Cellular and Molecular Life Sciences

, Volume 69, Issue 24, pp 4079–4092 | Cite as

Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein

  • Magdolna Szántó
  • Attila Brunyánszki
  • Borbála Kiss
  • Lilla Nagy
  • Pál Gergely
  • László Virág
  • Péter Bai


Poly(ADP-ribose) polymerase (PARP)-2 is a nuclear enzyme that belongs to the PARP family and PARP-2 is responsible for 5–15 % of total cellular PARP activity. PARP-2 was originally described in connection to DNA repair and in physiological and pathophysiological processes associated with genome maintenance (e.g., centromere and telomere protection, spermiogenesis, thymopoiesis, azoospermia, and tumorigenesis). Recent reports have identified important rearrangements in gene expression upon the knockout of PARP-2. Such rearrangements heavily impact inflammation and metabolism. Metabolic effects are mediated through modifying PPARγ and SIRT1 function. Altered gene expression gives rise to a complex phenotype characterized primarily by enhanced mitochondrial activity that results both in beneficial (loss of fat, enhanced insulin sensitivity) and in disadvantageous (pancreatic beta cell hypofunction upon high fat feeding) consequences. Enhanced mitochondrial biogenesis provides protection in oxidative stress-related diseases. Hereby, we review the recent developments in PARP-2 research with special attention to the involvement of PARP-2 in transcriptional and metabolic regulation.


PARP-2 ARTD2 SIRT1 DNA repair Differentiation Metabolism Mitochondria 



This work was supported by Bolyai fellowship to PB, grants from the National Innovation Office (TéT_09-2010-0023, Baross program Seahorse grant), OTKA CNK80709, K82009, K75864, PD83473, TÁMOP-4.2.2/B-10/1-2010-0024 and TÁMOP-4.2.2. A-11/1/KONV-2012-0025 projects and Medical and Health Science Center (Mecenatura Mec-8/2011). We acknowledge the helpful corrections of Dr. György Haskó.

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. BioEssays 26:882–893PubMedCrossRefGoogle Scholar
  2. 2.
    Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35:208–219PubMedCrossRefGoogle Scholar
  3. 3.
    Miwa M, Sugimura T (1984) Quantification of in vivo levels of poly(ADP-ribose): tritium labeling method and radioimmunoassay. Methods Enzymol 106:495–500PubMedCrossRefGoogle Scholar
  4. 4.
    Miwa M, Sugimura T (1984) Structure of poly(ADP-ribose). Methods Enzymol 106:441–450PubMedCrossRefGoogle Scholar
  5. 5.
    Berger NA (1985) Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 101:4–15PubMedCrossRefGoogle Scholar
  6. 6.
    Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528PubMedCrossRefGoogle Scholar
  7. 7.
    Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, Litchfield DW, Shilton BH, Luscher B (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 32:57–69PubMedCrossRefGoogle Scholar
  8. 8.
    Ame JC, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, Muller S, Hoger T, Menissier-de Murcia J, de Murcia G (1999) PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem 274:17860–17868PubMedCrossRefGoogle Scholar
  9. 9.
    Rulten SL, Fisher AE, Robert I, Zuma MC, Rouleau M, Ju L, Poirier G, Reina-San-Martin B, Caldecott KW (2011) PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell 41:33–45PubMedCrossRefGoogle Scholar
  10. 10.
    Boehler C, Gauthier LR, Mortusewicz O, Biard DS, Saliou JM, Bresson A, Sanglier-Cianferani S, Smith S, Schreiber V, Boussin F, Dantzer F (2011) Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc Natl Acad Sci USA 108:2783–2788PubMedCrossRefGoogle Scholar
  11. 11.
    Menissier-de Murcia J, Molinete M, Gradwohl G, Simonin F, de Murcia G (1989) Zinc-binding domain of poly(ADP-ribose)polymerase participates in the recognition of single strand breaks on DNA. J Mol Biol 210:229–233PubMedCrossRefGoogle Scholar
  12. 12.
    Ame JC, Schreiber V, Fraulob V, Dolle P, de Murcia G, Niedergang CP (2001) A bidirectional promoter connects the poly(ADP-ribose) polymerase 2 (PARP-2) gene to the gene for RNase P RNA. Structure and expression of the mouse PARP-2 gene. J Biol Chem 276:11092–11099Google Scholar
  13. 13.
    (2012) PARP2 poly(ADP-ribose) polymerase 2 [Homo sapiens] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/10038. Accessed 17 April 2012
  14. 14.
    (2012) PARP2 poly(ADP-ribose) polymerase 2 [Pan troglodytes] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/465197. Accessed 17 April 2012
  15. 15.
    (2012) PARP2 poly(ADP-ribose) polymerase 2 [Nomascus leucogenys] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/100591855. Accessed 17 April 2012
  16. 16.
    (2012) PARP2 poly(ADP-ribose) polymerase 2 [Pongo abelii] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/100452137. Accessed 17 April 2012
  17. 17.
    Doucet-Chabeaud G, Godon C, Brutesco C, de Murcia G, Kazmaier M (2001) Ionising radiation induces the expression of PARP-1 and PARP-2 genes in Arabidopsis. Mol Genet Genomics 265:954–963PubMedCrossRefGoogle Scholar
  18. 18.
    Schreiber V, Ame JC, Dolle P, Schultz I, Rinaldi B, Fraulob V, Menissier-de Murcia J, de Murcia G (2002) Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 277:23028–23036PubMedCrossRefGoogle Scholar
  19. 19.
    Johansson M (1999) A human poly(ADP-ribose) polymerase gene family (ADPRTL): cDNA cloning of two novel poly(ADP-ribose) polymerase homologues. G. Genomics 57:442–445PubMedCrossRefGoogle Scholar
  20. 20.
    Huber A, Bai P, Menissier-de Murcia J, de Murcia G (2004) PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair (Amst) 3:1103–1108CrossRefGoogle Scholar
  21. 21.
    Haenni SS, Altmeyer M, Hassa PO, Valovka T, Fey M, Hottiger MO (2008) Importin alpha binding and nuclear localization of PARP-2 is dependent on lysine 36, which is located within a predicted classical NLS. BMC Cell Biol 9:39PubMedCrossRefGoogle Scholar
  22. 22.
    Meder VS, Boeglin M, de Murcia G, Schreiber V (2005) PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci 118:211–222PubMedCrossRefGoogle Scholar
  23. 23.
    Menissier-de Murcia J, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F, Schreiber V, Ame JC, Dierich A, LeMeur M, Sabatier L, Chambon P, de Murcia G (2003) Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J 22:2255–2263PubMedCrossRefGoogle Scholar
  24. 24.
    Yelamos J, Schreiber V, Dantzer F (2008) Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med 14:169–178PubMedCrossRefGoogle Scholar
  25. 25.
    Schreiber V, Ricoul M, Amé JC, Dantzer F, Meder VS, Spenlehauer C, Stiegler P, Niedergang C, Sabatier L, Favaudon V, Ménissier-de Murcia J, de Murcia G (2004) PARP-2: structure–function relationship. In: Burkle A (ed) Poly(ADP-ribosyl)ation, Springer, New York, pp 13–31Google Scholar
  26. 26.
    Haenni SS, Hassa PO, Altmeyer M, Fey M, Imhof R, Hottiger MO (2008) Identification of lysines 36 and 37 of PARP-2 as targets for acetylation and auto-ADP-ribosylation. Int J Biochem Cell Biol 40:2274–2283PubMedCrossRefGoogle Scholar
  27. 27.
    Altmeyer M, Messner S, Hassa PO, Fey M, Hottiger MO (2009) Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res 37:3723–3738PubMedCrossRefGoogle Scholar
  28. 28.
    Isabelle M, Moreel X, Gagne JP, Rouleau M, Ethier C, Gagne P, Hendzel MJ, Poirier GG (2010) Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci 8:22PubMedCrossRefGoogle Scholar
  29. 29.
    Benchoua A, Couriaud C, Guegan C, Tartier L, Couvert P, Friocourt G, Chelly J, Menissier-de MJ, Onteniente B (2002) Active caspase-8 translocates into the nucleus of apoptotic cells to inactivate poly(ADP-ribose) polymerase-2. J Biol Chem 277:34217–34222PubMedCrossRefGoogle Scholar
  30. 30.
    Oliver AW, Ame JC, Roe SM, Good V, de Murcia G, Pearl LH (2004) Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2. Nucleic Acids Res 32:456–464PubMedCrossRefGoogle Scholar
  31. 31.
    Karlberg T, Hammarstrom M, Schutz P, Svensson L, Schuler H (2010) Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-888. Biochemistry 49:1056–1058PubMedCrossRefGoogle Scholar
  32. 32.
    Shieh WM, Ame JC, Wilson MV, Wang ZQ, Koh DW, Jacobson MK, Jacobson EL (1998) Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J Biol Chem 273:30069–30072PubMedCrossRefGoogle Scholar
  33. 33.
    Szanto M, Rutkai I, Hegedus C, Czikora A, Rozsahegyi M, Kiss B, Virag L, Gergely P, Toth A, Bai P (2011) Poly(ADP-ribose) polymerase-2 depletion reduces doxorubicin-induced damage through SIRT1 induction. Cardiovasc Res 92:430–438PubMedCrossRefGoogle Scholar
  34. 34.
    Troiani S, Lupi R, Perego R, Re Depaolini S, Thieffine S, Bosotti R, Rusconi L (2011) Identification of candidate substrates for poly(ADP-ribose) polymerase-2 (PARP2) in the absence of DNA damage using high-density protein microarrays. FEBS J 278:3676–3687PubMedCrossRefGoogle Scholar
  35. 35.
    Chalmers A, Johnston P, Woodcock M, Joiner M, Marples B (2004) PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation. Int J Radiat Oncol Biol Phys 58:410–419PubMedCrossRefGoogle Scholar
  36. 36.
    Mortusewicz O, Ame JC, Schreiber V, Leonhardt H (2007) Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res 35:7665–7675PubMedCrossRefGoogle Scholar
  37. 37.
    Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N, Johansson F, Fernandez S, McGlynn P, Helleday T (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28:2601–2615PubMedCrossRefGoogle Scholar
  38. 38.
    Nicolas L, Martinez C, Baro C, Rodriguez M, Baroja-Mazo A, Sole F, Flores JM, Ampurdanes C, Dantzer F, Martin-Caballero J, Aparicio P, Yelamos J (2010) Loss of poly(ADP-ribose) polymerase-2 leads to rapid development of spontaneous T-cell lymphomas in p53-deficient mice. Oncogene 29:2877–2883PubMedCrossRefGoogle Scholar
  39. 39.
    Robert I, Dantzer F, Reina-San-Martin B (2009) Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med 206:1047–1056PubMedCrossRefGoogle Scholar
  40. 40.
    Malanga M, Althaus FR (2004) Poly(ADP-ribose) reactivates stalled DNA topoisomerase I and Induces DNA strand break resealing. J Biol Chem 279:5244–5248PubMedCrossRefGoogle Scholar
  41. 41.
    Kang YH, Lee KA, Kim JH, Park SG, Yoon DY (2010) Mitomycin C modulates DNA-double strand break repair genes in cervical carcinoma cells. Amino Acids 39:1291–1298PubMedCrossRefGoogle Scholar
  42. 42.
    Dantzer F, Giraud-Panis MJ, Jaco I, Ame JC, Schultz I, Blasco M, Koering CE, Gilson E, Menissier-de Murcia J, de Murcia G, Schreiber V (2004) Functional interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol Cell Biol 24:1595–1607PubMedCrossRefGoogle Scholar
  43. 43.
    Saxena A, Wong LH, Kalitsis P, Earle E, Shaffer LG, Choo KH (2002) Poly(ADP-ribose) polymerase 2 localizes to mammalian active centromeres and interacts with PARP-1, Cenpa, Cenpb and Bub3, but not Cenpc. Hum Mol Genet 11:2319–2329PubMedCrossRefGoogle Scholar
  44. 44.
    Dantzer F, Mark M, Quenet D, Scherthan H, Huber A, Liebe B, Monaco L, Chicheportiche A, Sassone-Corsi P, de Murcia G, and Menissier-de Murcia J (2006) Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis. Proc Natl Acad Sci USA 103:14854–14859Google Scholar
  45. 45.
    Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429PubMedCrossRefGoogle Scholar
  46. 46.
    Miwa M, Masutani M (2007) PolyADP-ribosylation and cancer. Cancer Sci 98:1528–1535PubMedCrossRefGoogle Scholar
  47. 47.
    Yelamos J, Monreal Y, Saenz L, Aguado E, Schreiber V, Mota R, Fuente T, Minguela A, Parrilla P, de Murcia G, Almarza E, Aparicio P, Menissier-de Murcia J (2006) PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes. EMBO J 25:4350–4360PubMedCrossRefGoogle Scholar
  48. 48.
    Cahan P, Graubert TA (2010) Integrated genomics of susceptibility to alkylator-induced leukemia in mice. BMC Genomics 11:638PubMedCrossRefGoogle Scholar
  49. 49.
    Yelamos J, Farres J, Llacuna L, Ampurdanes C, Martin-Caballero J (2011) PARP-1 and PARP-2: new players in tumour development. Am J Cancer Res 1:328–346PubMedGoogle Scholar
  50. 50.
    Tramontano F, Di MS, Quesada P (2005) Co-localization of poly(ADPR)polymerase 1 (PARP-1) poly(ADPR)polymerase 2 (PARP-2) and related proteins in rat testis nuclear matrix defined by chemical cross-linking. J Cell Biochem 94:58–66PubMedCrossRefGoogle Scholar
  51. 51.
    Sakugawa N, Miyamoto T, Tsujimura A, Koh E, Miyagawa Y, Sato H, Namiki M, Okuyama A, Sengoku K (2009) LMTK2 and PARP-2 gene polymorphism and azoospermia secondary to meiotic arrest. J Assist Reprod Genet 26:545–552PubMedCrossRefGoogle Scholar
  52. 52.
    Tramontano F, Malanga M, Quesada P (2007) Differential contribution of poly(ADP-ribose)polymerase-1 and -2 (PARP-1 and -2) to the poly(ADP-ribosyl)ation reaction in rat primary spermatocytes. M. Mol Hum Reprod 13:821–828PubMedCrossRefGoogle Scholar
  53. 53.
    Jha R, Agarwal A, Mahfouz R, Paasch U, Grunewald S, Sabanegh E, Yadav SP, Sharma R (2009) Determination of poly(ADP-ribose) polymerase (PARP) homologues in human ejaculated sperm and its correlation with sperm maturation. Fertil Steril 91:782–790PubMedCrossRefGoogle Scholar
  54. 54.
    Fuentes-Mascorro G, Serrano H, Rosado A (2000) Sperm chromatin. Arch Androl 45:215–225PubMedCrossRefGoogle Scholar
  55. 55.
    Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG (2011) Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod 84:900–909PubMedCrossRefGoogle Scholar
  56. 56.
    Quenet D, Mark M, Govin J, van Dorsselear A, Schreiber V, Khochbin S, Dantzer F (2009) Parp2 is required for the differentiation of post-meiotic germ cells: identification of a spermatid-specific complex containing Parp1, Parp2, TP2 and HSPA2. Exp Cell Res 315:2824–2834PubMedCrossRefGoogle Scholar
  57. 57.
    Peralta-Leal A, Rodriguez-Vargas JM, Aguilar-Quesada R, Rodriguez MI, Linares JL, de Almodovar MR, Oliver FJ (2009) PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med 47:13–26PubMedCrossRefGoogle Scholar
  58. 58.
    Phulwani NK, Kielian T (2008) Poly(ADP-ribose) polymerases (PARPs) 1-3 regulate astrocyte activation. J Neurochem 106:578–590PubMedCrossRefGoogle Scholar
  59. 59.
    Popoff I, Jijon H, Monia B, Tavernini M, Ma M, McKay R, Madsen K (2002) Antisense oligonucleotides to poly(ADP-ribose) polymerase-2 ameliorate colitis in interleukin-10-deficient mice. J Pharmacol Exp Ther 303:1145–1154PubMedCrossRefGoogle Scholar
  60. 60.
    Brunyanszki A, Hegedus C, Szanto M, Erdelyi K, Kovacs K, Schreiber V, Gergely S, Kiss B, Szabo E, Virag L, Bai P (2010) Genetic ablation of PARP-1 protects against oxazolone-induced contact hypersensitivity by modulating oxidative stress. J Invest Dermatol 130:2629–2637PubMedCrossRefGoogle Scholar
  61. 61.
    Mota RA, Sanchez-Bueno F, Saenz L, Hernandez-Espinosa D, Jimeno J, Tornel PL, Martinez-Torrano A, Ramirez P, Parrilla P, Yelamos J (2005) Inhibition of poly(ADP-ribose) polymerase attenuates the severity of acute pancreatitis and associated lung injury. Lab Invest 85:1250–1262PubMedCrossRefGoogle Scholar
  62. 62.
    Bai P, Canto C, Brunyanszki A, Huber A, Szanto M, Cen Y, Yamamoto H, Houten SM, Kiss B, Oudart H, Gergely P, Menissier-de Murcia J, Schreiber V, Sauve AA, Auwerx J (2011) PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab 13:450–460PubMedCrossRefGoogle Scholar
  63. 63.
    Bai P, Houten SM, Huber A, Schreiber V, Watanabe M, Kiss B, de Murcia G, Auwerx J, Menissier-de Murcia J (2007) Poly(ADP-ribose) polymerase-2 controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/peroxisome proliferator-activated receptor-gamma heterodimer. J Biol Chem 282:37738–37746PubMedCrossRefGoogle Scholar
  64. 64.
    Maeda Y, Hunter TC, Loudy DE, Dave V, Schreiber V, Whitsett JA (2006) PARP-2 interacts with TTF-1 and regulates expression of surfactant protein-B. J Biol Chem 281:9600–9606PubMedCrossRefGoogle Scholar
  65. 65.
    Quenet D, Gasser V, Fouillen L, Cammas F, Sanglier-Cianferani S, Losson R, Dantzer F (2008) The histone subcode: poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 control cell differentiation by regulating the transcriptional intermediary factor TIF1beta and the heterochromatin protein HP1alpha. Faseb J. 22:3853–3865PubMedCrossRefGoogle Scholar
  66. 66.
    Quenet D, El Ramy R, Schreiber V, Dantzer F (2009) The role of poly(ADP-ribosyl)ation in epigenetic events. Int J Biochem Cell Biol 41:60–65PubMedCrossRefGoogle Scholar
  67. 67.
    D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342(Pt 2):249–268PubMedCrossRefGoogle Scholar
  68. 68.
    Caiafa P, Guastafierro T, Zampieri M (2009) Epigenetics: poly(ADP-ribosyl)ation of PARP-1 regulates genomic methylation patterns. Faseb J 23:672–678PubMedCrossRefGoogle Scholar
  69. 69.
    Krishnakumar R, Gamble MJ, Frizzell KM, Berrocal JG, Kininis M, Kraus WL (2008) Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 319:819–821PubMedCrossRefGoogle Scholar
  70. 70.
    Derenzini M (2000) The AgNORs. Micron 31:117–120PubMedCrossRefGoogle Scholar
  71. 71.
    Forman BM, Chen J, and Evans RM (1996) The peroxisome proliferator-activated receptors: ligands and activators. Ann NY Acad Sci 27:266–275Google Scholar
  72. 72.
    Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J (1997) The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 272:18779–18789PubMedCrossRefGoogle Scholar
  73. 73.
    Bardot O, Aldridge TC, Latruffe N, Green S (1993) PPAR-RXR heterodimer activates a peroxisome proliferator response element upstream of the bifunctional enzyme gene. Biochem Biophys Res Commun 192:37–45PubMedCrossRefGoogle Scholar
  74. 74.
    Dreyer C, Keller H, Mahfoudi A, Laudet V, Krey G, Wahli W (1993) Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biol Cell 77:67–76PubMedCrossRefGoogle Scholar
  75. 75.
    Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361PubMedCrossRefGoogle Scholar
  76. 76.
    McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474PubMedCrossRefGoogle Scholar
  77. 77.
    Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG (2006) A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312:1798–1802PubMedCrossRefGoogle Scholar
  78. 78.
    Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435PubMedCrossRefGoogle Scholar
  79. 79.
    Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13PubMedCrossRefGoogle Scholar
  80. 80.
    McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM, Lemieux M (2003) The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 23:38–54PubMedCrossRefGoogle Scholar
  81. 81.
    Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S (2005) Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2:105–117PubMedCrossRefGoogle Scholar
  82. 82.
    Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800PubMedCrossRefGoogle Scholar
  83. 83.
    Canto C, Auwerx J (2012) Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharmacol Rev 64:166–187. doi: 10.1124/pr.110.003905 PubMedCrossRefGoogle Scholar
  84. 84.
    Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196PubMedCrossRefGoogle Scholar
  85. 85.
    Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712–716PubMedCrossRefGoogle Scholar
  86. 86.
    Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060PubMedCrossRefGoogle Scholar
  87. 87.
    Bai P, Canto C, Oudart H, Brunyanszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, Schoonjans K, Schreiber V, Sauve AA, Menissier-de Murcia J, Auwerx J (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13:461–468PubMedCrossRefGoogle Scholar
  88. 88.
    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118PubMedCrossRefGoogle Scholar
  89. 89.
    Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015PubMedCrossRefGoogle Scholar
  90. 90.
    Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148PubMedCrossRefGoogle Scholar
  91. 91.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang Z, Lowry SF, Guarente L, Haimovich B (2010) Roles of SIRT1 in the acute and restorative phases following induction of inflammation. J Biol Chem 285:41391–41401PubMedCrossRefGoogle Scholar
  93. 93.
    Yoshizaki T, Schenk S, Imamura T, Babendure JL, Sonoda N, Bae EJ, Oh DY, Lu M, Milne JC, Westphal C, Bandyopadhyay G, Olefsky JM (2009) SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 298:E419–E428PubMedCrossRefGoogle Scholar
  94. 94.
    Nayagam VM, Wang X, Tan YC, Poulsen A, Goh KC, Ng T, Wang H, Song HY, Ni B, Entzeroth M, Stunkel W (2006) SIRT1 modulating compounds from high-throughput screening as anti-inflammatory and insulin-sensitizing agents. J Biomol Screen 11:959–967PubMedCrossRefGoogle Scholar
  95. 95.
    Bohinski RJ, Di Lauro R, Whitsett JA (1994) The lung-specific surfactant protein B gene promoter is a target for thyroid transcription factor 1 and hepatocyte nuclear factor 3, indicating common factors for organ-specific gene expression along the foregut axis. Mol Cell Biol 14:5671–5681PubMedCrossRefGoogle Scholar
  96. 96.
    Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10:60–69PubMedCrossRefGoogle Scholar
  97. 97.
    Bai P, Houten SM, Auwerx J, Menisser-de Murcia J, de Murcia GM (2005) Impaired fat storage in PARP-2 knockout mice. Med Sci Monit 11(1):15Google Scholar
  98. 98.
    Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, hado De OR, Leid M, McBurney MW, and Guarente L (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429:771–776Google Scholar
  99. 99.
    Kofler J, Otsuka T, Zhang Z, Noppens R, Grafe MR, Koh DW, Dawson VL, Menisser-de Murcia J, Hurn PD, Traystman RJ (2006) Differential effect of PARP-2 deletion on brain injury after focal and global cerebral ischemia. J Cereb Blood Flow Metab 26:135–141PubMedCrossRefGoogle Scholar
  100. 100.
    Li X, Klaus JA, Zhang J, Xu Z, Kibler KK, Andrabi SA, Rao K, Yang ZJ, Dawson TM, Dawson VL, Koehler RC (2010) Contributions of poly(ADP-ribose) polymerase-1 and -2 to nuclear translocation of apoptosis-inducing factor and injury from focal cerebral ischemia. J Neurochem 113:1012–1022PubMedCrossRefGoogle Scholar
  101. 101.
    Yen HC, Oberley TD, Vichitbandha S, Ho YS, St Clair DK (1996) The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J Clin Invest 98:1253–1260PubMedCrossRefGoogle Scholar
  102. 102.
    Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802:80–91PubMedCrossRefGoogle Scholar
  103. 103.
    Wen Y, Li W, Poteet EC, Xie L, Tan C, Yan LJ, Ju X, Liu R, Qian H, Marvin MA, Goldberg MS, She H, Mao Z, Simpkins JW, Yang SH (2011) Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem 286:16504–16515PubMedCrossRefGoogle Scholar
  104. 104.
    Ye R, Zhang X, Kong X, Han J, Yang Q, Zhang Y, Chen Y, Li P, Liu J, Shi M, Xiong L, and Zhao G Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia. Neuroscience 178:169–180Google Scholar
  105. 105.
    Hasinoff BB, Schnabl KL, Marusak RA, Patel D, Huebner E (2003) Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovasc Toxicol 3:89–99PubMedCrossRefGoogle Scholar
  106. 106.
    Tao R, Karliner JS, Simonis U, Zheng J, Zhang J, Honbo N, Alano CC (2007) Pyrroloquinoline quinone preserves mitochondrial function and prevents oxidative injury in adult rat cardiac myocytes. Biochem Biophys Res Commun 363:257–262PubMedCrossRefGoogle Scholar
  107. 107.
    Xu M, Ashraf M (2002) Melatonin protection against lethal myocyte injury induced by doxorubicin as reflected by effects on mitochondrial membrane potential. J Mol Cell Cardiol 34:75–79PubMedCrossRefGoogle Scholar
  108. 108.
    Panickar KS, Anderson RA (2011) Effect of polyphenols on oxidative stress and mitochondrial dysfunction in neuronal death and brain edema in cerebral ischemia. Int J Mol Sci 12:8181–8207PubMedCrossRefGoogle Scholar
  109. 109.
    Danz ED, Skramsted J, Henry N, Bennett JA, Keller RS (2009) Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radic Biol Med 46:1589–1597PubMedCrossRefGoogle Scholar
  110. 110.
    Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ, Auwerx J (2008) Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 8:347–358PubMedCrossRefGoogle Scholar
  111. 111.
    Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA (2011) Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab 31:1003–1019PubMedCrossRefGoogle Scholar
  112. 112.
    Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263PubMedCrossRefGoogle Scholar
  113. 113.
    Ishida J, Yamamoto H, Kido Y, Kamijo K, Murano K, Miyake H, Ohkubo M, Kinoshita T, Warizaya M, Iwashita A, Mihara K, Matsuoka N, Hattori K (2006) Discovery of potent and selective PARP-1 and PARP-2 inhibitors: SBDD analysis via a combination of X-ray structural study and homology modeling. Bioorg Med Chem 14:1378–1390PubMedCrossRefGoogle Scholar
  114. 114.
    Iwashita A, Hattori K, Yamamoto H, Ishida J, Kido Y, Kamijo K, Murano K, Miyake H, Kinoshita T, Warizaya M, Ohkubo M, Matsuoka N, Mutoh S (2005) Discovery of quinazolinone and quinoxaline derivatives as potent and selective poly(ADP-ribose) polymerase-1/2 inhibitors. FEBS Lett 579:1389–1393PubMedCrossRefGoogle Scholar
  115. 115.
    Pellicciari R, Camaioni E, Costantino G, Formentini L, Sabbatini P, Venturoni F, Eren G, Bellocchi D, Chiarugi A, Moroni F (2008) On the way to selective PARP-2 inhibitors. Design, synthesis, and preliminary evaluation of a series of isoquinolinone derivatives. ChemMedChem 3:914–923PubMedCrossRefGoogle Scholar
  116. 116.
    Sunderland PT, Woon EC, Dhami A, Bergin AB, Mahon MF, Wood PJ, Jones LA, Tully SR, Lloyd MD, Thompson AS, Javaid H, Martin NM, Threadgill MD (2011) 5-Benzamidoisoquinolin-1-ones and 5-(omega-carboxyalkyl)isoquinolin-1-ones as isoform-selective inhibitors of poly(ADP-ribose) polymerase 2 (PARP-2). J Med Chem 54:2049–2059PubMedCrossRefGoogle Scholar
  117. 117.
    Moroni F, Formentini L, Gerace E, Camaioni E, Pellegrini-Giampietro DE, Chiarugi A, Pellicciari R (2009) Selective PARP-2 inhibitors increase apoptosis in hippocampal slices but protect cortical cells in models of post-ischaemic brain damage. Br J Pharmacol 157:854–862PubMedCrossRefGoogle Scholar
  118. 118.
    (2012) PARP2 poly(ADP-ribose) polymerase 2 [Ailuropoda melanoleuca] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/100483143. Accessed 17 April 2012
  119. 119.
    (2012) LOC505828 poly[ADP-ribose] polymerase 2-like [Bos taurus] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/505828. Accessed 17 April 2012
  120. 120.
    (2012) PARP2 poly(ADP-ribose) polymerase 2 [Callithrix jacchus] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/100388484. Accessed 17 April 2012
  121. 121.
    (2012) PARP2 poly(ADP-ribose) polymerase 2 [Canis lupus familiaris] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/475392. Accessed 17 April 2012
  122. 122.
    (2012) LOC100720452 poly[ADP-ribose] polymerase 2-like [Cavia porcellus]. NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene?term=PARP2%20Cavia%20porcellus. Accessed 17 April 2012
  123. 123.
    (2012) Parp2 poly(ADP-ribose) polymerase family, member 2 [Cricetulus griseus] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/100753655. Accessed 17 April 2012
  124. 124.
    (2012) PARP2 poly(ADP-ribose) polymerase 2 [Equus caballus] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/100072572. Accessed 17 April 2012
  125. 125.
    (2012) PARP2 poly(ADP-ribose) polymerase 2 [Loxodonta africana] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/100661865. Accessed 17 April 2012
  126. 126.
    (2012) PARP2 poly(ADP-ribose) polymerase 2 [Macaca mulatta] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/701955. Accessed 17 April 2012
  127. 127.
    (2012) LOC100029480 poly[ADP-ribose] polymerase 2-like [Monodelphis domestica] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/100029480. Accessed 17 April 2012
  128. 128.
    (2012) Parp2 poly(ADP-ribose) polymerase family, member 2 [Mus musculus] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/11546. Accessed 17 April 2012
  129. 129.
    (2012) LOC100351185 poly(ADP-ribose) polymerase family, member 2-like [Oryctolagus cuniculus] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/100351185. Accessed 17 April 2012
  130. 130.
    (2012) Parp2 poly(ADP-ribose) polymerase 2 [Rattus norvegicus] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/290027. Accessed 17 April 2012
  131. 131.
    (2012) PARP2 poly(ADP-ribose) polymerase 2 [Sus scrofa] NCBI Pubmed. http://www.ncbi.nlm.nih.gov/gene/100518917. Accessed 17 April 2012

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Magdolna Szántó
    • 1
  • Attila Brunyánszki
    • 1
  • Borbála Kiss
    • 2
  • Lilla Nagy
    • 1
  • Pál Gergely
    • 1
  • László Virág
    • 1
  • Péter Bai
    • 1
  1. 1.Medical and Health Science Center, MHSC, Department of Medical ChemistryUniversity of DebrecenDebrecenHungary
  2. 2.Medical and Health Science Center, Department of DermatologyUniversity of DebrecenDebrecenHungary

Personalised recommendations