Cellular and Molecular Life Sciences

, Volume 69, Issue 24, pp 4121–4133

Dynamics of ESCRT proteins

Review

Abstract

Proteins of the ESCRT (endosomal sorting complex required for transport) complex function in membrane fission processes, such as multivesicular body (MVBs) formation, the terminal stages of cytokinesis, and separation of enveloped viruses from the plasma membrane. In mammalian cells, the machinery consists of a network of more than 20 proteins, organized into three complexes (ESCRT-I, -II, and -III), and other associated proteins such as the ATPase vacuolar protein sorting 4 (Vps4). Early biochemical studies of MVBs biogenesis in yeast support a model of sequential recruitment of ESCRT complexes on membranes. Live-cell imaging of ESCRT protein dynamics during viral budding and cytokinesis now reveal that this long-standing model of sequential assembly and disassembly holds true in mammalian cells.

Keywords

ESCRT machinery Viral budding Cytokinesis Live cell imaging 

References

  1. 1.
    Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316(5833):1908–1912PubMedCrossRefGoogle Scholar
  2. 2.
    Morita E et al (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26(19):4215–4227PubMedCrossRefGoogle Scholar
  3. 3.
    Morita E et al (2010) Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proc Natl Acad Sci USA 107(29):12889–12894PubMedCrossRefGoogle Scholar
  4. 4.
    Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106(2):145–155PubMedCrossRefGoogle Scholar
  5. 5.
    Caballe A, Martin-Serrano J (2011) ESCRT machinery and cytokinesis: the road to daughter cell separation. Traffic 12(10):1318–1326PubMedCrossRefGoogle Scholar
  6. 6.
    Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11(8):556–566PubMedCrossRefGoogle Scholar
  7. 7.
    Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91PubMedCrossRefGoogle Scholar
  8. 8.
    Guizetti J, Gerlich DW (2012) ESCRT-III polymers in membrane neck constriction. Trends Cell Biol 22(3):133–140PubMedCrossRefGoogle Scholar
  9. 9.
    Elia N et al (2011) Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci USA 108(12):4846–4851PubMedCrossRefGoogle Scholar
  10. 10.
    Guizetti J et al (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331(6024):1616–1620PubMedCrossRefGoogle Scholar
  11. 11.
    Jouvenet N et al (2011) Dynamics of ESCRT protein recruitment during retroviral assembly. Nat Cell Biol 13(4):394–401PubMedCrossRefGoogle Scholar
  12. 12.
    Baumgartel V et al (2011) Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat Cell Biol 13(4):469–474PubMedCrossRefGoogle Scholar
  13. 13.
    Babst M et al (2000) Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1(3):248–258PubMedCrossRefGoogle Scholar
  14. 14.
    Bishop N, Woodman P (2001) TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. J Biol Chem 276(15):11735–11742PubMedCrossRefGoogle Scholar
  15. 15.
    Eastman SW et al (2005) Identification of human VPS37C, a component of endosomal sorting complex required for transport-I important for viral budding. J Biol Chem 280(1):628–636PubMedCrossRefGoogle Scholar
  16. 16.
    Morita E et al (2007) Identification of human MVB12 proteins as ESCRT-I subunits that function in HIV budding. Cell Host Microbe 2(1):41–53PubMedCrossRefGoogle Scholar
  17. 17.
    Stefani F et al (2011) UBAP1 is a component of an endosome-specific ESCRT-I complex that is essential for MVB sorting. Curr Biol 21(14):1245–1250PubMedCrossRefGoogle Scholar
  18. 18.
    Stuchell MD et al (2004) The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J Biol Chem 279(34):36059–36071PubMedCrossRefGoogle Scholar
  19. 19.
    Agromayor M et al (2012) The UBAP1 Subunit of ESCRT-I Interacts with ubiquitin via a SOUBA domain. Structure 20:414–418PubMedCrossRefGoogle Scholar
  20. 20.
    Kim J et al (2005) Structural basis for endosomal targeting by the Bro1 domain. Dev Cell 8(6):937–947PubMedCrossRefGoogle Scholar
  21. 21.
    Lee S et al (2007) Structural basis for viral late-domain binding to Alix. Nat Struct Mol Biol 14(3):194–199PubMedCrossRefGoogle Scholar
  22. 22.
    Fisher RD et al (2007) Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128(5):841–852PubMedCrossRefGoogle Scholar
  23. 23.
    McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590–596PubMedCrossRefGoogle Scholar
  24. 24.
    Odorizzi G et al (2003) Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J Cell Sci 116(Pt 10):1893–1903PubMedCrossRefGoogle Scholar
  25. 25.
    McCullough J et al (2008) ALIX–CHMP4 interactions in the human ESCRT pathway. Proc Natl Acad Sci USA 105(22):7687–7691PubMedCrossRefGoogle Scholar
  26. 26.
    Martin-Serrano J, Zang T, Bieniasz PD (2003) Role of ESCRT-I in retroviral budding. J Virol 77(8):4794–4804PubMedCrossRefGoogle Scholar
  27. 27.
    Martin-Serrano J et al (2003) Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci USA 100(21):12414–12419PubMedCrossRefGoogle Scholar
  28. 28.
    Lee HH et al (2008) Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 322(5901):576–580PubMedCrossRefGoogle Scholar
  29. 29.
    Langelier C et al (2006) Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J Virol 80(19):9465–9480PubMedCrossRefGoogle Scholar
  30. 30.
    Wollert T et al (2009) Membrane scission by the ESCRT-III complex. Nature 458(7235):172–177PubMedCrossRefGoogle Scholar
  31. 31.
    Shim S, Kimpler LA, Hanson PI (2007) Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic 8(8):1068–1079PubMedCrossRefGoogle Scholar
  32. 32.
    Zamborlini A et al (2006) Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc Natl Acad Sci USA 103(50):19140–19145PubMedCrossRefGoogle Scholar
  33. 33.
    Lata S et al (2008) Helical structures of ESCRT-III are disassembled by VPS4. Science 321(5894):1354–1357PubMedCrossRefGoogle Scholar
  34. 34.
    Peel S et al (2010) Divergent pathways lead to ESCRT-III-catalyzed membrane fission. Trends Biochem Sci 36(4):199–210PubMedCrossRefGoogle Scholar
  35. 35.
    Bodon G et al (2012) Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane. J Biol Chem 286(46):40276–40286CrossRefGoogle Scholar
  36. 36.
    Fabrikant G et al (2009) Computational model of membrane fission catalyzed by ESCRT-III. PLoS Comput Biol 5(11):e1000575PubMedCrossRefGoogle Scholar
  37. 37.
    Agromayor M et al (2009) Essential role of hIST1 in cytokinesis. Mol Biol Cell 20(5):1374–1387PubMedCrossRefGoogle Scholar
  38. 38.
    Bajorek M et al (2009) Biochemical analyses of human IST1 and its function in cytokinesis. Mol Biol Cell 20(5):1360–1373PubMedCrossRefGoogle Scholar
  39. 39.
    Obita T et al (2007) Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449(7163):735–739PubMedCrossRefGoogle Scholar
  40. 40.
    Stuchell-Brereton MD et al (2007) ESCRT-III recognition by VPS4 ATPases. Nature 449(7163):740–744PubMedCrossRefGoogle Scholar
  41. 41.
    Scott A et al (2005) Structural and mechanistic studies of VPS4 proteins. EMBO J 24(20):3658–3669PubMedCrossRefGoogle Scholar
  42. 42.
    Gonciarz MD et al (2008) Biochemical and structural studies of yeast Vps4 oligomerization. J Mol Biol 384(4):878–895PubMedCrossRefGoogle Scholar
  43. 43.
    Yu Z et al (2008) Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p. J Mol Biol 377(2):364–377PubMedCrossRefGoogle Scholar
  44. 44.
    Hartmann C et al (2008) Vacuolar protein sorting: two different functional states of the AAA-ATPase Vps4p. J Mol Biol 377(2):352–363PubMedCrossRefGoogle Scholar
  45. 45.
    Landsberg MJ et al (2009) Three-dimensional structure of AAA ATPase Vps4: advancing structural insights into the mechanisms of endosomal sorting and enveloped virus budding. Structure 17(3):427–437PubMedCrossRefGoogle Scholar
  46. 46.
    Inoue M et al (2008) Nucleotide-dependent conformational changes and assembly of the AAA ATPase SKD1/VPS4B. Traffic 9(12):2180–2189PubMedCrossRefGoogle Scholar
  47. 47.
    Babst M et al (2002) Escrt-III: an endosome-associated hetero oligomeric protein complex required for mvb sorting. Dev Cell 3(2):271–282PubMedCrossRefGoogle Scholar
  48. 48.
    Babst M et al (2002) Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3(2):283–289PubMedCrossRefGoogle Scholar
  49. 49.
    Wollert T, Hurley JH (2010) Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464(7290):864–869PubMedCrossRefGoogle Scholar
  50. 50.
    Saksena S et al (2009) Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136(1):97–109PubMedCrossRefGoogle Scholar
  51. 51.
    Ghazi-Tabatabai S et al (2008) Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 16(9):1345–1356PubMedCrossRefGoogle Scholar
  52. 52.
    Shim S, Merrill SA, Hanson PI (2008) Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly. Mol Biol Cell 19(6):2661–2672PubMedCrossRefGoogle Scholar
  53. 53.
    Azmi I et al (2006) Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1. J Cell Biol 172(5):705–717PubMedCrossRefGoogle Scholar
  54. 54.
    Samson RY et al (2008) A role for the ESCRT system in cell division in Archaea. Science 322(5908):1710–1713PubMedCrossRefGoogle Scholar
  55. 55.
    Samson RY et al (2011) Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. Mol Cell 41(2):186–196PubMedCrossRefGoogle Scholar
  56. 56.
    Moriscot C et al (2011) Crenarchaeal CdvA forms double-helical filaments containing DNA and interacts with ESCRT-III-like CdvB. PLoS ONE 6(7):e21921PubMedCrossRefGoogle Scholar
  57. 57.
    Felder S et al (1990) Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell 61(4):623–634PubMedCrossRefGoogle Scholar
  58. 58.
    Futter CE et al (1996) Multivesicular endosomes containing internalized EGF–EGF receptor complexes mature and then fuse directly with lysosomes. J Cell Biol 132(6):1011–1023PubMedCrossRefGoogle Scholar
  59. 59.
    Teis D, Saksena S, Emr SD (2008) Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell 15(4):578–589PubMedCrossRefGoogle Scholar
  60. 60.
    Strack B et al (2003) AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114(6):689–699PubMedCrossRefGoogle Scholar
  61. 61.
    Glotzer M (2009) The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol 10(1):9–20PubMedCrossRefGoogle Scholar
  62. 62.
    Skop AR et al (2004) Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305(5680):61–66PubMedCrossRefGoogle Scholar
  63. 63.
    Fabbro M et al (2005) Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev Cell 9(4):477–488PubMedCrossRefGoogle Scholar
  64. 64.
    Martinez-Garay I et al (2006) The novel centrosomal associated protein CEP55 is present in the spindle midzone and the midbody. Genomics 87(2):243–253PubMedCrossRefGoogle Scholar
  65. 65.
    Zhao WM, Seki A, Fang G (2006) Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. Mol Biol Cell 17(9):3881–3896PubMedCrossRefGoogle Scholar
  66. 66.
    Guizetti J et al (2010) Correlative time-lapse imaging and electron microscopy to study abscission in HeLa cells. Methods Cell Biol 96:591–601PubMedCrossRefGoogle Scholar
  67. 67.
    Steigemann P et al (2009) Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136(3):473–484PubMedCrossRefGoogle Scholar
  68. 68.
    Jin Y et al (2005) The fission yeast homolog of the human transcription factor EAP30 blocks meiotic spindle pole body amplification. Dev Cell 9(1):63–73PubMedCrossRefGoogle Scholar
  69. 69.
    Carlton JG, Agromayor M, Martin-Serrano J (2008) Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc Natl Acad Sci USA 105(30):10541–10546PubMedCrossRefGoogle Scholar
  70. 70.
    Carlton JG et al (2012) ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336:220–225PubMedCrossRefGoogle Scholar
  71. 71.
    Hanson PI et al (2008) Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J Cell Biol 180(2):389–402PubMedCrossRefGoogle Scholar
  72. 72.
    Pires R et al (2009) A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17(6):843–856PubMedCrossRefGoogle Scholar
  73. 73.
    Briggs JA et al (2004) The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 11(7):672–675PubMedCrossRefGoogle Scholar
  74. 74.
    Jacks T et al (1988) Characterization of ribosomal frame shifting in HIV-1 gag-pol expression. Nature 331(6153):280–283PubMedCrossRefGoogle Scholar
  75. 75.
    Zhu P et al (2003) Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc Natl Acad Sci USA 100(26):15812–15817PubMedCrossRefGoogle Scholar
  76. 76.
    Chen J et al (2009) High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. Proc Natl Acad Sci USA 106(32):13535–13540PubMedCrossRefGoogle Scholar
  77. 77.
    Larson DR et al (2005) Visualization of retrovirus budding with correlated light and electron microscopy. Proc Natl Acad Sci USA 102(43):15453–15458PubMedCrossRefGoogle Scholar
  78. 78.
    Goff SP (2001) Retroviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams and Wilkins, Philadelphia, pp 1999–2070Google Scholar
  79. 79.
    Kutluay SB, Bieniasz PD (2010) Analysis of the initiating events in HIV-1 particle assembly and genome packaging. PLoS Pathog 6(11):e1001200PubMedCrossRefGoogle Scholar
  80. 80.
    Jouvenet N et al (2011) Cell biology of retroviral RNA packaging. RNA Biol 8(4):572–580PubMedCrossRefGoogle Scholar
  81. 81.
    Jouvenet N, Simon SM, Bieniasz PD (2009) Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. Proc Natl Acad Sci USA 106(45):19114–19119PubMedCrossRefGoogle Scholar
  82. 82.
    Kemler I, Meehan A, Poeschla EM (2010) Live-cell coimaging of the genomic RNAs and Gag proteins of two lentiviruses. J Virol 84(13):6352–6366PubMedCrossRefGoogle Scholar
  83. 83.
    Jouvenet N et al (2006) Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol 4(12):e435PubMedCrossRefGoogle Scholar
  84. 84.
    Finzi A et al (2007) Productive human immunodeficiency virus type 1 assembly takes place at the plasma membrane. J Virol 81(14):7476–7490PubMedCrossRefGoogle Scholar
  85. 85.
    Welsch S et al (2007) HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog 3(3):e36PubMedCrossRefGoogle Scholar
  86. 86.
    Chen BJ, Lamb RA (2008) Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology 372(2):221–232PubMedCrossRefGoogle Scholar
  87. 87.
    Bieniasz PD (2009) The cell biology of HIV-1 virion genesis. Cell Host Microbe 5(6):550–558PubMedCrossRefGoogle Scholar
  88. 88.
    Carlton JG, Martin-Serrano J (2009) The ESCRT machinery: new functions in viral and cellular biology. Biochem Soc Trans 37(Pt 1):195–199PubMedCrossRefGoogle Scholar
  89. 89.
    Martin-Serrano J, Zang T, Bieniasz PD (2001) HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 7(12):1313–1319PubMedCrossRefGoogle Scholar
  90. 90.
    Garrus JE et al (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107(1):55–65PubMedCrossRefGoogle Scholar
  91. 91.
    von Schwedler UK et al (2003) The protein network of HIV budding. Cell 114(6):701–713CrossRefGoogle Scholar
  92. 92.
    Martin-Serrano J et al (2005) HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J Cell Biol 168(1):89–101PubMedCrossRefGoogle Scholar
  93. 93.
    Zhadina M, Bieniasz PD (2010) Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding. PLoS Pathog 6(10):e1001153PubMedCrossRefGoogle Scholar
  94. 94.
    Weiss ER et al (2010) Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag. PLoS Pathog 6(9):e1001107PubMedCrossRefGoogle Scholar
  95. 95.
    Rauch S, Martin-Serrano J (2011) Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding. J Virol 85(7):3546–3556PubMedCrossRefGoogle Scholar
  96. 96.
    VerPlank L et al (2001) Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc Natl Acad Sci USA 98(14):7724–7729PubMedCrossRefGoogle Scholar
  97. 97.
    Popov S et al (2009) Divergent Bro1 domains share the capacity to bind human immunodeficiency virus type 1 nucleocapsid and to enhance virus-like particle production. J Virol 83(14):7185–7193PubMedCrossRefGoogle Scholar
  98. 98.
    Popova E, Popov S, Gottlinger HG (2010) Human immunodeficiency virus type 1 nucleocapsid p1 confers ESCRT pathway dependence. J Virol 84(13):6590–6597PubMedCrossRefGoogle Scholar
  99. 99.
    Dussupt V et al (2009) The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLoS Pathog 5(3):e1000339PubMedCrossRefGoogle Scholar
  100. 100.
    Fujii K et al (2009) Functional role of Alix in HIV-1 replication. Virology 391(2):284–292PubMedCrossRefGoogle Scholar
  101. 101.
    Morita E et al (2011) ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 9(3):235–242PubMedCrossRefGoogle Scholar
  102. 102.
    Usami Y, Popov S, Gottlinger HG (2007) Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J Virol 81(12):6614–6622PubMedCrossRefGoogle Scholar
  103. 103.
    Dussupt V et al (2010) Basic residues in the nucleocapsid domain of Gag are critical for late events of HIV-1 budding. J Virol 85(5):2304–2315PubMedCrossRefGoogle Scholar
  104. 104.
    Leroux C, Cadore JL, Montelaro RC (2004) Equine infectious anemia virus (EIAV): what has HIV’s country cousin got to tell us? Vet Res 35(4):485–512PubMedCrossRefGoogle Scholar
  105. 105.
    Simon SM (2009) Partial internal reflections on total internal reflection fluorescent microscopy. Trends Cell Biol 19(11):661–668PubMedCrossRefGoogle Scholar
  106. 106.
    Jouvenet N, Bieniasz PD, Simon SM (2008) Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 454(7201):236–240PubMedCrossRefGoogle Scholar
  107. 107.
    Ivanchenko S et al (2009) Dynamics of HIV-1 assembly and release. PLoS Pathog 5(11):e1000652PubMedCrossRefGoogle Scholar
  108. 108.
    Fusco D et al (2003) Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 13(2):161–167PubMedCrossRefGoogle Scholar
  109. 109.
    Lin Y et al (2005) Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7-1 with itself, membranes, and the AAA+ ATPase SKD1. J Biol Chem 280(13):12799–12809PubMedCrossRefGoogle Scholar
  110. 110.
    Howard TL et al (2001) CHMP1 functions as a member of a newly defined family of vesicle trafficking proteins. J Cell Sci 114(Pt 13):2395–2404PubMedGoogle Scholar
  111. 111.
    Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Institut Pasteur, CNRS URA 3015ParisFrance

Personalised recommendations