Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 1, pp 39–53 | Cite as

Depression and treatment response: dynamic interplay of signaling pathways and altered neural processes

  • Vanja Duric
  • Ronald S. Duman
Review

Abstract

Since the 1960s, when the first tricyclic and monoamine oxidase inhibitor antidepressant drugs were introduced, most of the ensuing agents were designed to target similar brain pathways that elevate serotonin and/or norepinephrine signaling. Fifty years later, the main goal of the current depression research is to develop faster-acting, more effective therapeutic agents with fewer side effects, as currently available antidepressants are plagued by delayed therapeutic onset and low response rates. Clinical and basic science research studies have made significant progress towards deciphering the pathophysiological events within the brain involved in development, maintenance, and treatment of major depressive disorder. Imaging and postmortem brain studies in depressed human subjects, in combination with animal behavioral models of depression, have identified a number of different cellular events, intracellular signaling pathways, proteins, and target genes that are modulated by stress and are potentially vital mediators of antidepressant action. In this review, we focus on several neural mechanisms, primarily within the hippocampus and prefrontal cortex, which have recently been implicated in depression and treatment response.

Keywords

Depression Stress MKP-1 Neurotrophins Ketamine Molecular mechanisms 

References

  1. 1.
    Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289(23):3095–3105PubMedCrossRefGoogle Scholar
  2. 2.
    Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA, Corey-Lisle PK (2003) The economic burden of depression in the United States: how did it change between 1990 and 2000? J Clin Psychiatry 64(12):1465–1475PubMedCrossRefGoogle Scholar
  3. 3.
    Simon GE (2003) Social and economic burden of mood disorders. Biol Psychiatry 54(3):208–215PubMedCrossRefGoogle Scholar
  4. 4.
    Fava M, Davidson KG (1996) Definition and epidemiology of treatment-resistant depression. Psychiatr Clin N Am 19(2):179–200CrossRefGoogle Scholar
  5. 5.
    Little A (2009) Treatment-resistant depression. Am Fam Physician 80(2):167–172PubMedGoogle Scholar
  6. 6.
    Krishnan V, Nestler EJ (2010) Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 167(11):1305–1320PubMedCrossRefGoogle Scholar
  7. 7.
    Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, Uylings HB, Friedman L, Rajkowska G (2004) Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 56(9):640–650PubMedCrossRefGoogle Scholar
  8. 8.
    Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93(9):3908–3913PubMedCrossRefGoogle Scholar
  9. 9.
    Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160(8):1516–1518PubMedCrossRefGoogle Scholar
  10. 10.
    Neumeister A, Wood S, Bonne O, Nugent AC, Luckenbaugh DA, Young T, Bain EE, Charney DS, Drevets WC (2005) Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biol Psychiatry 57(8):935–937PubMedCrossRefGoogle Scholar
  11. 11.
    Campbell S, Marriott M, Nahmias C, MacQueen GM (2004) Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 161(4):598–607PubMedCrossRefGoogle Scholar
  12. 12.
    Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161(11):1957–1966PubMedCrossRefGoogle Scholar
  13. 13.
    Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157(1):115–118PubMedGoogle Scholar
  14. 14.
    Cole J, Costafreda SG, McGuffin P, Fu CH (2011) Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. J Affect Disord 134(1–3):483–487PubMedCrossRefGoogle Scholar
  15. 15.
    Kempton MJ, Salvador Z, Munafo MR, Geddes JR, Simmons A, Frangou S, Williams SC (2011) Structural neuroimaging studies in major depressive disorder. meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 68(7):675–690PubMedCrossRefGoogle Scholar
  16. 16.
    Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF (2004) Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 9(6):609–620Google Scholar
  17. 17.
    Rajkowska G (2000) Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48(8):766–777PubMedCrossRefGoogle Scholar
  18. 18.
    Banasr M, Duman RS (2007) Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol Disord Drug Targets 6(5):311–320PubMedCrossRefGoogle Scholar
  19. 19.
    Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, Arango V (2009) Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34(11):2376–2389PubMedCrossRefGoogle Scholar
  20. 20.
    Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP (2002) Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 12(4):386–394PubMedCrossRefGoogle Scholar
  21. 21.
    Ongur D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95(22):13290–13295PubMedCrossRefGoogle Scholar
  22. 22.
    Cotter D, Mackay D, Landau S, Kerwin R, Everall I (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58(6):545–553PubMedCrossRefGoogle Scholar
  23. 23.
    Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6(3):219–233PubMedCrossRefGoogle Scholar
  24. 24.
    Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA, Rajkowska G (2000) Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 48(8):861–873PubMedCrossRefGoogle Scholar
  25. 25.
    Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ (2010) Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Molecular Psychiatry. doi: 10.1038/mp.2010.44 PubMedGoogle Scholar
  26. 26.
    Watanabe Y, Gould E, McEwen BS (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588(2):341–345PubMedCrossRefGoogle Scholar
  27. 27.
    Magarinos AM, Deslandes A, McEwen BS (1999) Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol 371(2–3):113–122PubMedCrossRefGoogle Scholar
  28. 28.
    Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, McEwen BS, Morrison JH (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16(3):313–320PubMedCrossRefGoogle Scholar
  29. 29.
    Radley JJ, Morrison JH (2005) Repeated stress and structural plasticity in the brain. Ageing Res Rev 4(2):271–287PubMedCrossRefGoogle Scholar
  30. 30.
    Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125(1):1–6PubMedCrossRefGoogle Scholar
  31. 31.
    McEwen BS, Magarinos AM, Reagan LP (2002) Structural plasticity and tianeptine: cellular and molecular targets. Eur Psychiatry 17(Suppl 3):318–330PubMedCrossRefGoogle Scholar
  32. 32.
    Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS (1992) Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 222(1):157–162PubMedCrossRefGoogle Scholar
  33. 33.
    Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, Bartolomucci A, Fuchs E (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 98(22):12796–12801PubMedCrossRefGoogle Scholar
  34. 34.
    Malberg JE, Duman RS (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28(9):1562–1571PubMedCrossRefGoogle Scholar
  35. 35.
    Chen H, Pandey GN, Dwivedi Y (2006) Hippocampal cell proliferation regulation by repeated stress and antidepressants. NeuroReport 17(9):863–867PubMedCrossRefGoogle Scholar
  36. 36.
    Meshi D, Drew MR, Saxe M, Ansorge MS, David D, Santarelli L, Malapani C, Moore H, Hen R (2006) Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci 9(6):729–731PubMedCrossRefGoogle Scholar
  37. 37.
    Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809Google Scholar
  38. 38.
    Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE, Garcia AD, Sofroniew MV, Kandel ER, Santarelli L, Hen R, Drew MR (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 103(46):17501–17506PubMedCrossRefGoogle Scholar
  39. 39.
    Wei L, Meaney MJ, Duman RS, Kaffman A (2011) Affiliative behavior requires juvenile, but not adult neurogenesis. J Neurosci 31(40):14335–14345PubMedCrossRefGoogle Scholar
  40. 40.
    Banasr M, Dwyer JM, Duman RS (2011) Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr Opin Cell Biol 23(6):730–737PubMedCrossRefGoogle Scholar
  41. 41.
    Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476(7361):458–461PubMedCrossRefGoogle Scholar
  42. 42.
    Duman RS, Malberg J, Nakagawa S (2001) Regulation of adult neurogenesis by psychotropic drugs and stress. J Pharmacol Exp Ther 299(2):401–407PubMedGoogle Scholar
  43. 43.
    Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18(5–6):391–418PubMedCrossRefGoogle Scholar
  44. 44.
    Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20(24):9104–9110PubMedGoogle Scholar
  45. 45.
    Banasr M, Valentine GW, Li XY, Gourley SL, Taylor JR, Duman RS (2007) Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiatry 62(5):496–504PubMedCrossRefGoogle Scholar
  46. 46.
    Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64(10):863–870PubMedCrossRefGoogle Scholar
  47. 47.
    Popoli M, Yan Z, McEwen BS, Sanacora G (2012) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev 13(1):22–37Google Scholar
  48. 48.
    Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270(5236):593–598Google Scholar
  49. 49.
    Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS (1994) Neurotrophic factors: from molecule to man. Trends Neurosci 17(5):182–190PubMedCrossRefGoogle Scholar
  50. 50.
    Lindvall O, Kokaia Z, Bengzon J, Elmer E, Kokaia M (1994) Neurotrophins and brain insults. Trends Neurosci 17(11):490–496PubMedCrossRefGoogle Scholar
  51. 51.
    Lo DC (1995) Neurotrophic factors and synaptic plasticity. Neuron 15(5):979–981PubMedCrossRefGoogle Scholar
  52. 52.
    Castren E, Rantamaki T (2008) Neurotrophins in depression and antidepressant effects. Novartis Found Symp 289:43–52; discussion 53–59, 87–93Google Scholar
  53. 53.
    Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54(7):597–606PubMedCrossRefGoogle Scholar
  54. 54.
    Castren E, Voikar V, Rantamaki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7(1):18–21PubMedCrossRefGoogle Scholar
  55. 55.
    Duman RS (2004) Role of neurotrophic factors in the etiology and treatment of mood disorders. NeuroMol Med 5(1):11–25CrossRefGoogle Scholar
  56. 56.
    Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15(3 Pt 1):1768–1777PubMedGoogle Scholar
  57. 57.
    Rasmusson AM, Shi L, Duman R (2002) Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology 27(2):133–142PubMedCrossRefGoogle Scholar
  58. 58.
    Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15(11):7539–7547PubMedGoogle Scholar
  59. 59.
    Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16(7):2365–2372PubMedGoogle Scholar
  60. 60.
    Russo-Neustadt A, Beard RC, Cotman CW (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21(5):679–682PubMedCrossRefGoogle Scholar
  61. 61.
    Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW (2000) Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 101(2):305–312PubMedCrossRefGoogle Scholar
  62. 62.
    Allaman I, Fiumelli H, Magistretti PJ, Martin JL (2011) Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology 216(1):75–84PubMedCrossRefGoogle Scholar
  63. 63.
    Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22(8):3251–3261PubMedGoogle Scholar
  64. 64.
    Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60(8):804–815PubMedCrossRefGoogle Scholar
  65. 65.
    Dwivedi Y, Mondal AC, Rizavi HS, Conley RR (2005) Suicide brain is associated with decreased expression of neurotrophins. Biol Psychiatry 58(4):315–324PubMedCrossRefGoogle Scholar
  66. 66.
    Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H, Lopez JF, Thompson RC, Meng F, Stead JD, Walsh DM, Myers RM, Bunney WE, Watson SJ, Jones EG, Akil H (2004) Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci USA 101(43):15506–15511PubMedCrossRefGoogle Scholar
  67. 67.
    Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R (2005) Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res 136(1–2):29–37Google Scholar
  68. 68.
    Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50(4):260–265PubMedCrossRefGoogle Scholar
  69. 69.
    Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192(2):348–356PubMedCrossRefGoogle Scholar
  70. 70.
    Sairanen M, Lucas G, Ernfors P, Castren M, Castren E (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25(5):1089–1094PubMedCrossRefGoogle Scholar
  71. 71.
    D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4(3):183–194PubMedCrossRefGoogle Scholar
  72. 72.
    Tanis KQ, Newton SS, Duman RS (2007) Targeting neurotrophic/growth factor expression and signaling for antidepressant drug development. CNS Neurol Disord Drug Targets 6(2):151–160PubMedCrossRefGoogle Scholar
  73. 73.
    Dwivedi Y, Rao JS, Rizavi HS, Kotowski J, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects. Arch Gen Psychiatry 60(3):273–282PubMedCrossRefGoogle Scholar
  74. 74.
    Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castren E (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23(1):349–357PubMedGoogle Scholar
  75. 75.
    Eisch AJ, Bolanos CA, de Wit J, Simonak RD, Pudiak CM, Barrot M, Verhaagen J, Nestler EJ (2003) Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry 54(10):994–1005PubMedCrossRefGoogle Scholar
  76. 76.
    Schmidt HD, Duman RS (2010) Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacology 35(12):2378–2391PubMedCrossRefGoogle Scholar
  77. 77.
    Hoshaw BA, Malberg JE (1037) Lucki I (2005) Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res 1–2:204–208Google Scholar
  78. 78.
    Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E, Duman RS (2003) Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors. J Neurosci 23(34):10841–10851PubMedGoogle Scholar
  79. 79.
    Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72(6):835–846PubMedCrossRefGoogle Scholar
  80. 80.
    Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99(18):11946–11950PubMedCrossRefGoogle Scholar
  81. 81.
    Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. BioEssays 26(9):943–954PubMedCrossRefGoogle Scholar
  82. 82.
    Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, During MJ (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36(8):827–835PubMedCrossRefGoogle Scholar
  83. 83.
    Heine VM, Zareno J, Maslam S, Joels M, Lucassen PJ (2005) Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci 21(5):1304–1314PubMedCrossRefGoogle Scholar
  84. 84.
    Warner-Schmidt JL, Duman RS (2007) VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc Natl Acad Sci USA 104(11):4647–4652PubMedCrossRefGoogle Scholar
  85. 85.
    Greene J, Banasr M, Lee B, Warner-Schmidt J, Duman RS (2009) Vascular endothelial growth factor signaling is required for the behavioral actions of antidepressant treatment: pharmacological and cellular characterization. Neuropsychopharmacology 34(11):2459–2468PubMedCrossRefGoogle Scholar
  86. 86.
    Fournier NM, Duman RS (2011) Role of vascular endothelial growth factor in adult hippocampal neurogenesis: Implications for the pathophysiology and treatment of depression. Behav Brain Res. doi: 10.1016/j.bbr.2011.04.022 PubMedGoogle Scholar
  87. 87.
    Thakker-Varia S, Alder J (2009) Neuropeptides in depression: role of VGF. Behav Brain Res 197(2):262–278PubMedCrossRefGoogle Scholar
  88. 88.
    Malberg JE, Monteggia LM (2008) VGF, a new player in antidepressant action? Sci Signal 1(18):pe19Google Scholar
  89. 89.
    Hunsberger JG, Newton SS, Bennett AH, Duman CH, Russell DS, Salton SR, Duman RS (2007) Antidepressant actions of the exercise-regulated gene VGF. Nat Med 13(12):1476–1482PubMedCrossRefGoogle Scholar
  90. 90.
    Thakker-Varia S, Krol JJ, Nettleton J, Bilimoria PM, Bangasser DA, Shors TJ, Black IB, Alder J (2007) The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J Neurosci 27(45):12156–12167PubMedCrossRefGoogle Scholar
  91. 91.
    Cattaneo A, Sesta A, Calabrese F, Nielsen G, Riva MA, Gennarelli M (2010) The expression of VGF is reduced in leukocytes of depressed patients and it is restored by effective antidepressant treatment. Neuropsychopharmacology 35(7):1423–1428PubMedCrossRefGoogle Scholar
  92. 92.
    Thakker-Varia S, Jean YY, Parikh P, Sizer CF, Jernstedt Ayer J, Parikh A, Hyde TM, Buyske S, Alder J (2010) The neuropeptide VGF is reduced in human bipolar postmortem brain and contributes to some of the behavioral and molecular effects of lithium. J Neurosci 30(28):9368–9380PubMedGoogle Scholar
  93. 93.
    Anderson MF, Aberg MA, Nilsson M, Eriksson PS (2002) Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res Dev Brain Res 134(1–2):115–122PubMedCrossRefGoogle Scholar
  94. 94.
    Aberg D (2010) Role of the growth hormone/insulin-like growth factor 1 axis in neurogenesis. Endocr Dev 17:63–76PubMedCrossRefGoogle Scholar
  95. 95.
    O’Kusky JR, Ye P, D’Ercole AJ (2000) Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci 20(22):8435–8442PubMedGoogle Scholar
  96. 96.
    Turner CA, Akil H, Watson SJ, Evans SJ (2006) The fibroblast growth factor system and mood disorders. Biol Psychiatry 59(12):1128–1135PubMedCrossRefGoogle Scholar
  97. 97.
    Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 20(8):2896–2903PubMedGoogle Scholar
  98. 98.
    Cheng Y, Black IB, DiCicco-Bloom E (2002) Hippocampal granule neuron production and population size are regulated by levels of bFGF. Eur J Neurosci 15(1):3–12PubMedCrossRefGoogle Scholar
  99. 99.
    Aberg MA, Aberg ND, Palmer TD, Alborn AM, Carlsson-Skwirut C, Bang P, Rosengren LE, Olsson T, Gage FH, Eriksson PS (2003) IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Mol Cell Neurosci 24(1):23–40PubMedCrossRefGoogle Scholar
  100. 100.
    Khawaja X, Xu J, Liang JJ, Barrett JE (2004) Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies. J Neurosci Res 75(4):451–460PubMedCrossRefGoogle Scholar
  101. 101.
    Malberg JE, Platt B, Rizzo SJ, Ring RH, Lucki I, Schechter LE, Rosenzweig-Lipson S (2007) Increasing the levels of insulin-like growth factor-I by an IGF binding protein inhibitor produces anxiolytic and antidepressant-like effects. Neuropsychopharmacology 32(11):2360–2368PubMedCrossRefGoogle Scholar
  102. 102.
    Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21(5):1628–1634PubMedGoogle Scholar
  103. 103.
    Duman CH, Schlesinger L, Terwilliger R, Russell DS, Newton SS, Duman RS (2009) Peripheral insulin-like growth factor-I produces antidepressant-like behavior and contributes to the effect of exercise. Behav Brain Res 198(2):366–371PubMedCrossRefGoogle Scholar
  104. 104.
    Bachis A, Mallei A, Cruz MI, Wellstein A, Mocchetti I (2008) Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein in neurons. Neuropharmacology 55(7):1114–1120PubMedCrossRefGoogle Scholar
  105. 105.
    Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M (2006) Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull 70(3):221–227PubMedCrossRefGoogle Scholar
  106. 106.
    Turner CA, Calvo N, Frost DO, Akil H, Watson SJ (2008) The fibroblast growth factor system is downregulated following social defeat. Neurosci Lett 430(2):147–150PubMedCrossRefGoogle Scholar
  107. 107.
    Eren-Kocak E, Turner CA, Watson SJ, Akil H (2011) Short-hairpin RNA silencing of endogenous fibroblast growth factor 2 in rat hippocampus increases anxiety behavior. Biol Psychiatry 69(6):534–540PubMedCrossRefGoogle Scholar
  108. 108.
    Perez JA, Clinton SM, Turner CA, Watson SJ, Akil H (2009) A new role for FGF2 as an endogenous inhibitor of anxiety. J Neurosci 29(19):6379–6387PubMedCrossRefGoogle Scholar
  109. 109.
    Seth P, Koul N (2008) Astrocyte, the star avatar: redefined. J Biosci 33(3):405–421PubMedCrossRefGoogle Scholar
  110. 110.
    Hisaoka K, Tsuchioka M, Yano R, Maeda N, Kajitani N, Morioka N, Nakata Y, Takebayashi M (2011) Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production. J Biol Chem 286(24):21118–21128PubMedCrossRefGoogle Scholar
  111. 111.
    Tanis KQ, Duman RS (2007) Intracellular signaling pathways pave roads to recovery for mood disorders. Ann Med 39(7):531–544PubMedCrossRefGoogle Scholar
  112. 112.
    Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN (2001) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 77(3):916–928PubMedCrossRefGoogle Scholar
  113. 113.
    Dwivedi Y, Rizavi HS, Conley RR, Pandey GN (2006) ERK MAP kinase signaling in post-mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf-1 and B-Raf. Mol Psychiatry 11(1):86–98PubMedCrossRefGoogle Scholar
  114. 114.
    Hsiung SC, Adlersberg M, Arango V, Mann JJ, Tamir H, Liu KP (2003) Attenuated 5-HT1A receptor signaling in brains of suicide victims: involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinase. J Neurochem 87(1):182–194PubMedCrossRefGoogle Scholar
  115. 115.
    Grewal SS, York RD, Stork PJ (1999) Extracellular-signal-regulated kinase signalling in neurons. Curr Opin Neurobiol 9(5):544–553PubMedCrossRefGoogle Scholar
  116. 116.
    Fukunaga K, Miyamoto E (1998) Role of MAP kinase in neurons. Mol Neurobiol 16(1):79–95PubMedCrossRefGoogle Scholar
  117. 117.
    Kodama M, Russell DS, Duman RS (2005) Electroconvulsive seizures increase the expression of MAP kinase phosphatases in limbic regions of rat brain. Neuropsychopharmacology 30(2):360–371PubMedCrossRefGoogle Scholar
  118. 118.
    Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramauge M, Courtin F, Pierre M (2004) MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 24(2):207–216PubMedCrossRefGoogle Scholar
  119. 119.
    Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS (2007) A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 61(5):661–670PubMedCrossRefGoogle Scholar
  120. 120.
    Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, Newton SS, Duman RS (2010) A negative regulator of MAP kinase causes depressive behavior. Nat Med 16(11):1328–1332PubMedCrossRefGoogle Scholar
  121. 121.
    Jeffrey KL, Camps M, Rommel C, Mackay CR (2007) Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov 6(5):391–403PubMedCrossRefGoogle Scholar
  122. 122.
    Boutros T, Chevet E, Metrakos P (2008) Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 60(3):261–310PubMedCrossRefGoogle Scholar
  123. 123.
    Kassel O, Sancono A, Kratzschmar J, Kreft B, Stassen M, Cato AC (2001) Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J 20(24):7108–7116PubMedCrossRefGoogle Scholar
  124. 124.
    Davis S, Vanhoutte P, Pages C, Caboche J, Laroche S (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci 20(12):4563–4572PubMedGoogle Scholar
  125. 125.
    Keyse SM, Emslie EA (1992) Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature 359(6396):644–647PubMedCrossRefGoogle Scholar
  126. 126.
    Laderoute KR, Mendonca HL, Calaoagan JM, Knapp AM, Giaccia AJ, Stork PJ (1999) Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. J Biol Chem 274(18):12890–12897PubMedCrossRefGoogle Scholar
  127. 127.
    Seta KA, Kim R, Kim HW, Millhorn DE, Beitner-Johnson D (2001) Hypoxia-induced regulation of MAPK phosphatase-1 as identified by subtractive suppression hybridization and cDNA microarray analysis. J Biol Chem 276(48):44405–44412PubMedCrossRefGoogle Scholar
  128. 128.
    Liu Y, Shepherd EG, Nelin LD (2007) MAPK phosphatases—regulating the immune response. Nat Rev Immunol 7(3):202–212PubMedCrossRefGoogle Scholar
  129. 129.
    Jeanneteau F, Deinhardt K (2011) Fine-tuning MAPK signaling in the brain: The role of MKP-1. Commun Integr Biol 4(3):281–283PubMedCrossRefGoogle Scholar
  130. 130.
    Wu JJ, Zhang L, Bennett AM (2005) The noncatalytic amino terminus of mitogen-activated protein kinase phosphatase 1 directs nuclear targeting and serum response element transcriptional regulation. Mol Cell Biol 25(11):4792–4803PubMedCrossRefGoogle Scholar
  131. 131.
    Jeanneteau F, Deinhardt K, Miyoshi G, Bennett AM, Chao MV (2010) The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nat Neurosci 13(11):1373–1379PubMedCrossRefGoogle Scholar
  132. 132.
    Wu JJ, Bennett AM (2005) Essential role for mitogen-activated protein (MAP) kinase phosphatase-1 in stress-responsive MAP kinase and cell survival signaling. J Biol Chem 280(16):16461–16466PubMedCrossRefGoogle Scholar
  133. 133.
    Nimah M, Zhao B, Denenberg AG, Bueno O, Molkentin J, Wong HR, Shanley TP (2005) Contribution of MKP-1 regulation of p38 to endotoxin tolerance. Shock 23 (1):80–87Google Scholar
  134. 134.
    Qi X, Lin W, Wang D, Pan Y, Wang W, Sun M (2009) A role for the extracellular signal-regulated kinase signal pathway in depressive-like behavior. Behav Brain Res 199(2):203–209PubMedCrossRefGoogle Scholar
  135. 135.
    Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 23(19):7311–7316PubMedGoogle Scholar
  136. 136.
    Engel SR, Creson TK, Hao Y, Shen Y, Maeng S, Nekrasova T, Landreth GE, Manji HK, Chen G (2009) The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Mol Psychiatry 14(4):448–461PubMedCrossRefGoogle Scholar
  137. 137.
    Creson TK, Hao Y, Engel S, Shen Y, Hamidi A, Zhuo M, Manji HK, Chen G (2009) The anterior cingulate ERK pathway contributes to regulation of behavioral excitement and hedonic activity. Bipolar Disord 11(4):339–350PubMedCrossRefGoogle Scholar
  138. 138.
    Nusse R, Fuerer C, Ching W, Harnish K, Logan C, Zeng A, ten Berge D, Kalani Y (2008) Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol 73:59–66PubMedCrossRefGoogle Scholar
  139. 139.
    Purro SA, Ciani L, Hoyos-Flight M, Stamatakou E, Siomou E, Salinas PC (2008) Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli. J Neurosci 28(34):8644–8654PubMedCrossRefGoogle Scholar
  140. 140.
    Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev 6(5):351–362Google Scholar
  141. 141.
    Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810PubMedCrossRefGoogle Scholar
  142. 142.
    Kikuchi A, Yamamoto H, Kishida S (2007) Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal 19(4):659–671PubMedCrossRefGoogle Scholar
  143. 143.
    Silva R, Mesquita AR, Bessa J, Sousa JC, Sotiropoulos I, Leao P, Almeida OF, Sousa N (2008) Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3beta. Neuroscience 152(3):656–669PubMedCrossRefGoogle Scholar
  144. 144.
    Gould TD, Einat H, Bhat R, Manji HK (2004) AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol 7(4):387–390PubMedCrossRefGoogle Scholar
  145. 145.
    Kaidanovich-Beilin O, Milman A, Weizman A, Pick CG, Eldar-Finkelman H (2004) Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol Psychiatry 55(8):781–784PubMedCrossRefGoogle Scholar
  146. 146.
    Gould TD, Manji HK (2005) Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30(7):1223–1237PubMedGoogle Scholar
  147. 147.
    Okamoto H, Voleti B, Banasr M, Sarhan M, Duric V, Girgenti MJ, Dileone RJ, Newton SS, Duman RS (2010) Wnt2 expression and signaling is increased by different classes of antidepressant treatments. Biol Psychiatry 68(6):521–527PubMedCrossRefGoogle Scholar
  148. 148.
    Voleti B, Tanis KQ, Newton SS, Duman RS (2011) Analysis of target genes regulated by chronic electroconvulsive therapy reveals role for Fzd6 in depression. Biol Psychiatry. doi: 10.1016/j.biopsych.2011.08.004 PubMedGoogle Scholar
  149. 149.
    Wilkinson MB, Dias C, Magida J, Mazei-Robison M, Lobo M, Kennedy P, Dietz D, Covington H 3rd, Russo S, Neve R, Ghose S, Tamminga C, Nestler EJ (2011) A novel role of the WNT-dishevelled-GSK3beta signaling cascade in the mouse nucleus accumbens in a social defeat model of depression. J Neurosci 31(25):9084–9092PubMedCrossRefGoogle Scholar
  150. 150.
    Beurel E, Song L, Jope RS (2011) Inhibition of glycogen synthase kinase-3 is necessary for the rapid antidepressant effect of ketamine in mice. Molecular Psychiatry. doi: 10.1038/mp.2011.47 PubMedGoogle Scholar
  151. 151.
    Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev 10(9):647–658CrossRefGoogle Scholar
  152. 152.
    Yoshihara Y, De Roo M, Muller D (2009) Dendritic spine formation and stabilization. Curr Opin Neurobiol 19(2):146–153PubMedCrossRefGoogle Scholar
  153. 153.
    Shansky RM, Hamo C, Hof PR, McEwen BS, Morrison JH (2009) Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb Cortex 19(10):2479–2484PubMedCrossRefGoogle Scholar
  154. 154.
    McEwen BS (2008) Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583(2–3):174–185PubMedCrossRefGoogle Scholar
  155. 155.
    Drevets WC, Ongur D, Price JL (1998) Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders. Mol Psychiatry 3(3):220–226, 190–221Google Scholar
  156. 156.
    Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354PubMedCrossRefGoogle Scholar
  157. 157.
    Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864PubMedCrossRefGoogle Scholar
  158. 158.
    Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964Google Scholar
  159. 159.
    Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69(8):754–761PubMedCrossRefGoogle Scholar
  160. 160.
    Duman RS, Li N, Liu RJ, Duric V, Aghajanian G (2011) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology. doi: 10.1016/j.neuropharm.2011.08.044 PubMedGoogle Scholar
  161. 161.
    Hashimoto K, Sawa A, Iyo M (2007) Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 62(11):1310–1316PubMedCrossRefGoogle Scholar
  162. 162.
    McCullumsmith RE, Kristiansen LV, Beneyto M, Scarr E, Dean B, Meador-Woodruff JH (2007) Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res 1127(1):108–118PubMedCrossRefGoogle Scholar
  163. 163.
    Law AJ, Deakin JF (2001) Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. NeuroReport 12(13):2971–2974PubMedCrossRefGoogle Scholar
  164. 164.
    Nudmamud-Thanoi S, Reynolds GP (2004) The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neurosci Lett 372(1–2):173–177PubMedCrossRefGoogle Scholar
  165. 165.
    Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B (2009) Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry 33(1):70–75PubMedCrossRefGoogle Scholar
  166. 166.
    Meador-Woodruff JH, Hogg AJ Jr, Smith RE (2001) Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Res Bull 55(5):631–640PubMedCrossRefGoogle Scholar
  167. 167.
    Beneyto M, Meador-Woodruff JH (2006) Lamina-specific abnormalities of AMPA receptor trafficking and signaling molecule transcripts in the prefrontal cortex in schizophrenia. Synapse 60(8):585–598Google Scholar
  168. 168.
    Duric V, Banasr M, Stockmeier CA, Simen AA, Newton SS, Overholser JC, Jurjus GJ, Dieter L, Duman RS (2012) Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol. doi: 10.1017/S1461145712000016
  169. 169.
    Wong ML, Smith MA, Licinio J, Doi SQ, Weiss SR, Post RM, Gold PW (1993) Differential effects of kindled and electrically induced seizures on a glutamate receptor (GluR1) gene expression. Epilepsy Res 14(3):221–227PubMedCrossRefGoogle Scholar
  170. 170.
    Naylor P, Stewart CA, Wright SR, Pearson RC, Reid IC (1996) Repeated ECS induces GluR1 mRNA but not NMDAR1A-G mRNA in the rat hippocampus. Brain Res 35(1–2):349–353Google Scholar
  171. 171.
    Svenningsson P, Tzavara ET, Witkin JM, Fienberg AA, Nomikos GG, Greengard P (2002) Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc Natl Acad Sci USA 99(5):3182–3187PubMedCrossRefGoogle Scholar
  172. 172.
    Sheng M, Lee SH (2001) AMPA receptor trafficking and the control of synaptic transmission. Cell 105(7):825–828PubMedCrossRefGoogle Scholar
  173. 173.
    Bruneau EG, Akaaboune M (2006) Running to stand still: ionotropic receptor dynamics at central and peripheral synapses. Mol Neurobiol 34(2):137–151PubMedCrossRefGoogle Scholar
  174. 174.
    Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63(4):349–352PubMedCrossRefGoogle Scholar
  175. 175.
    Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475(7354):91–95PubMedCrossRefGoogle Scholar
  176. 176.
    Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27(43):11496–11500PubMedCrossRefGoogle Scholar
  177. 177.
    Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, Karolewicz B (2011) The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1774–1779PubMedCrossRefGoogle Scholar
  178. 178.
    Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31PubMedCrossRefGoogle Scholar
  179. 179.
    Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741PubMedCrossRefGoogle Scholar
  180. 180.
    Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, Mirnics K (2011) Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry 16(7):751–762PubMedCrossRefGoogle Scholar
  181. 181.
    Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 105(2):751–756PubMedCrossRefGoogle Scholar
  182. 182.
    Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS (2010) Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci USA 107(6):2669–2674PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of PsychiatryYale UniversityNew HavenUSA

Personalised recommendations