Advertisement

Cellular and Molecular Life Sciences

, Volume 69, Issue 23, pp 3933–3944 | Cite as

A trapper keeper for TRAPP, its structures and functions

  • Sidney YuEmail author
  • Yongheng Liang
Review

Abstract

During biosynthesis many membrane and secreted proteins are transported from the endoplasmic reticulum, through the Golgi and on to the plasma membrane in small transport vesicles. These transport vesicles have to undergo budding, movement, tethering, docking, and fusion at each organelle of the biosynthetic pathway. The transport protein particle (TRAPP) complex was initially identified as the tethering factor for endoplasmic reticulum (ER)—derived COPII vesicles, but the functions of TRAPP may extend to other areas of biology. Three forms of TRAPP complexes have been discovered to date, and recent advances in research have provided new insights on the structures and functions of TRAPP. Here we provide a comprehensive review of the recent findings in TRAPP biology.

Keywords

TRAPP COPII vesicle Autophagy ER exit sites Vesicular transport 

Notes

Acknowledgments

We thank Dr. Michael G. Roth for critical comments of this manuscript. This work is supported by the General Research Fund of the Hong Kong Research Grant Council to S. Y. (grant number 479410).

References

  1. 1.
    Whyte JRC, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115:2627–2637PubMedGoogle Scholar
  2. 2.
    Sacher M, Barrowman J, Wang W, Horecka J, Zhang Y et al (2001) TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol Cell 7:433–442PubMedCrossRefGoogle Scholar
  3. 3.
    Lord C, Bhandari D, Menon S, Ghassemian M, Nycz D et al (2011) Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473:181–186PubMedCrossRefGoogle Scholar
  4. 4.
    Kim Y-G, Raunser S, Munger C, Wagner J, Song Y-L et al (2006) The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell 127:817–830PubMedCrossRefGoogle Scholar
  5. 5.
    Sacher M, Yu J, Barrowman J, Scarpa A, Burston J et al (1998) TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J 17:2494–2503PubMedCrossRefGoogle Scholar
  6. 6.
    Sacher M, Kim Y-G, Lavie A, Oh B-H, Segev N (2008) The TRAPP complex: Insights into its architecture and function. Traffic 9:2032–2042PubMedCrossRefGoogle Scholar
  7. 7.
    Lynch-Day MA, Bhandari D, Menon S, Huang J, Cai H et al (2010) Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci 107:7811–7816PubMedCrossRefGoogle Scholar
  8. 8.
    Tokarev AA, Taussig D, Sundaram G, Lipatova Z, Liang Y et al (2009) TRAPP II complex assembly requires Trs33 or Trs65. Traffic 10:1831–1844PubMedCrossRefGoogle Scholar
  9. 9.
    Morozova N, Liang Y, Tokarev AA, Chen SH, Cox R et al (2006) TRAPPII subunits are required for the specificity switch of a Ypt-Rab GEF. Nat Cell Biol 8:1263–1269PubMedCrossRefGoogle Scholar
  10. 10.
    Cai Y, Chin HF, Lazarova D, Menon S, Fu C et al (2008) The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell 133:1202–1213PubMedCrossRefGoogle Scholar
  11. 11.
    Yip CK, Berscheminski J, Walz T (2010) Molecular architecture of the TRAPPII complex and implications for vesicle tethering. Nat Struct Mol Biol 17:1298–1304PubMedCrossRefGoogle Scholar
  12. 12.
    Zong M, X-g Wu, Chan CWL, Choi MY, Chan HC et al (2011) The adaptor function of TRAPPC2 in mammalian TRAPPs explains TRAPPC2-associated SEDT and TRAPPC9-associated congenital intellectual disability. PLoS ONE 6:e23350PubMedCrossRefGoogle Scholar
  13. 13.
    Liang Y, Morozova N, Tokarev AA, Mulholland JW, Segev N (2007) The role of Trs65 in the Ypt/Rab guanine nucleotide exchange factor function of the TRAPP II complex. Mol Biol Cell 18:2533–2541PubMedCrossRefGoogle Scholar
  14. 14.
    Choi C, Davey M, Schluter C, Pandher P, Fang Y et al (2011) Organization and assembly of the TRAPPII complex. Traffic 12:715–725PubMedCrossRefGoogle Scholar
  15. 15.
    Scrivens PJ, Shahrzad N, Moores A, Morin A, Brunet S et al (2009) TRAPPC2L is a novel, highly conserved TRAPP-interacting protein. Traffic 10:724–736PubMedCrossRefGoogle Scholar
  16. 16.
    Montpetit B, Conibear E (2009) Identification of the novel TRAPP associated protein Tca17. Traffic 10:713–723PubMedCrossRefGoogle Scholar
  17. 17.
    Yamasaki A, Menon S, Yu S, Barrowman J, Meerloo T et al (2009) mTrs130 Is a component of a mammalian TRAPPII complex, a Rab1 GEF that binds to COPI coated vesicles. Mol Biol Cell 20:4205–4215PubMedCrossRefGoogle Scholar
  18. 18.
    Sacher M, Barrowman J, Schieltz D, Yates JRI, Ferro-Novick S (2000) Identification and characterization of five new subunits of TRAPP. Eur J Cell Biol 79:71–80PubMedCrossRefGoogle Scholar
  19. 19.
    Kummel D, Oeckinghaus A, Wang C, Krappmann D, Heinemann U (2008) Distinct isocomplexes of the TRAPP trafficking factor coexist inside human cells. FEBS Lett 582:3729–3733PubMedCrossRefGoogle Scholar
  20. 20.
    Scrivens PJ, Noueihed B, Shahrzad N, Hul S, Brunet S et al (2011) C4orf41 and TTC-15 are mammalian TRAPP components with a role at an early stage in ER-to-Golgi trafficking. Mol Biol Cell 22:2083–2093PubMedCrossRefGoogle Scholar
  21. 21.
    Wendler F, Gillingham AK, Sinka R, Rosa-Ferreira C, Gordon DE et al (2010) A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway. EMBO J 29:304–314PubMedCrossRefGoogle Scholar
  22. 22.
    Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466:68–76PubMedCrossRefGoogle Scholar
  23. 23.
    Gavin A-C, Bosche M, Krause R, Grandi P, Marzioch M et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147PubMedCrossRefGoogle Scholar
  24. 24.
    Yu S, Satoh A, Pypaert M, Mullen K, Hay JC et al (2006) mBet3p is required for homotypic COPII vesicle tethering in mammalian cells. J Cell Biol 174:359–368PubMedCrossRefGoogle Scholar
  25. 25.
    Loh E, Peter F, Subramaniam VN, Hong W (2005) Mammalian Bet3 functions as a cytosolic factor participating in transport from the ER to the Golgi apparatus. J Cell Sci 118:1209–1222PubMedCrossRefGoogle Scholar
  26. 26.
    Cai H, Yu S, Menon S, Cai Y, Lazarova D et al (2007) TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445:941–944PubMedCrossRefGoogle Scholar
  27. 27.
    Bentley M, Liang Y, Mullen K, Xu D, Sztul E et al (2006) SNARE status regulates tether recruitment and function in homotypic COPII vesicle fusion. J Biol Chem 281:38825–38833PubMedCrossRefGoogle Scholar
  28. 28.
    Allan B, Moyer B, Balch W (2000) Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289:444–448PubMedCrossRefGoogle Scholar
  29. 29.
    Price MA (2006) CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev 20:399–410PubMedCrossRefGoogle Scholar
  30. 30.
    Cheong JK, Virshup DM (2010) Casein kinase 1: complexity in the family. Int J Biochem Cell Biol 43:465–469PubMedCrossRefGoogle Scholar
  31. 31.
    Cronlein J, Reuss S, Vollrath L (1990) Investigations on day-night differences of vesicle densities in synapses of the rat suprachiasmatic nucleus. Neurosci Lett 114:167–172PubMedCrossRefGoogle Scholar
  32. 32.
    Mukai S, Matsushima S (1980) Effect of continuous darkness on diurnal rhythms in small vesicles in sympathetic nerve endings of the mouse pineal-quantitative electron microscopic observations. J Neural Transm 47:131–143PubMedCrossRefGoogle Scholar
  33. 33.
    Kachi T (1979) Demonstration of circadian rhythm in granular vesicle number in pinealocytes of mice and the effect of light: semi-quantitative electron microscopic study. J Anatomy 129:603–614Google Scholar
  34. 34.
    Pevet P, Kuyper M (1978) The ultrastructure of pinealocytes in the golden mole (Amblysomus hottentotus) with special reference to the granular vesicles. Cell Tissue Res 191:39–56PubMedCrossRefGoogle Scholar
  35. 35.
    Memon A, Hwang S, Deshpande N, Thompson GJ, Herrin D (1995) Novel aspects of the regulation of a cDNA(Arf1) from chlamydomonas with high sequence identity to animal ADP-ribosylation factor 1. Plant Mol Biol 29:567–577PubMedCrossRefGoogle Scholar
  36. 36.
    Yu S, Roth MG (2002) Casein kinase I regulates membrane binding by ARF GAP1. Mol Biol Cell 13:2559–2570PubMedCrossRefGoogle Scholar
  37. 37.
    Roth MG (1999) Snapshots of ARF1: implications for mechanisms of activation and inactivation. Cell 97:149–152PubMedCrossRefGoogle Scholar
  38. 38.
    Siu KY, Yu MK, Wu X, Zong M, Roth MG et al (2011) The non-catalytic carboxyl-terminal domain of ARFGAP1 regulates actin cytoskeleton reorganization by antagonizing the activation of Rac1. PLoS ONE 6:e18458PubMedCrossRefGoogle Scholar
  39. 39.
    Wang W, Sacher M, Ferro-Novick S (2000) TRAPP stimulates guanine nucleotide exchange on Ypt1p. J Cell Biol 151:289–296PubMedCrossRefGoogle Scholar
  40. 40.
    Zou S, Liu Y, Zhang X, Chen Y, Ye M, et al (2012) Genetic analysis of exocytic Ypt/Rab GTPases and TRAPP subunits. Genetics (in press)Google Scholar
  41. 41.
    Barrowman J, Bhandari D, Reinisch K, Ferro-Novick S (2010) TRAPP complexes in membrane traffic: convergence through a common Rab. Nat Rev Mol Cell Biol 11:759–763PubMedCrossRefGoogle Scholar
  42. 42.
    Westlake CJ, Baye LM, Nachury MV, Wright KJ, Ervin KE et al (2011) Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci 108:2759–2764PubMedCrossRefGoogle Scholar
  43. 43.
    Zhu Y, Hu L, Zhou Y, Yao Q, Liu L et al (2010) Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Proc Natl Acad Sci 107:4699–4704PubMedCrossRefGoogle Scholar
  44. 44.
    Nazarko TY, Huang J, Nicaud J-M, Klionsky DJ, Sibirny AA (2005) Trs85 is required for macroautophagy, pexophagy and cytoplasm to vacuole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae. Autophagy 1:37–45PubMedCrossRefGoogle Scholar
  45. 45.
    Meiling-Wesse K, Epple UD, Krick R, Barth H, Appelles A et al (2005) Trs85 (Gsg1), a component of the TRAPP complexes, is required for the organization of the preautophagosomal structure during selective autophagy via the Cvt pathway. J Biol Chem 280:33669–33678PubMedCrossRefGoogle Scholar
  46. 46.
    Carlos Martín Zoppino F, Damián Militello R, Slavin I, Álvarez C, Colombo MI (2010) Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 11:1246–1261CrossRefGoogle Scholar
  47. 47.
    Reggiori F, Wang C-W, Nair U, Shintani T, Abeliovich H et al (2004) Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae. Mol Biol Cell 15:2189–2204PubMedCrossRefGoogle Scholar
  48. 48.
    Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y et al (2001) Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 12:3690–3702PubMedGoogle Scholar
  49. 49.
    Geng J, Nair U, Yasumura-Yorimitsu K, Klionsky DJ (2010) Post-Golgi sce proteins are required for autophagy in Saccharomyces cerevisiae. Mol Biol Cell 21:2257–2269PubMedCrossRefGoogle Scholar
  50. 50.
    Simon G, Prekeris R (2008) Mechanisms regulating targeting of recycling endosomes to the cleavage furrow during cytokinesis. Biochem Soc Transact 36:391–394CrossRefGoogle Scholar
  51. 51.
    Finger FP, White JG (2002) Fusion and fission: membrane trafficking in animal cytokinesis. Cell 108:727–730PubMedCrossRefGoogle Scholar
  52. 52.
    Robinett CC, Giansanti MG, Gatti M, Fuller MT (2009) TRAPPII is required for cleavage furrow ingression and localization of Rab11 in dividing male meiotic cells of Drosophila. J Cell Sci 122:4526–4534PubMedCrossRefGoogle Scholar
  53. 53.
    Sciorra VA, Audhya A, Parsons AB, Segev N, Boone C et al (2005) Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway. Mol Biol Cell 16:776–793PubMedCrossRefGoogle Scholar
  54. 54.
    Qi X, Kaneda M, Chen J, Geitmann A, Zheng H (2011) A specific role for Arabidopsis TRAPPII in post-Golgi trafficking that is crucial for cytokinesis and cell polarity. Plant J 68:234–248PubMedCrossRefGoogle Scholar
  55. 55.
    Yoshimura S, Egerer J, Fuchs E, Haas A, Barr F (2007) Functional dissection of Rab GTPases involved in primary cilium formation. J Cell Biol 178:363–369PubMedCrossRefGoogle Scholar
  56. 56.
    Zong M, Satoh A, Yu MK, Siu KY, Ng WY et al (2012) TRAPPC9 mediates the interaction between p150Glued and COPII vesicles at the target membrane. PLoS ONE 7:e29995PubMedCrossRefGoogle Scholar
  57. 57.
    Watson P, Forster R, Palmer KJ, Pepperkok R, Stephens DJ (2005) Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nat Cell Biol 7:48–55PubMedCrossRefGoogle Scholar
  58. 58.
    Scales SJ, Pepperkok R, Kreis TE (1997) Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90:1137–1148PubMedCrossRefGoogle Scholar
  59. 59.
    Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJM et al (1997) ER-to-Golgi transport visualized in living cells. Nature 389:81–85PubMedCrossRefGoogle Scholar
  60. 60.
    Schroer TA (2004) DYNACTIN. Annu Rev Cell Dev Biol 20:759–779PubMedCrossRefGoogle Scholar
  61. 61.
    Watson P, Stephens DJ (2006) Microtubule plus-end loading of p150Glued is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells. J Cell Sci 119:2758–2767PubMedCrossRefGoogle Scholar
  62. 62.
    Trahey M, Hay JC (2010) Transport vesicle uncoating: it’s later than you think. F1000 Biol Rep 2:47Google Scholar
  63. 63.
    Tang BL, Peter F, Krijnse-Locker J, Low SH, Griffiths G et al (1997) The mammalian homolog of yeast Sec13p is enriched in the intermediate compartment and is essential for protein transport from the endoplasmic reticulum to the Golgi apparatus. Mol Cell Biol 17:256–266PubMedGoogle Scholar
  64. 64.
    Savarirayan R, Thompson E, Gecz J (2003) Spondyloepiphyseal dysplasia tarda. Eur J Hum Genet 11:639–642PubMedCrossRefGoogle Scholar
  65. 65.
    Gedeon AK, Colley A, Jamieson R, Thompson EM, Rogers J et al (1999) Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nat Genet 22:400–404PubMedCrossRefGoogle Scholar
  66. 66.
    Gecz J, Hillman MA, Gedeon AK, Cox TC, Baker E et al (2000) Gene structure and expression study of the SEDL gene for spondyloepiphyseal dysplasia tarda. Genomics 69:242–251PubMedCrossRefGoogle Scholar
  67. 67.
    Sacher M (2003) Membrane traffic fuses with cartilage development. FEBS Lett 550:1–4PubMedCrossRefGoogle Scholar
  68. 68.
    Lin Y, Rao S, Yang Y (2008) A novel mutation in the SEDL gene leading to X-linked spondyloepiphyseal dysplasia tarda in a large Chinese pedigree. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 25:150–153PubMedGoogle Scholar
  69. 69.
    Fiedler J, Merrer ML, Mortier G, Heuertz S, Faivre L et al (2004) X-linked spondyloepiphyseal dysplasia tarda: novel and recurrent mutations in 13 European families. Human Mutat 24:103CrossRefGoogle Scholar
  70. 70.
    Bar-Yosef U, Ohana E, Hershkovitz E, Perlmuter S, Ofir R et al (2004) X-linked spondyloepiphyseal dysplasia tarda: a novel SEDL mutation in a Jewish Ashkenazi family and clinical intervention considerations. Am J Med Genet Part A 125A:45–48PubMedCrossRefGoogle Scholar
  71. 71.
    Matsui Y, Yasui N, Ozono K, Yamagata M, Kawabata H et al (2001) Loss of the SEDL gene product (Sedlin) causes X-linked spondyloepiphyseal dysplasia tarda: identification of a molecular defect in a Japanese family. Am J Med Genet 99:328–330PubMedCrossRefGoogle Scholar
  72. 72.
    Christie PT, Curley A, Nesbit MA, Chapman C, Genet S et al (2001) Mutational analysis in X-linked spondyloepiphyseal dysplasia tarda. J Clin Endocrinol Metab 86:3233–3236PubMedCrossRefGoogle Scholar
  73. 73.
    Choi MY, Chan CCY, Chan D, Luk KDK, Cheah KSE et al (2009) Biochemical consequences of sedlin mutations that cause spondyloepiphyseal dysplasia tarda. Biochem J 423:233–242PubMedCrossRefGoogle Scholar
  74. 74.
    Philippe O, Rio M, Carioux A, Plaza J-M, Guigue P et al (2009) Combination of linkage mapping and microarray-expression analysis identifies NF-κB signaling defect as a cause of autosomal-recessive mental retardation. Am J Human Genet 85:903–908CrossRefGoogle Scholar
  75. 75.
    Mochida GH, Mahajnah M, Hill AD, Basel-Vanagaite L, Gleason D et al (2009) A truncating mutation of TRAPPC9 is associated with autosomal-recessive intellectual disability and postnatal microcephaly. Am J Human Genet 85:897–902CrossRefGoogle Scholar
  76. 76.
    Mir A, Kaufman L, Noor A, Motazacker MM, Jamil T et al (2009) Identification of mutations in TRAPPC9, which encodes the NIK- and IKK-β-binding protein, in nonsyndromic autosomal-recessive mental retardation. Am J Human Genet 85:909–915CrossRefGoogle Scholar
  77. 77.
    Cai H, Zhang Y, Pypaert M, Walker L, Ferro-Novick S (2005) Mutants in trs120 disrupt traffic from the early endosome to the late Golgi. J Cell Biol 171:823–833PubMedCrossRefGoogle Scholar
  78. 78.
    Hu W-H, Pendergast JS, Mo X-M, Brambilla R, Bracchi-Ricard V et al (2005) NIBP, a novel NIK and IKKβ-binding protein that enhances NF-κB activation. J Biol Chem 280:29233–29241PubMedCrossRefGoogle Scholar
  79. 79.
    Sadler KC, Amsterdam A, Soroka C, Boyer J, Hopkins N (2005) A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132:3561–3572PubMedCrossRefGoogle Scholar
  80. 80.
    Cinaroglu A, Gao C, Imrie D, Sadler KC (2011) Activating transcription factor 6 plays protective and pathological roles in steatosis due to endoplasmic reticulum stress in zebrafish. Hepatology 54:495–508PubMedCrossRefGoogle Scholar
  81. 81.
    Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086PubMedCrossRefGoogle Scholar
  82. 82.
    Gwynn B, Smith R, Rowe L, Taylor B, Peters L (2006) A mouse TRAPP-related protein is involved in pigmentation. Genomics 88:196–203PubMedCrossRefGoogle Scholar
  83. 83.
    Kummel D, Walter J, Heck M, Heinemann U, Veit M (2010) Characterization of the self-palmitoylation activity of the transport protein particle component Bet3. Cell Mol Life Sci 67:2653–2664PubMedCrossRefGoogle Scholar
  84. 84.
    Kim Y-G, Sohn E, Seo J, Lee K, Lee H et al (2005) Crystal structure of bet3 reveals a novel mechanism for Golgi localization of tethering factor TRAPP. Nat Struct Mol Biol 12:38–45PubMedCrossRefGoogle Scholar
  85. 85.
    Chen S, Cai H, Park S-K, Menon S, Jackson CL et al (2011) Trs65p, a subunit of the Ypt1p GEF TRAPPII, interacts with the Arf1p exchange factor Gea2p to facilitate COPI-mediated vesicle traffic. Mol Biol Cell 22:3634–3644PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang C, Bowzard J, Greene M, Anido A, Stearns K et al (2002) Genetic interactions link ARF1, YPT31/32 and TRS130. Yeast 19:1075–1086PubMedCrossRefGoogle Scholar
  87. 87.
    Yamamoto K, Jigami Y (2002) Mutation of TRS130, which encodes a component of the TRAPP II complex, activates transcription of OCH1 in Saccharomyces cerevisiae. Curr Genet 42:85–93PubMedCrossRefGoogle Scholar
  88. 88.
    Ethell IM, Hagihara K, Miura Y, Irie F, Yamaguchi Y (2000) Synbindin, a novel syndecan-2-binding protein in neuronal dendritic spines. J Cell Biol 151:53–68PubMedCrossRefGoogle Scholar
  89. 89.
    Zhao S-L, Hong J, Xie Z-Q, Tang J-T, Su W-Y et al (2011) TRAPPC4-ERK2 interaction activates ERK1/2, modulates its nuclear localization and regulates proliferation and apoptosis of colorectal cancer cells. PLoS ONE 6:e23262PubMedCrossRefGoogle Scholar
  90. 90.
    Liu X, Wang Y, Zhu H, Zhang Q, Xing X et al (2010) Interaction of Sedlin with PAM14. J Cell Biochem 109:1129–1133PubMedGoogle Scholar
  91. 91.
    Jeyabalan J, Nesbit MA, Galvanovskis J, Callaghan R, Rorsman P et al (2010) SEDLIN forms homodimers: characterisation of SEDLIN mutations and their interactions with transcription factors MBP1, PITX1 and SF1. PLoS ONE 5:e10646PubMedCrossRefGoogle Scholar
  92. 92.
    Fan L, Yu W, Zhu X (2003) Interaction of Sedlin with chloride intracellular channel proteins. FEBS Lett 540:77–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.School of Biomedical Sciences and Epithelial Cell Biology Research Center, The Chinese University of Hong KongHong Kong SARPeople’s Republic of China
  2. 2.Key Laboratory of Agricultural Environmental Microbiology of MOACollege of Life Sciences, Nanjing Agricultural UniversityNanjingChina

Personalised recommendations