.
    Ye F, Tan L, Yang Q, Xia Y, Deng LW, Murata-Hori M, Liou YC (2011) HURP regulates chromosome congression by modulating kinesin Kif18A function. Curr Biol 21:1584–1591PubMedCrossRefGoogle Scholar
  201. 201.
    Bader JR, Vaughan KT (2010) Dynein at the kinetochore: timing, interactions and functions. Semin Cell Dev Biol 21:269–275PubMedCrossRefGoogle Scholar
  202. 202.
    Chatel G, Fahrenkrog B (2011) Nucleoporins: leaving the nuclear pore complex for a successful mitosis. Cell Signal 23:1555–1562PubMedCrossRefGoogle Scholar
  203. 203.
    Zuccolo M, Alves A, Galy V, Bolhy S, Formstecher E, Racine V, Sibarita JB, Fukagawa T, Shiekhattar R, Yen T, Doye V (2007) The human Nup107–160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J 26:1853–1864PubMedCrossRefGoogle Scholar
  204. 204.
    Platani M, Santarella-Mellwig R, Posch M, Walczak R, Swedlow JR, Mattaj IW (2009) The Nup107–160 nucleoporin complex promotes mitotic events via control of the localization state of the chromosome passenger complex. Mol Biol Cell 20:5260–5275PubMedCrossRefGoogle Scholar
  205. 205.
    Wozniak R, Burke B, Doye V (2010) Nuclear transport and the mitotic apparatus: an evolving relationship. Cell Mol Life Sci 67:2215–2230PubMedCrossRefGoogle Scholar
  206. 206.
    Koffa MD, Casanova CM, Santarella R, Kocher T, Wilm M, Mattaj IW (2006) HURP is part of a Ran-dependent complex involved in spindle formation. Curr Biol 16: 743–754Google Scholar
  207. 207.
    Ribbeck K, Groen AC, Santarella R, Bohnsack MT, Raemaekers T, Kocher T, Gentzel M, Gorlich D, Wilm M, Carmeliet G, Mitchison TJ, Ellenberg J, Hoenger A, Mattaj IW (2006) NuSAP, a mitotic RanGTP target that stabilizes and cross-links microtubules. Mol Biol Cell 17:2646–2660PubMedCrossRefGoogle Scholar
  208. 208.
    Wong J, Fang G (2006) HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J Cell Biol 173:879–891PubMedCrossRefGoogle Scholar
  209. 209.
    Joseph J, Tan SH, Karpova TS, McNally JG, Dasso M (2002) SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J Cell Biol 156:595–602PubMedCrossRefGoogle Scholar
  210. 210.
    Arnaoutov A, Azuma Y, Ribbeck K, Joseph J, Boyarchuk Y, Karpova T, McNally J, Dasso M (2005) Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nat Cell Biol 7:626–632PubMedCrossRefGoogle Scholar
  211. 211.
    Joseph J, Liu ST, Jablonski SA, Yen TJ, Dasso M (2004) The RanGAP1–RanBP2 complex is essential for microtubule–kinetochore interactions in vivo. Curr Biol 14:611–617PubMedCrossRefGoogle Scholar
  212. 212.
    Zachos G, Black EJ, Walker M, Scott MT, Vagnarelli P, Earnshaw WC, Gillespie DA (2007) Chk1 is required for spindle checkpoint function. Dev Cell 12:247–260PubMedCrossRefGoogle Scholar
  213. 213.
    Petsalaki E, Akoumianaki T, Black EJ, Gillespie DA, Zachos G (2011) Phosphorylation at serine 331 is required for Aurora B activation. J Cell Biol 195:449–466PubMedCrossRefGoogle Scholar
  214. 214.
    Giunta S, Jackson SP (2011) Give me a break, but not in mitosis: the mitotic DNA damage response marks DNA double-strand breaks with early signaling events. Cell Cycle 10:1215–1221PubMedCrossRefGoogle Scholar
  215. 215.
    Giunta S, Belotserkovskaya R, Jackson SP (2010) DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol 190:197–207PubMedCrossRefGoogle Scholar
  216. 216.
    Choi E, Park PG, Lee HO, Lee YK, Kang GH, Lee JW, Han W, Lee HC, Noh DY, Lekomtsev S, Lee H (2012) BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev Cell 22:295–308PubMedCrossRefGoogle Scholar
  217. 217.
    Schmidt JC, Kiyomitsu T, Hori T, Backer CB, Fukagawa T, Cheeseman IM (2010) Aurora B kinase controls the targeting of the Astrin–SKAP complex to bioriented kinetochores. J Cell Biol 191:269–280PubMedCrossRefGoogle Scholar
  218. 218.
    Dunsch AK, Linnane E, Barr FA, Gruneberg U (2011) The astrin–kinastrin/SKAP complex localizes to microtubule plus ends and facilitates chromosome alignment. J Cell Biol 192:959–968PubMedCrossRefGoogle Scholar
  219. 219.
    Yasuda S, Oceguera-Yanez F, Kato T, Okamoto M, Yonemura S, Terada Y, Ishizaki T, Narumiya S (2004) Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 428:767–771PubMedCrossRefGoogle Scholar
  220. 220.
    Cheng L, Zhang J, Ahmad S, Rozier L, Yu H, Deng H, Mao Y (2011) Aurora B regulates formin mDia3 in achieving metaphase chromosome alignment. Dev Cell 20:342–352PubMedCrossRefGoogle Scholar
  221. 221.
    Porter IM, McClelland SE, Khoudoli GA, Hunter CJ, Andersen JS, McAinsh AD, Blow JJ, Swedlow JR (2007) Bod1, a novel kinetochore protein required for chromosome biorientation. J Cell Biol 179:187–197PubMedCrossRefGoogle Scholar
  222. 222.
    Emanuele MJ, Stukenberg PT (2007) Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment. Cell 130:893–905PubMedCrossRefGoogle Scholar
  223. 223.
    Itoh G, Kanno S, Uchida KS, Chiba S, Sugino S, Watanabe K, Mizuno K, Yasui A, Hirota T, Tanaka K (2011) CAMP (C13orf8, ZNF828) is a novel regulator of kinetochore–microtubule attachment. EMBO J 30:130–144PubMedCrossRefGoogle Scholar
  224. 224.
    Kikuchi K, Niikura Y, Kitagawa K, Kikuchi A (2010) Dishevelled, a Wnt signalling component, is involved in mitotic progression in cooperation with Plk1. EMBO J 29:3470–3483PubMedCrossRefGoogle Scholar
  225. 225.
    Mondal G, Ohashi A, Yang L, Rowley M, Couch FJ (2012) Tex14, a Plk1-regulated protein, is required for kinetochore–microtubule attachment and regulation of the spindle assembly checkpoint. Mol Cell 45:680–695PubMedCrossRefGoogle Scholar
  226. 226.
    Montembault E, Dutertre S, Prigent C, Giet R (2007) PRP4 is a spindle assembly checkpoint protein required for MPS1, MAD1, and MAD2 localization to the kinetochores. J Cell Biol 179:601–609PubMedCrossRefGoogle Scholar
  227. 227.
    Amin MA, Matsunaga S, Uchiyama S, Fukui K (2008) Nucleophosmin is required for chromosome congression, proper mitotic spindle formation, and kinetochore–microtubule attachment in HeLa cells. FEBS Lett 582:3839–3844PubMedCrossRefGoogle Scholar
  228. 228.
    Ohta S, Bukowski-Wills JC, Sanchez-Pulido L, Alves Fde L, Wood L, Chen ZA, Platani M, Fischer L, Hudson DF, Ponting CP, Fukagawa T, Earnshaw WC, Rappsilber J (2010) The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142:810–821PubMedCrossRefGoogle Scholar
  229. 229.
    Gascoigne KE, Cheeseman IM (2011) Kinetochore assembly: if you build it, they will come. Curr Opin Cell Biol 23:102–108PubMedCrossRefGoogle Scholar
  230. 230.
    Kitagawa K, Skowyra D, Elledge SJ, Harper JW, Hieter P (1999) SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell 4:21–33PubMedCrossRefGoogle Scholar
  231. 231.
    Davies AE, Kaplan KB (2010) Hsp90-Sgt1 and Skp1 target human Mis12 complexes to ensure efficient formation of kinetochore–microtubule binding sites. J Cell Biol 189:261–274PubMedCrossRefGoogle Scholar
  232. 232.
    Thompson SL, Compton DA (2011) Chromosomes and cancer cells. Chromosome Res 19:433–444PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of Molecular Oncology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan

Personalised recommendations