Cellular and Molecular Life Sciences

, Volume 69, Issue 14, pp 2345–2363

NADPH oxidases as therapeutic targets in ischemic stroke

Multi-author review

Abstract

Reactive oxygen species (ROS) act physiologically as signaling molecules. In pathological conditions, such as ischemic stroke, ROS are released in excessive amounts and upon reperfusion exceed the body’s antioxidant detoxifying capacity. This process leads to brain tissue damage during reoxygenation. Consequently, antioxidant strategies have long been suggested as a therapy for experimental stroke, but clinical trials have not yet been able to promote the translation of this concept into patient treatment regimens. As an evolution of this concept, recent studies have targeted the sources of ROS generation—rather than ROS themselves. In this context, NADPH oxidases have been identified as important generators of ROS in the cerebral vasculature under both physiological conditions in general and during ischemia/reoxygenation in particular. Inhibition of NADPH oxidases or genetic deletion of certain NADPH oxidase isoforms has been found to considerably reduce ischemic injury in experimental stroke. This review focuses on recent advances in the understanding of NADPH oxidase-mediated tissue injury in the cerebral vasculature, particularly at the level of the blood–brain barrier, and highlights promising inhibitory strategies that target the NADPH oxidases.

Keywords

NADPH oxidase Reactive oxygen species Ischemia Reperfusion Stroke Brain 

References

  1. 1.
    Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, De SG, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J (2011) Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 123:e18–e209. doi:10.1161/CIR.0b013e3182009701 PubMedCrossRefGoogle Scholar
  2. 2.
    World Health Organization (WHO) (2004) The atlas of heart disease and stroke. World Health Organization, GenevaGoogle Scholar
  3. 3.
    Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359:1317–1329PubMedCrossRefGoogle Scholar
  4. 4.
    Molina CA (2011) Reperfusion therapies for acute ischemic stroke: current pharmacological and mechanical approaches. Stroke 42:S16–S19. doi:10.1161/STROKEAHA.110.598763 PubMedCrossRefGoogle Scholar
  5. 5.
    Soberman RJ (2003) The expanding network of redox signaling: new observations, complexities, and perspectives. J Clin Invest 111:571–574. doi:10.1172/JCI18099 PubMedGoogle Scholar
  6. 6.
    Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43:332–347PubMedCrossRefGoogle Scholar
  7. 7.
    D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824PubMedCrossRefGoogle Scholar
  8. 8.
    Brandes RP (2003) Role of NADPH oxidases in the control of vascular gene expression. Antioxid Redox Signal 5:803–811PubMedCrossRefGoogle Scholar
  9. 9.
    Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218. doi:10.1007/s00726-003-0011-2 PubMedCrossRefGoogle Scholar
  10. 10.
    Saran M (2003) To what end does nature produce superoxide? NADPH oxidase as an autocrine modifier of membrane phospholipids generating paracrine lipid messengers. Free Radic Res 37:1045–1059PubMedCrossRefGoogle Scholar
  11. 11.
    Marnett LJ, Plastaras JP (2001) Endogenous DNA damage and mutation. Trends Genet 17:214–221. doi:S0168-9525(01)02239-9 PubMedCrossRefGoogle Scholar
  12. 12.
    Adibhatla RM, Hatcher JF (2010) Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 12:125–169. doi:10.1089/ARS.2009.2668 PubMedCrossRefGoogle Scholar
  13. 13.
    Armstrong JS, Khdour O, Hecht SM (2010) Does oxidative stress contribute to the pathology of Friedreich’s ataxia? A radical question. FASEB J 24:2152–2163. doi:10.1096/fj.09-143222 PubMedCrossRefGoogle Scholar
  14. 14.
    Simonyi A, He Y, Sheng W, Sun AY, Wood WG, Weisman GA, Sun GY (2010) Targeting NADPH oxidase and phospholipases A2 in Alzheimer’s disease. Mol Neurobiol 41:73–86. doi:10.1007/s12035-010-8107-7 PubMedCrossRefGoogle Scholar
  15. 15.
    Waldbaum S, Patel M (2010) Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 88:23–45. doi:10.1016/j.eplepsyres.2009.09.020 PubMedCrossRefGoogle Scholar
  16. 16.
    Ghafourifar P, Mousavizadeh K, Parihar MS, Nazarewicz RR, Parihar A, Zenebe WJ (2008) Mitochondria in multiple sclerosis. Front Biosci 13:3116–3126. doi:2913 PubMedCrossRefGoogle Scholar
  17. 17.
    Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11:2481–2504PubMedCrossRefGoogle Scholar
  18. 18.
    Nelson CW, Wei EP, Povlishock JT, Kontos HA, Moskowitz MA (1992) Oxygen radicals in cerebral ischemia. Am J Physiol 263:H1356–H1362PubMedGoogle Scholar
  19. 19.
    Gursoy-Ozdemir Y, Can A, Dalkara T (2004) Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 35:1449–1453PubMedCrossRefGoogle Scholar
  20. 20.
    Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397PubMedCrossRefGoogle Scholar
  21. 21.
    Lee JM, Grabb MC, Zipfel GJ, Choi DW (2000) Brain tissue responses to ischemia. J Clin Invest 106:723–731. doi:10.1172/JCI11003 PubMedCrossRefGoogle Scholar
  22. 22.
    Moro MA, Almeida A, Bolanos JP, Lizasoain I (2005) Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 39:1291–1304. doi:10.1016/j.freeradbiomed.2005.07.010 PubMedCrossRefGoogle Scholar
  23. 23.
    Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 17:2746–2755PubMedGoogle Scholar
  24. 24.
    Muir SW, Harrow C, Dawson J, Lees KR, Weir CJ, Sattar N, Walters MR (2008) Allopurinol use yields potentially beneficial effects on inflammatory indices in those with recent ischemic stroke: a randomized, double-blind, placebo-controlled trial. Stroke 39:3303–3307. doi:10.1161/STROKEAHA.108.519793 PubMedCrossRefGoogle Scholar
  25. 25.
    Berry C, Hamilton CA, Brosnan MJ, Magill FG, Berg GA, McMurray JJ, Dominiczak AF (2000) Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. Circulation 101:2206–2212PubMedCrossRefGoogle Scholar
  26. 26.
    Dawson J, Quinn T, Walters M (2007) Uric acid reduction: a new paradigm in the management of cardiovascular risk? Curr Med Chem 14:1879–1886PubMedCrossRefGoogle Scholar
  27. 27.
    Margaill I, Plotkine M, Lerouet D (2005) Antioxidant strategies in the treatment of stroke. Free Radic Biol Med 39:429–443PubMedCrossRefGoogle Scholar
  28. 28.
    Lin Y, Phillis JW (1991) Oxypurinol reduces focal ischemic brain injury in the rat. Neurosci Lett 126:187–190PubMedCrossRefGoogle Scholar
  29. 29.
    Betz AL, Randall J, Martz D (1991) Xanthine oxidase is not a major source of free radicals in focal cerebral ischemia. Am J Physiol 260:H563–H568PubMedGoogle Scholar
  30. 30.
    Dawson J, Quinn TJ, Harrow C, Lees KR, Walters MR (2009) The effect of allopurinol on the cerebral vasculature of patients with subcortical stroke; a randomized trial. Br J Clin Pharmacol 68:662–668. doi:10.1111/j.1365-2125.2009.03497.x PubMedCrossRefGoogle Scholar
  31. 31.
    Fabian RH, Kent TA (1999) Superoxide anion production during reperfusion is reduced by an antineutrophil antibody after prolonged cerebral ischemia. Free Radic Biol Med 26:355–361. doi: S0891-5849(98)00215-9 PubMedCrossRefGoogle Scholar
  32. 32.
    Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood–brain barrier damage in experimental stroke. Stroke 38:3000–3006PubMedCrossRefGoogle Scholar
  33. 33.
    Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14:1505–1517. doi:10.1089/ars.2010.3576 PubMedCrossRefGoogle Scholar
  34. 34.
    Brandes RP (2005) Triggering mitochondrial radical release: a new function for NADPH oxidases. Hypertension 45:847–848PubMedCrossRefGoogle Scholar
  35. 35.
    Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, Swanson RA (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12:857–863. doi:10.1038/nn.2334 PubMedCrossRefGoogle Scholar
  36. 36.
    O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59:467–477. doi:10.1002/ana.20741 PubMedCrossRefGoogle Scholar
  37. 37.
    Kuroda S, Tsuchidate R, Smith ML, Maples KR, Siesjo BK (1999) Neuroprotective effects of a novel nitrone, NXY-059, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 19:778–787. doi:10.1097/00004647-199907000-00008 PubMedCrossRefGoogle Scholar
  38. 38.
    Marshall JW, Cummings RM, Bowes LJ, Ridley RM, Green AR (2003) Functional and histological evidence for the protective effect of NXY-059 in a primate model of stroke when given 4 hours after occlusion. Stroke 34:2228–2233. doi:10.1161/01.STR.0000087790.79851.A8 PubMedCrossRefGoogle Scholar
  39. 39.
    Myint PK, Luben RN, Welch AA, Bingham SA, Wareham NJ, Khaw KT (2008) Plasma vitamin C concentrations predict risk of incident stroke over 10 y in 20 649 participants of the European Prospective Investigation into Cancer Norfolk prospective population study. Am J Clin Nutr 87:64–69 87/1/64PubMedGoogle Scholar
  40. 40.
    Riemersma RA, Wood DA, Macintyre CC, Elton RA, Gey KF, Oliver MF (1991) Risk of angina pectoris and plasma concentrations of vitamins A, C, and E and carotene. Lancet 337:1–5 0140-6736(91)93327-6PubMedCrossRefGoogle Scholar
  41. 41.
    Singh RB, Ghosh S, Niaz MA, Singh R, Beegum R, Chibo H, Shoumin Z, Postiglione A (1995) Dietary intake, plasma levels of antioxidant vitamins, and oxidative stress in relation to coronary artery disease in elderly subjects. Am J Cardiol 76:1233–1238 S0002914999803488PubMedCrossRefGoogle Scholar
  42. 42.
    Diener HC, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM, Shuaib A, Ashwood T, Wasiewski W, Alderfer V, Hardemark HG, Rodichok L (2008) NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II Trials. Stroke 39:1751–1758. doi:10.1161/STROKEAHA.107.503334 PubMedCrossRefGoogle Scholar
  43. 43.
    Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2008) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 16:CD007176. doi:10.1002/14651858.CD007176 Google Scholar
  44. 44.
    Miller ER III, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E (2005) Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 142:37–46 0000605-200501040-00110PubMedGoogle Scholar
  45. 45.
    Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ (2003) Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361:2017–2023. doi:10.1016/S0140-6736(03)13637-9 PubMedCrossRefGoogle Scholar
  46. 46.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313PubMedCrossRefGoogle Scholar
  47. 47.
    Mun-Bryce S, Rosenberg GA (1998) Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab 18:1163–1172. doi:10.1097/00004647-199811000-00001 PubMedCrossRefGoogle Scholar
  48. 48.
    Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X, Lo EH (2006) Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 12:441–445. doi:10.1038/nm1387 PubMedCrossRefGoogle Scholar
  49. 49.
    Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, Iadecola C (2007) Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci 27:7083–7093PubMedCrossRefGoogle Scholar
  50. 50.
    Kawano T, Kunz A, Abe T, Girouard H, Anrather J, Zhou P, Iadecola C (2007) iNOS-derived NO and nox2-derived superoxide confer tolerance to excitotoxic brain injury through peroxynitrite. J Cereb Blood Flow Metab 27:1453–1462PubMedCrossRefGoogle Scholar
  51. 51.
    Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139PubMedCrossRefGoogle Scholar
  52. 52.
    Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH, Younkin L, Younkin S, Carlson G, McEwen BS, Iadecola C (2008) Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA 105:1347–1352PubMedCrossRefGoogle Scholar
  53. 53.
    Park L, Anrather J, Zhou P, Frys K, Pitstick R, Younkin S, Carlson GA, Iadecola C (2005) NADPH-oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid beta peptide. J Neurosci 25:1769–1777PubMedCrossRefGoogle Scholar
  54. 54.
    Block ML (2008) NADPH oxidase as a therapeutic target in Alzheimer’s disease. BMC Neurosci 9(2):S8PubMedCrossRefGoogle Scholar
  55. 55.
    Chrissobolis S, Miller AA, Drummond GR, Kemp-Harper BK, Sobey CG (2011) Oxidative stress and endothelial dysfunction in cerebrovascular disease. Front Biosci 16:1733–1745. doi:10.2741/3816 PubMedCrossRefGoogle Scholar
  56. 56.
    Girouard H, Park L, Anrather J, Zhou P, Iadecola C (2006) Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through Nox-2-derived radicals. Arterioscler Thromb Vasc Biol 26:826–832PubMedCrossRefGoogle Scholar
  57. 57.
    Park L, Anrather J, Girouard H, Zhou P, Iadecola C (2007) Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 27:1908–1918PubMedCrossRefGoogle Scholar
  58. 58.
    Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA (2007) Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 117:910–918PubMedCrossRefGoogle Scholar
  59. 59.
    Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 14:495–502PubMedCrossRefGoogle Scholar
  60. 60.
    Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 4:461–470. doi:10.1111/j.1747-4949.2009.00387.x PubMedCrossRefGoogle Scholar
  61. 61.
    Davi G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357:2482–2494PubMedCrossRefGoogle Scholar
  62. 62.
    Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res: 43:348–364Google Scholar
  63. 63.
    Kahles T, Heumueller S, Brandes RP. NADPH oxidases and blood-brain barrier dysfunction in stroke. In Sauer H, Shah AM, Laurindo FR, eds. Studies on Cardiovascular Disorders. Humana Press, New York, 2010, pp 211-230Google Scholar
  64. 64.
    Hamann GF, Okada Y, del Zoppo GJ (1996) Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J Cereb Blood Flow Metab 16:1373–1378PubMedCrossRefGoogle Scholar
  65. 65.
    Heo JH, Han SW, Lee SK (2005) Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 39:51–70PubMedCrossRefGoogle Scholar
  66. 66.
    Rosenberg GA, Yang Y (2007) Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 22:E4PubMedCrossRefGoogle Scholar
  67. 67.
    Ayata C, Ropper AH (2002) Ischaemic brain oedema. J Clin Neurosci 9:113–124. doi:10.1054/jocn.2001.1031 PubMedCrossRefGoogle Scholar
  68. 68.
    Kuroiwa T, Ting P, Martinez H, Klatzo I (1985) The biphasic opening of the blood–brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol 68:122–129PubMedCrossRefGoogle Scholar
  69. 69.
    Gasche Y, Copin JC (2003) Blood–brain barrier pathophysiology and ischaemic brain oedema. Ann Fr Anesth Reanim 22:312–319PubMedCrossRefGoogle Scholar
  70. 70.
    The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1588. doi:10.1056/NEJM199512143332401 CrossRefGoogle Scholar
  71. 71.
    Durukan A, Marinkovic I, Strbian D, Pitkonen M, Pedrono E, Soinne L, Abo-Ramadan U, Tatlisumak T (2009) Post-ischemic blood-brain barrier leakage in rats: one-week follow-up by MRI. Brain Res 1280:158–165. doi:10.1016/j.brainres.2009.05.025 PubMedCrossRefGoogle Scholar
  72. 72.
    Strbian D, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, Abo-Ramadan U, Tatlisumak T (2008) The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience 153:175–181. doi:10.1016/j.neuroscience.2008.02.012 PubMedCrossRefGoogle Scholar
  73. 73.
    Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198. doi:10.1016/j.neuron.2010.07.002 PubMedCrossRefGoogle Scholar
  74. 74.
    Fisher M (2009) Pericyte signaling in the neurovascular unit. Stroke 40:S13–S15PubMedCrossRefGoogle Scholar
  75. 75.
    Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P (2009) Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 335:75–96PubMedCrossRefGoogle Scholar
  76. 76.
    Chen ZL, Indyk JA, Bugge TH, Kombrinck KW, Degen JL, Strickland S (1999) Neuronal death and blood–brain barrier breakdown after excitotoxic injury are independent processes. J Neurosci 19:9813–9820PubMedGoogle Scholar
  77. 77.
    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344. doi:10.1113/jphysiol.2003.049478 PubMedCrossRefGoogle Scholar
  78. 78.
    Siesjo BK, Elmer E, Janelidze S, Keep M, Kristian T, Ouyang YB, Uchino H (1999) Role and mechanisms of secondary mitochondrial failure. Acta Neurochir Suppl 73:7–13PubMedGoogle Scholar
  79. 79.
    Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779–789. doi:10.1189/jlb.1109766 PubMedCrossRefGoogle Scholar
  80. 80.
    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553. doi:10.1152/physrev.00011.2010 PubMedCrossRefGoogle Scholar
  81. 81.
    Cheret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause KH, Mallat M (2008) Neurotoxic activation of microglia is promoted by a Nox1-dependent NADPH oxidase. J Neurosci 28:12039–12051PubMedCrossRefGoogle Scholar
  82. 82.
    Yenari MA, Kauppinen TM, Swanson RA (2010) Microglial activation in stroke: therapeutic targets. Neurotherapeutics 7:378–391. doi:10.1016/j.nurt.2010.07.005 PubMedCrossRefGoogle Scholar
  83. 83.
    Iadecola C, Zhang F, Xu S, Casey R, Ross ME (1995) Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab 15:378–384. doi:10.1038/jcbfm.1995.47 PubMedCrossRefGoogle Scholar
  84. 84.
    Iadecola C, Zhang F, Casey R, Clark HB, Ross ME (1996) Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 27:1373–1380PubMedCrossRefGoogle Scholar
  85. 85.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424PubMedCrossRefGoogle Scholar
  86. 86.
    Ryu JK, McLarnon JG (2006) Minocycline or iNOS inhibition block 3-nitrotyrosine increases and blood-brain barrier leakiness in amyloid beta-peptide-injected rat hippocampus. Exp Neurol 198:552–557. doi:10.1016/j.expneurol.2005.12.016 PubMedCrossRefGoogle Scholar
  87. 87.
    Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG (2006) Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37:1087–1093. doi:10.1161/01.STR.0000206281.77178.ac PubMedCrossRefGoogle Scholar
  88. 88.
    Strbian D, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ (2006) Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab 26:605–612. doi:10.1038/sj.jcbfm.9600228 PubMedCrossRefGoogle Scholar
  89. 89.
    Kim GW, Lewen A, Copin J, Watson BD, Chan PH (2001) The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience 105:1007–1018PubMedCrossRefGoogle Scholar
  90. 90.
    Lehner C, Gehwolf R, Tempfer H, Krizbai I, Hennig B, Bauer HC, Bauer H (2011) Oxidative stress and blood–brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid Redox Signal 15:1305–1323. doi: 10.1089/ars.2011.3923 Google Scholar
  91. 91.
    Jin L, Ying Z, Webb RC (2004) Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am J Physiol Heart Circ Physiol 287:H1495–H1500PubMedCrossRefGoogle Scholar
  92. 92.
    Diekmann D, Abo A, Johnston C, Segal AW, Hall A (1994) Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265:531–533PubMedCrossRefGoogle Scholar
  93. 93.
    Schreibelt G, Kooij G, Reijerkerk A, van DR, Gringhuis SI, van der PS, Weksler BB, Romero IA, Couraud PO, Piontek J, Blasig IE, Dijkstra CD, Ronken E, De Vries HE (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:3666–3676PubMedCrossRefGoogle Scholar
  94. 94.
    Kuhlmann CR, Tamaki R, Gamerdinger M, Lessmann V, Behl C, Kempski OS, Luhmann HJ (2007) Inhibition of the myosin light chain kinase prevents hypoxia-induced blood-brain barrier disruption. J Neurochem 102:501–507. doi:10.1111/j.1471-4159.2007.04506.x PubMedCrossRefGoogle Scholar
  95. 95.
    Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y (2007) Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood–brain barrier dysfunction. J Neurochem 101:566–576PubMedCrossRefGoogle Scholar
  96. 96.
    Woodcock SA, Rooney C, Liontos M, Connolly Y, Zoumpourlis V, Whetton AD, Gorgoulis VG, Malliri A (2009) SRC-induced disassembly of adherens junctions requires localized phosphorylation and degradation of the rac activator tiam1. Mol Cell 33:639–653PubMedCrossRefGoogle Scholar
  97. 97.
    Miller AA, Drummond GR, Sobey CG (2006) Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther 111:928–948PubMedCrossRefGoogle Scholar
  98. 98.
    Ray R, Murdoch CE, Wang M, Santos CX, Zhang M, Alom-Ruiz S, Anilkumar N, Ouattara A, Cave AC, Walker SJ, Grieve DJ, Charles RL, Eaton P, Brewer AC, Shah AM (2011) Endothelial nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler Thromb Vasc Biol 31:1368–1376. doi:10.1161/ATVBAHA.110.219238 PubMedCrossRefGoogle Scholar
  99. 99.
    Nisimoto Y, Jackson HM, Ogawa H, Kawahara T, Lambeth JD (2010) Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain. Biochemistry 49:2433–2442. doi:10.1021/bi9022285 PubMedCrossRefGoogle Scholar
  100. 100.
    Martyn KD, Frederick LM, von LK, Dinauer MC, Knaus UG (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82. doi:10.1016/j.cellsig.2005.03.023 PubMedCrossRefGoogle Scholar
  101. 101.
    Helmcke I, Heumuller S, Tikkanen R, Schroder K, Brandes RP (2009) Identification of structural elements in Nox1 and Nox4 controlling localization and activity. Antioxid Redox Signal 11:1279–1287. doi:10.1089/ARS.2008.2383 PubMedCrossRefGoogle Scholar
  102. 102.
    Kawahara T, Jackson HM, Smith SM, Simpson PD, Lambeth JD (2011) Nox5 forms a functional oligomer mediated by self-association of its dehydrogenase domain. Biochemistry 50:2013–2025. doi:10.1021/bi1020088 PubMedCrossRefGoogle Scholar
  103. 103.
    Kawahara T, Quinn MT, Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7:109PubMedCrossRefGoogle Scholar
  104. 104.
    Leto TL, Morand S, Hurt D, Ueyama T (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 11:2607–2619. doi:10.1089/ARS.2009.2637 PubMedCrossRefGoogle Scholar
  105. 105.
    Paffenholz R, Bergstrom RA, Pasutto F, Wabnitz P, Munroe RJ, Jagla W, Heinzmann U, Marquardt A, Bareiss A, Laufs J, Russ A, Stumm G, Schimenti JC, Bergstrom DE (2004) Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18:486–491PubMedCrossRefGoogle Scholar
  106. 106.
    Infanger DW, Sharma RV, Davisson RL (2006) NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 8:1583–1596PubMedCrossRefGoogle Scholar
  107. 107.
    Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi H, Wakisaka M, Kawahara T, Rokutan K, Ibayashi S, Iida M (2005) NAD(P)H oxidases in rat basilar arterial endothelial cells. Stroke 36:1040–1046PubMedCrossRefGoogle Scholar
  108. 108.
    Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H, Iida M (2004) Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 109:227–233. doi:10.1161/01.CIR.0000105680.92873.70 PubMedCrossRefGoogle Scholar
  109. 109.
    Kahles T, Kohnen A, Heumueller S, Rappert A, Bechmann I, Liebner S, Wittko IM, Neumann-Haefelin T, Steinmetz H, Schroeder K, Brandes RP (2010) NADPH oxidase Nox1 contributes to ischemic injury in experimental stroke in mice. Neurobiol Dis 40:185–192. doi:10.1016/j.nbd.2010.05.023 PubMedCrossRefGoogle Scholar
  110. 110.
    Erdos B, Snipes JA, Tulbert CD, Katakam P, Miller AW, Busija DW (2006) Rosuvastatin improves cerebrovascular function in Zucker obese rats by inhibiting NAD(P)H oxidase-dependent superoxide production. Am J Physiol Heart Circ Physiol 290:H1264–H1270. doi:10.1152/ajpheart.00804.2005 PubMedCrossRefGoogle Scholar
  111. 111.
    Paravicini TM, Chrissobolis S, Drummond GR, Sobey CG (2004) Increased NADPH-oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo. Stroke 35:584–589PubMedCrossRefGoogle Scholar
  112. 112.
    Kim DE, Suh YS, Lee MS, Kim KY, Lee JH, Lee HS, Hong KW, Kim CD (2002) Vascular NAD(P)H oxidase triggers delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Stroke 33:2687–2691PubMedCrossRefGoogle Scholar
  113. 113.
    Kazama K, Anrather J, Zhou P, Girouard H, Frys K, Milner TA, Iadecola C (2004) Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ Res 95:1019–1026. doi:10.1161/01.RES.0000148637.85595.c5 PubMedCrossRefGoogle Scholar
  114. 114.
    Miller AA, Drummond GR, De Silva TM, Mast AE, Hickey H, Williams JP, Broughton BR, Sobey CG (2009) NADPH oxidase activity is higher in cerebral versus systemic arteries of four animal species: role of Nox2. Am J Physiol Heart Circ Physiol 296:H220–H225PubMedCrossRefGoogle Scholar
  115. 115.
    Miller AA, Drummond GR, Mast AE, Schmidt HH, Sobey CG (2007) Effect of gender on NADPH-oxidase activity, expression, and function in the cerebral circulation: role of estrogen. Stroke 38:2142–2149PubMedCrossRefGoogle Scholar
  116. 116.
    Miller AA, Drummond GR, Schmidt HH, Sobey CG (2005) NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res 97:1055–1062PubMedCrossRefGoogle Scholar
  117. 117.
    Miller AA, De Silva TM, Judkins CP, Diep H, Drummond GR, Sobey CG (2010) Augmented superoxide production by Nox2-containing NADPH oxidase causes cerebral artery dysfunction during hypercholesterolemia. Stroke 41:784–789. doi:10.1161/STROKEAHA.109.575365 PubMedCrossRefGoogle Scholar
  118. 118.
    Yoshioka H, Niizuma K, Katsu M, Okami N, Sakata H, Kim GS, Narasimhan P, Chan PH (2010) NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab 31:868–880. doi:10.1038/jcbfm.2010.166 PubMedCrossRefGoogle Scholar
  119. 119.
    Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HH (2010) Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 8(9):e100047. doi:10.1371/journal.pbio.1000479
  120. 120.
    Liu W, Sood R, Chen Q, Sakoglu U, Hendren J, Cetin O, Miyake M, Liu KJ (2008) Normobaric hyperoxia inhibits NADPH oxidase-mediated matrix metalloproteinase-9 induction in cerebral microvessels in experimental stroke. J Neurochem 107:1196–1205PubMedCrossRefGoogle Scholar
  121. 121.
    De Silva TM, Broughton BR, Drummond GR, Sobey CG, Miller AA (2009) Gender influences cerebral vascular responses to angiotensin II through Nox2-derived reactive oxygen species. Stroke 40:1091–1097PubMedCrossRefGoogle Scholar
  122. 122.
    Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I (2005) Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 132:233–238PubMedCrossRefGoogle Scholar
  123. 123.
    Miller AA, Dusting GJ, Roulston CL, Sobey CG (2006) NADPH-oxidase activity is elevated in penumbral and non-ischemic cerebral arteries following stroke. Brain Res 1111:111–116PubMedCrossRefGoogle Scholar
  124. 124.
    del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang CM (1991) Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 22:1276–1283PubMedCrossRefGoogle Scholar
  125. 125.
    Zhang RL, Chopp M, Li Y, Zaloga C, Jiang N, Jones ML, Miyasaka M, Ward PA (1994) Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology 44:1747–1751PubMedCrossRefGoogle Scholar
  126. 126.
    Zhang RL, Chopp M, Jiang N, Tang WX, Prostak J, Manning AM, Anderson DC (1995) Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke 26:1438–1442PubMedCrossRefGoogle Scholar
  127. 127.
    Matsuo Y, Kihara T, Ikeda M, Ninomiya M, Onodera H, Kogure K (1995) Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation. J Cereb Blood Flow Metab 15:941–947. doi:10.1038/jcbfm.1995.119 PubMedCrossRefGoogle Scholar
  128. 128.
    Chen H, Chopp M, Zhang RL, Bodzin G, Chen Q, Rusche JR, Todd RF III (1994) Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann Neurol 35:458–463. doi:10.1002/ana.410350414 PubMedCrossRefGoogle Scholar
  129. 129.
    Hartl R, Schurer L, Schmid-Schonbein GW, del Zoppo GJ (1996) Experimental antileukocyte interventions in cerebral ischemia. J Cereb Blood Flow Metab 16:1108–1119. doi:10.1097/00004647-199611000-00004 PubMedCrossRefGoogle Scholar
  130. 130.
    Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258PubMedCrossRefGoogle Scholar
  131. 131.
    Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27:1129–1138PubMedCrossRefGoogle Scholar
  132. 132.
    Doverhag C, Keller M, Karlsson A, Hedtjarn M, Nilsson U, Kapeller E, Sarkozy G, Klimaschewski L, Humpel C, Hagberg H, Simbruner G, Gressens P, Savman K (2008) Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice. Neurobiol Dis 31:133–144PubMedCrossRefGoogle Scholar
  133. 133.
    Chen H, Song YS, Chan PH (2009) Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J Cereb Blood Flow Metab 29:1262–1272. doi:10.1038/jcbfm.2009.47 PubMedCrossRefGoogle Scholar
  134. 134.
    Chen H, Kim GS, Okami N, Narasimhan P, Chan PH (2011) NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis 42:341–348. doi:10.1016/j.nbd.2011.01.027 PubMedCrossRefGoogle Scholar
  135. 135.
    Brait VH, Jackman KA, Walduck AK, Selemidis S, Diep H, Mast AE, Guida E, Broughton BR, Drummond GR, Sobey CG (2010) Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab 30:1306–1317. doi:10.1038/jcbfm.2010.14 PubMedCrossRefGoogle Scholar
  136. 136.
    Jackman KA, Miller AA, De Silva TM, Crack PJ, Drummond GR, Sobey CG (2009) Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. Br J Pharmacol 156:680–688PubMedCrossRefGoogle Scholar
  137. 137.
    Suh SW, Shin BS, Ma H, Van HM, Brennan AM, Yenari MA, Swanson RA (2008) Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol 64:654–663PubMedCrossRefGoogle Scholar
  138. 138.
    Jin R, Song Z, Yu S, Piazza A, Nanda A, Penninger JM, Granger DN, Li G (2011) Phosphatidylinositol-3-kinase gamma plays a central role in blood–brain barrier dysfunction in acute experimental stroke. Stroke 42:2033–2044. doi:10.1161/STROKEAHA.110.601369 Google Scholar
  139. 139.
    Jackman KA, Miller AA, Drummond GR, Sobey CG (2009) Importance of NOX1 for angiotensin II-induced cerebrovascular superoxide production and cortical infarct volume following ischemic stroke. Brain Res 1286:215–220. doi:10.1016/j.brainres.2009.06.056 PubMedCrossRefGoogle Scholar
  140. 140.
    Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, Brandes RP (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51:211–217PubMedCrossRefGoogle Scholar
  141. 141.
    Williams HC, Griendling KK (2007) NADPH oxidase inhibitors: new antihypertensive agents? J Cardiovasc Pharmacol 50:9–16PubMedCrossRefGoogle Scholar
  142. 142.
    Tang XN, Cairns B, Cairns N, Yenari MA (2008) Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience 154:556–562PubMedCrossRefGoogle Scholar
  143. 143.
    Tang LL, Ye K, Yang XF, Zheng JS (2007) Apocynin attenuates cerebral infarction after transient focal ischaemia in rats. J Int Med Res 35:517–522PubMedGoogle Scholar
  144. 144.
    Kelly KA, Li X, Tan Z, VanGilder RL, Rosen CL, Huber JD (2009) NOX2 inhibition with apocynin worsens stroke outcome in aged rats. Brain Res 1292:165–172. doi:10.1016/j.brainres.2009.07.052 PubMedCrossRefGoogle Scholar
  145. 145.
    Murotomi K, Takagi N, Takeo S, Tanonaka K (2011) NADPH oxidase-mediated oxidative damage to proteins in the postsynaptic density after transient cerebral ischemia and reperfusion. Mol Cell Neurosci 46:681–688. doi:10.1016/j.mcn.2011.01.009 PubMedCrossRefGoogle Scholar
  146. 146.
    Genovese T, Mazzon E, Paterniti I, Esposito E, Bramanti P, Cuzzocrea S (2011) Modulation of NADPH oxidase activation in cerebral ischemia/reperfusion injury in rats. Brain Res 1372:92–102. doi:10.1016/j.brainres.2010.11.088 PubMedCrossRefGoogle Scholar
  147. 147.
    Xie H, Ray PE, Short BL (2005) NF-kappaB activation plays a role in superoxide-mediated cerebral endothelial dysfunction after hypoxia/reoxygenation. Stroke 36:1047–1052. doi:10.1161/01.STR.0000157664.34308.cc PubMedCrossRefGoogle Scholar
  148. 148.
    Wind S, Beuerlein K, Eucker T, Muller H, Scheurer P, Armitage ME, Ho H, Schmidt HH, Wingler K (2010) Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br J Pharmacol 161:885–898. doi:10.1111/j.1476-5381.2010.00920.x PubMedCrossRefGoogle Scholar
  149. 149.
    Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF (2006) Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 291:H2210–H2215PubMedCrossRefGoogle Scholar
  150. 150.
    Vecchione C, Brandes RP (2002) Withdrawal of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors elicits oxidative stress and induces endothelial dysfunction in mice. Circ Res 91:173–179PubMedCrossRefGoogle Scholar
  151. 151.
    Gertz K, Laufs U, Lindauer U, Nickenig G, Bohm M, Dirnagl U, Endres M (2003) Withdrawal of statin treatment abrogates stroke protection in mice. Stroke 34:551–557PubMedCrossRefGoogle Scholar
  152. 152.
    Raz L, Zhang QG, Zhou CF, Han D, Gulati P, Yang LC, Yang F, Wang RM, Brann DW (2010) Role of Rac1 GTPase in NADPH oxidase activation and cognitive impairment following cerebral ischemia in the rat. PLoS One 5:e12606. doi:10.1371/journal.pone.0012606
  153. 153.
    Kusaka I, Kusaka G, Zhou C, Ishikawa M, Nanda A, Granger DN, Zhang JH, Tang J (2004) Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. Am J Physiol Heart Circ Physiol 286:H2442–H2451PubMedCrossRefGoogle Scholar
  154. 154.
    Griendling KK, Ushio-Fukai M (2000) Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 91:21–27PubMedCrossRefGoogle Scholar
  155. 155.
    Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, Takai S, Yamanishi K, Miyazaki M, Matsubara H, Yabe-Nishimura C (2005) Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112:2677–2685PubMedCrossRefGoogle Scholar
  156. 156.
    Gavazzi G, Deffert C, Trocme C, Schappi M, Herrmann FR, Krause KH (2007) NOX1 deficiency protects from aortic dissection in response to angiotensin II. Hypertension 50:189–196PubMedCrossRefGoogle Scholar
  157. 157.
    Saavedra JM, Sanchez-Lemus E, Benicky J (2011) Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: therapeutic implications. Psychoneuroendocrinology 36:1–18. doi:10.1016/j.psyneuen.2010.10.001 PubMedCrossRefGoogle Scholar
  158. 158.
    Yusuf S, Diener HC, Sacco RL, Cotton D, Ounpuu S, Lawton WA, Palesch Y, Martin RH, Albers GW, Bath P, Bornstein N, Chan BP, Chen ST, Cunha L, Dahlof B, De KJ, Donnan GA, Estol C, Gorelick P, Gu V, Hermansson K, Hilbrich L, Kaste M, Lu C, Machnig T, Pais P, Roberts R, Skvortsova V, Teal P, Toni D, VanderMaelen C, Voigt T, Weber M, Yoon BW (2008) Telmisartan to prevent recurrent stroke and cardiovascular events. N Engl J Med 359:1225–1237. doi:10.1056/NEJMoa0804593 PubMedCrossRefGoogle Scholar
  159. 159.
    Sandset EC, Bath PM, Boysen G, Jatuzis D, Korv J, Luders S, Murray GD, Richter PS, Roine RO, Terent A, Thijs V, Berge E (2011) The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. Lancet 377:741–750. doi:10.1016/S0140-6736(11)60104-9 PubMedCrossRefGoogle Scholar
  160. 160.
    Anbanandam A, Albarado DC, Tirziu DC, Simons M, Veeraraghavan S (2008) Molecular basis for proline- and arginine-rich peptide inhibition of proteasome. J Mol Biol 384:219–227. doi:10.1016/j.jmb.2008.09.021 PubMedCrossRefGoogle Scholar
  161. 161.
    Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ (2001) Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(−) and systolic blood pressure in mice. Circ Res 89:408–414PubMedCrossRefGoogle Scholar
  162. 162.
    Csanyi G, Cifuentes-Pagano E, Al G, I, Ranayhossaini DJ, Egana L, Lopes LR, Jackson HM, Kelley EE, Pagano PJ (2011) Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2. Free Radic Biol Med 51:1116–11125. doi:10.1016/j.freeradbiomed.2011.04.025
  163. 163.
    Shin HK, Salomone S, Ayata C (2008) Targeting cerebrovascular rho-kinase in stroke. Expert Opin Ther Targets 12:1547–1564. doi:10.1517/14728220802539244 PubMedCrossRefGoogle Scholar
  164. 164.
    Shibuya M, Hirai S, Seto M, Satoh S, Ohtomo E (2005) Effects of fasudil in acute ischemic stroke: results of a prospective placebo-controlled double-blind trial. J Neurol Sci 238:31–39. doi:10.1016/j.jns.2005.06.003 PubMedCrossRefGoogle Scholar
  165. 165.
    Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, Ichiki T, Takahashi S, Takeshita A (2003) Long-term inhibition of rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res 93:767–775. doi:10.1161/01.RES.0000096650.91688.28 PubMedCrossRefGoogle Scholar
  166. 166.
    Shin HK, Salomone S, Potts EM, Lee SW, Millican E, Noma K, Huang PL, Boas DA, Liao JK, Moskowitz MA, Ayata C (2007) Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms. J Cereb Blood Flow Metab 27:998–1009. doi:10.1038/sj.jcbfm.9600406 PubMedGoogle Scholar
  167. 167.
    Sayama CM, Liu JK, Couldwell WT (2006) Update on endovascular therapies for cerebral vasospasm induced by aneurysmal subarachnoid hemorrhage. Neurosurg Focus 21:E12 210312 [pii]PubMedCrossRefGoogle Scholar
  168. 168.
    Shimazu T, Inoue I, Araki N, Asano Y, Sawada M, Furuya D, Nagoya H, Greenberg JH (2005) A peroxisome proliferator-activated receptor-gamma agonist reduces infarct size in transient but not in permanent ischemia. Stroke 36:353–359. doi:10.1161/01.STR.0000152271.21943.a2 PubMedCrossRefGoogle Scholar
  169. 169.
    Zhang HL, Xu M, Wei C, Qin AP, Liu CF, Hong LZ, Zhao XY, Liu J, Qin ZH (2011) Neuroprotective effects of pioglitazone in a rat model of permanent focal cerebral ischemia are associated with peroxisome proliferator-activated receptor gamma-mediated suppression of nuclear factor-kappaB signaling pathway. Neuroscience 176:381–395. doi:10.1016/j.neuroscience.2010.12.029 PubMedCrossRefGoogle Scholar
  170. 170.
    Lu X, Murphy TC, Nanes MS, Hart CM (2010) PPAR{gamma} regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-{kappa}B. Am J Physiol Lung Cell Mol Physiol 299:L559–L566. doi:10.1152/ajplung.00090.2010 PubMedCrossRefGoogle Scholar
  171. 171.
    Lee CH, Park OK, Yoo KY, Byun K, Lee B, Choi JH, Hwang IK, Kim YM, Won MH (2011) The role of peroxisome proliferator-activated receptor gamma, and effects of its agonist, rosiglitazone, on transient cerebral ischemic damage. J Neurol Sci 300:120–129. doi:10.1016/j.jns.2010.09.005 PubMedCrossRefGoogle Scholar
  172. 172.
    Ryan MJ, Didion SP, Mathur S, Faraci FM, Sigmund CD (2004) PPAR(gamma) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension 43:661–666. doi:10.1161/01.HYP.0000116303.71408.c2 PubMedCrossRefGoogle Scholar
  173. 173.
    Nakamura T, Yamamoto E, Kataoka K, Yamashita T, Tokutomi Y, Dong YF, Matsuba S, Ogawa H, Kim-Mitsuyama S (2007) Pioglitazone exerts protective effects against stroke in stroke-prone spontaneously hypertensive rats, independently of blood pressure. Stroke 38:3016–3022PubMedCrossRefGoogle Scholar
  174. 174.
    Beyer AM, Baumbach GL, Halabi CM, Modrick ML, Lynch CM, Gerhold TD, Ghoneim SM, de Lange WJ, Keen HL, Tsai YS, Maeda N, Sigmund CD, Faraci FM (2008) Interference with PPARgamma signaling causes cerebral vascular dysfunction, hypertrophy, and remodeling. Hypertension 51:867–871. doi:10.1161/HYPERTENSIONAHA.107.103648 PubMedCrossRefGoogle Scholar
  175. 175.
    Inoue I, Goto S, Matsunaga T, Nakajima T, Awata T, Hokari S, Komoda T, Katayama S (2001) The ligands/activators for peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma increase Cu2+, Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells. Metabolism 50:3–11. doi: S0026049501534198 PubMedCrossRefGoogle Scholar
  176. 176.
    Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, Pagnin E, Fadini GP, Albiero M, Semplicini A, Avogaro A (2007) Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol 27:2627–2633. doi:10.1161/ATVBAHA.107.155762 PubMedCrossRefGoogle Scholar
  177. 177.
    Jaquet V, Marcoux J, Forest E, Leidal KG, McCormick S, Westermaier Y, Perozzo R, Plastre O, Fioraso-Cartier L, Diebold B, Scapozza L, Nauseef WM, Fieschi F, Krause KH, Bedard K (2011) NOX NADPH oxidase isoforms are inhibited by celastrol with a dual mode of action. Br J Pharmacol. 164:507–520. doi:10.1111/j.1476-5381.2011.01439.x Google Scholar
  178. 178.
    Chen G, Zhang X, Zhao M, Wang Y, Cheng X, Wang D, Xu Y, Du Z, Yu X (2011) Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells. BMC Cancer 11:170. doi:10.1186/1471-2407-11-170 Google Scholar
  179. 179.
    Seo HR, Seo WD, Pyun BJ, Lee BW, Jin YB, Park KH, Seo EK, Lee YJ, Lee YS (2011) Radiosensitization by celastrol is mediated by modification of antioxidant thiol molecules. Chem Biol Interact. 193:34–42. doi:10.1016/j.cbi.2011.04.009 Google Scholar
  180. 180.
    Morita T (2010) Celastrol: a new therapeutic potential of traditional Chinese medicine. Am J Hypertens 23:821. doi:10.1038/ajh.2010.87 PubMedCrossRefGoogle Scholar
  181. 181.
    Heitzer T, Wenzel U, Hink U, Krollner D, Skatchkov M, Stahl RA, Macharzina R, Brasen JH, Meinertz T, Munzel T (1999) Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. Kidney Int 55:252–260. doi:10.1046/j.1523-1755.1999.00229.x PubMedCrossRefGoogle Scholar
  182. 182.
    Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90:E58–E65PubMedCrossRefGoogle Scholar
  183. 183.
    Bright R, Mochly-Rosen D (2005) The role of protein kinase C in cerebral ischemic and reperfusion injury. Stroke 36:2781–2790. doi:10.1161/01.STR.0000189996.71237.f7 PubMedCrossRefGoogle Scholar
  184. 184.
    Kim GS, Jung JE, Niizuma K, Chan PH (2009) CK2 is a novel negative regulator of NADPH oxidase and a neuroprotectant in mice after cerebral ischemia. J Neurosci 29:14779–14789. doi:10.1523/JNEUROSCI.4161-09.2009 PubMedCrossRefGoogle Scholar
  185. 185.
    Wingler K, Hermans J, Schiffers P, Moens A, Paul M, Schmidt H (2011) NOX 1, 2, 4, 5: counting out oxidative stress. Br J Pharmacol 193:34–42. doi:10.1111/j.1476-5381.2011.01249.x Google Scholar
  186. 186.
    Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR (2008) NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 120:254–291. doi:10.1016/j.pharmthera.2008.08.005 PubMedCrossRefGoogle Scholar
  187. 187.
    Jaquet V, Scapozza L, Clark R, Krause KH, Lambeth JD (2009) Small Molecule NOX Inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal 11:2535–2552PubMedCrossRefGoogle Scholar
  188. 188.
    ten FH, Huntgeburth M, Wingler K, Schnitker J, Baumer AT, Vantler M, Bekhite MM, Wartenberg M, Sauer H, Rosenkranz S (2006) Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res Res 71:331–341. doi:10.1016/j.cardiores.2006.01.022 Google Scholar
  189. 189.
    Stielow C, Catar RA, Muller G, Wingler K, Scheurer P, Schmidt HH, Morawietz H (2006) Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem Biophys Res Commun 344:200–205. doi:10.1016/j.bbrc.2006.03.114 PubMedCrossRefGoogle Scholar
  190. 190.
    Singhal AB, Wang X, Sumii T, Mori T, Lo EH (2002) Effects of normobaric hyperoxia in a rat model of focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 22:861–868. doi:10.1097/00004647-200207000-00011 PubMedCrossRefGoogle Scholar
  191. 191.
    Liu S, Liu W, Ding W, Miyake M, Rosenberg GA, Liu KJ (2006) Electron paramagnetic resonance-guided normobaric hyperoxia treatment protects the brain by maintaining penumbral oxygenation in a rat model of transient focal cerebral ischemia. J Cereb Blood Flow Metab 26:1274–1284. doi:10.1038/sj.jcbfm.9600277 PubMedCrossRefGoogle Scholar
  192. 192.
    Tang X, Liu KJ, Ramu J, Chen Q, Li T, Liu W (2010) Inhibition of gp91(phox) contributes towards normobaric hyperoxia afforded neuroprotection in focal cerebral ischemia. Brain Res 1348:174–180. doi:10.1016/j.brainres.2010.05.082 PubMedCrossRefGoogle Scholar
  193. 193.
    Nonaka Y, Shimazawa M, Yoshimura S, Iwama T, Hara H (2008) Combination effects of normobaric hyperoxia and edaravone on focal cerebral ischemia-induced neuronal damage in mice. Neurosci Lett 441:224–228. doi:10.1016/j.neulet.2008.06.033 PubMedCrossRefGoogle Scholar
  194. 194.
    Longhi L, Valeriani V, Rossi S, De MM, Egidi M, Stocchetti N (2002) Effects of hyperoxia on brain tissue oxygen tension in cerebral focal lesions. Acta Neurochir Suppl 81:315–317PubMedGoogle Scholar
  195. 195.
    Rossi S, Longhi L, Balestreri M, Spagnoli D, deLeo A, Stocchetti N (2000) Brain oxygen tension during hyperoxia in a swine model of cerebral ischaemia. Acta Neurochir Suppl 76:243–245PubMedGoogle Scholar
  196. 196.
    Rossi S, Stocchetti N, Longhi L, Balestreri M, Spagnoli D, Zanier ER, Bellinzona G (2001) Brain oxygen tension, oxygen supply, and oxygen consumption during arterial hyperoxia in a model of progressive cerebral ischemia. J Neurotrauma 18:163–174. doi:10.1089/08977150150502596 PubMedCrossRefGoogle Scholar
  197. 197.
    Wang JY, Shen J, Gao Q, Ye ZG, Yang SY, Liang HW, Bruce IC, Luo BY, Xia Q (2008) Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke 39:983–990. doi:10.1161/STROKEAHA.107.499079 PubMedCrossRefGoogle Scholar
  198. 198.
    Xing B, Chen H, Zhang M, Zhao D, Jiang R, Liu X, Zhang S (2008) Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke 39:2362–2369. doi:10.1161/STROKEAHA.107.507939 PubMedCrossRefGoogle Scholar
  199. 199.
    Leconte C, Tixier E, Freret T, Toutain J, Saulnier R, Boulouard M, Roussel S, Schumann-Bard P, Bernaudin M (2009) Delayed hypoxic postconditioning protects against cerebral ischemia in the mouse. Stroke 40:3349–3355. doi:10.1161/STROKEAHA.109.557314 PubMedCrossRefGoogle Scholar
  200. 200.
    Gao X, Zhang H, Takahashi T, Hsieh J, Liao J, Steinberg GK, Zhao H (2008) The Akt signaling pathway contributes to postconditioning’s protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem 105:943–955. doi:10.1111/j.1471-4159.2008.05218.x PubMedCrossRefGoogle Scholar
  201. 201.
    Lauzier B, Sicard P, Bouchot O, Delemasure S, Menetrier F, Moreau D, Vergely C, Rochette L (2007) After four hours of cold ischemia and cardioplegic protocol, the heart can still be rescued with postconditioning. Transplantation 84:1474–1482. doi:10.1097/01.tp.0000288637.18796.0e PubMedCrossRefGoogle Scholar
  202. 202.
    Shen J, Bai XY, Qin Y, Jin WW, Zhou JY, Zhou JP, Yan YG, Wang Q, Bruce IC, Chen JH, Xia Q (2011) Interrupted reperfusion reduces the activation of NADPH oxidase after cerebral I/R injury. Free Radic Biol Med 50:1780–1786. doi:10.1016/j.freeradbiomed.2011.03.028 PubMedCrossRefGoogle Scholar
  203. 203.
    Kunz A, Anrather J, Zhou P, Orio M, Iadecola C (2007) Cyclooxygenase-2 does not contribute to postischemic production of reactive oxygen species. J Cereb Blood Flow Metab 27:545–551PubMedCrossRefGoogle Scholar
  204. 204.
    Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY (2006) Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 1090:182–189PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Institut für Kardiovaskuläre PhysiologieFachbereich Medizin der Goethe-UniversitätFrankfurtGermany

Personalised recommendations