Cellular and Molecular Life Sciences

, Volume 69, Issue 20, pp 3395–3418 | Cite as

Type I IFN-mediated regulation of IL-1 production in inflammatory disorders

  • Kristina Ludigs
  • Valeriy Parfenov
  • Renaud A. Du Pasquier
  • Greta Guarda
Review

Abstract

Although contributing to inflammatory responses and to the development of certain autoimmune pathologies, type I interferons (IFNs) are used for the treatment of viral, malignant, and even inflammatory diseases. Interleukin-1 (IL-1) is a strongly pyrogenic cytokine and its importance in the development of several inflammatory diseases is clearly established. While the therapeutic use of IL-1 blocking agents is particularly successful in the treatment of innate-driven inflammatory disorders, IFN treatment has mostly been appreciated in the management of multiple sclerosis. Interestingly, type I IFNs exert multifaceted immunomodulatory effects, including the reduction of IL-1 production, an outcome that could contribute to its efficacy in the treatment of inflammatory diseases. In this review, we summarize the current knowledge on IL-1 and IFN effects in different inflammatory disorders, the influence of IFNs on IL-1 production, and discuss possible therapeutic avenues based on these observations.

Keywords

Type I IFN IL-1 Inflammasome Inflammatory disorders Autoimmunity Multiple sclerosis Anti-IL-1 therapy 

Notes

Acknowledgments

We thank F. Staehli and K. Maslowski, UNIL, Lausanne, for critical reading of the manuscript. Studies in the laboratory of Jürg Tschopp are funded by grants of the Swiss National Science Foundation, the EU Apo-Sys program, the Institute of Arthritis Research and the Louis-Jeantet Foundation.

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435PubMedCrossRefGoogle Scholar
  2. 2.
    Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650PubMedCrossRefGoogle Scholar
  3. 3.
    Osorio F, Reis e Sousa C (2011) Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34(5):651–664PubMedCrossRefGoogle Scholar
  4. 4.
    Elinav E et al (2011) Regulation of the antimicrobial response by NLR proteins. Immunity 34(5):665–679PubMedCrossRefGoogle Scholar
  5. 5.
    Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692PubMedCrossRefGoogle Scholar
  6. 6.
    Goshen I, Yirmiya R (2009) Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 30(1):30–45PubMedCrossRefGoogle Scholar
  7. 7.
    Dinarello CA (2004) Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. J Endotoxin Res 10(4):201–222PubMedGoogle Scholar
  8. 8.
    Rasmussen AK, Bendtzen K, Feldt-Rasmussen U (2000) Thyrocyte-interleukin-1 interactions. Exp Clin Endocrinol Diabetes 108(2):67–71PubMedCrossRefGoogle Scholar
  9. 9.
    Dower SK et al (1986) The cell surface receptors for interleukin-1 alpha and interleukin-1 beta are identical. Nature 324(6094):266–268PubMedCrossRefGoogle Scholar
  10. 10.
    Stylianou E et al (1992) Interleukin 1 induces NF-kappa B through its type I but not its type II receptor in lymphocytes. J Biol Chem 267(22):15836–15841PubMedGoogle Scholar
  11. 11.
    Leung K et al (1994) The cytoplasmic domain of the interleukin-1 receptor is required for nuclear factor-kappa B signal transduction. J Biol Chem 269(3):1579–1582PubMedGoogle Scholar
  12. 12.
    Croston GE, Cao Z, Goeddel DV (1995) NF-kappa B activation by interleukin-1 (IL-1) requires an IL-1 receptor-associated protein kinase activity. J Biol Chem 270(28):16514–16517PubMedCrossRefGoogle Scholar
  13. 13.
    O’Neill LA (2008) The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 226:10–18PubMedCrossRefGoogle Scholar
  14. 14.
    Dinarello CA (2011) A clinical perspective of IL-1 beta as the gatekeeper of inflammation. Eur J Immunol 41(5):1203–1217PubMedCrossRefGoogle Scholar
  15. 15.
    Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147PubMedGoogle Scholar
  16. 16.
    Fantuzzi G, Dinarello CA (1996) The inflammatory response in interleukin-1 beta-deficient mice: comparison with other cytokine-related knock-out mice. J Leukoc Biol 59(4):489–493PubMedGoogle Scholar
  17. 17.
    Yazdi AS et al (2010) Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1 alpha and IL-1 beta. Proc Natl Acad Sci USA 107(45):19449–19454PubMedCrossRefGoogle Scholar
  18. 18.
    Chen CJ et al (2006) MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 116(8):2262–2271PubMedCrossRefGoogle Scholar
  19. 19.
    Smith KA, Gilbride KJ, Favata MF (1980) Lymphocyte activating factor promotes T-cell growth factor production by cloned murine lymphoma cells. Nature 287(5785):853–855PubMedCrossRefGoogle Scholar
  20. 20.
    Sutton C et al (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203(7):1685–1691PubMedCrossRefGoogle Scholar
  21. 21.
    Acosta-Rodriguez EV et al (2007) Interleukins 1 beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8(9):942–949PubMedCrossRefGoogle Scholar
  22. 22.
    O’Sullivan BJ et al (2006) IL-1 beta breaks tolerance through expansion of CD25+ effector T cells. J Immunol 176(12):7278–7287PubMedGoogle Scholar
  23. 23.
    Hannum CH et al (1990) Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature 343(6256):336–340PubMedCrossRefGoogle Scholar
  24. 24.
    Carter DB et al (1990) Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature 344(6267):633–638PubMedCrossRefGoogle Scholar
  25. 25.
    Aksentijevich I et al (2009) An auto inflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med 360(23):2426–2437PubMedCrossRefGoogle Scholar
  26. 26.
    Reddy S et al (2009) An auto inflammatory disease due to homozygous deletion of the IL1RN locus. N Engl J Med 360(23):2438–2444PubMedCrossRefGoogle Scholar
  27. 27.
    Masters SL et al (2009) Horror autoinflammaticus: the molecular pathophysiology of auto inflammatory disease. Annu Rev Immunol 27:621–668PubMedCrossRefGoogle Scholar
  28. 28.
    Netea MG et al (2009) Differential requirement for the activation of the inflammasome for processing and release of IL-1 beta in monocytes and macrophages. Blood 113(10):2324–2335PubMedCrossRefGoogle Scholar
  29. 29.
    Hiscott J et al (1993) Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol Cell Biol 13(10):6231–6240PubMedGoogle Scholar
  30. 30.
    Bauernfeind FG et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183(2):787–791PubMedCrossRefGoogle Scholar
  31. 31.
    Bauernfeind F et al (2011) Inflammasomes: current understanding and open questions. Cell Mol Life Sci 68(5):765–783PubMedCrossRefGoogle Scholar
  32. 32.
    Guarda G et al (2011) Differential expression of NLRP3 among hematopoietic cells. J Immunol 186(4):2529–2534PubMedCrossRefGoogle Scholar
  33. 33.
    Lu JY, Sadri N, Schneider RJ (2006) Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev 20(22):3174–3184PubMedCrossRefGoogle Scholar
  34. 34.
    Fenton MJ et al (1987) Transcriptional regulation of the human prointerleukin 1 beta gene. J Immunol 138(11):3972–3979PubMedGoogle Scholar
  35. 35.
    Schindler R, Clark BD, Dinarello CA (1990) Dissociation between interleukin-1 beta mRNA and protein synthesis in human peripheral blood mononuclear cells. J Biol Chem 265(18):10232–10237PubMedGoogle Scholar
  36. 36.
    Schindler R, Gelfand JA, Dinarello CA (1990) Recombinant C5a stimulates transcription rather than translation of interleukin-1 (IL-1) and tumor necrosis factor: translational signal provided by lipopolysaccharide or IL-1 itself. Blood 76(8):1631–1638PubMedGoogle Scholar
  37. 37.
    Kaspar RL, Gehrke L (1994) Peripheral blood mononuclear cells stimulated with C5a or lipopolysaccharide to synthesize equivalent levels of IL-1 beta mRNA show unequal IL-1 beta protein accumulation but similar polyribosome profiles. J Immunol 153(1):277–286PubMedGoogle Scholar
  38. 38.
    Mosley B et al (1987) The interleukin-1 receptor binds the human interleukin-1 alpha precursor but not the interleukin-1 beta precursor. J Biol Chem 262(7):2941–2944PubMedGoogle Scholar
  39. 39.
    Thornberry NA et al (1992) A novel hetero dimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356(6372):768–774PubMedCrossRefGoogle Scholar
  40. 40.
    Kuida K et al (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267(5206):2000–2003PubMedCrossRefGoogle Scholar
  41. 41.
    Li P et al (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80(3):401–411PubMedCrossRefGoogle Scholar
  42. 42.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426PubMedCrossRefGoogle Scholar
  43. 43.
    Narayan S et al (2011) Octacalcium phosphate crystals induce inflammation in vivo through interleukin-1 but independent of the NLRP3 inflammasome in mice. Arthritis Rheum 63(2):422–433PubMedCrossRefGoogle Scholar
  44. 44.
    Fettelschoss A et al (2011) Inflammasome activation and IL-1beta target IL-1alpha for secretion as opposed to surface expression. Proc Natl Acad Sci USA 108(44):18055–18060PubMedCrossRefGoogle Scholar
  45. 45.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265PubMedCrossRefGoogle Scholar
  46. 46.
    Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735PubMedCrossRefGoogle Scholar
  47. 47.
    Suzuki T et al (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3(8):e111PubMedCrossRefGoogle Scholar
  48. 48.
    Lightfield KL et al (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9(10):1171–1178PubMedCrossRefGoogle Scholar
  49. 49.
    Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477(7366):592–595PubMedCrossRefGoogle Scholar
  50. 50.
    Mariathasan S et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218PubMedCrossRefGoogle Scholar
  51. 51.
    Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38(2):240–244PubMedCrossRefGoogle Scholar
  52. 52.
    Menu P, Vince JE (2011) The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol 166(1):1–15PubMedCrossRefGoogle Scholar
  53. 53.
    Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215PubMedCrossRefGoogle Scholar
  54. 54.
    Chen G et al (2009) NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 4:365–398PubMedCrossRefGoogle Scholar
  55. 55.
    Elinav E et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145(5):745–757PubMedCrossRefGoogle Scholar
  56. 56.
    Jeru I et al (2011) Identification and functional consequences of a recurrent NLRP12 missense mutation in periodic fever syndromes. Arthritis Rheum 63(5):1459–1464PubMedCrossRefGoogle Scholar
  57. 57.
    Borghini S et al (2011) Clinical presentation and pathogenesis of cold-induced auto inflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum 63(3):830–839PubMedCrossRefGoogle Scholar
  58. 58.
    Schattgen SA, Fitzgerald KA (2011) The PYHIN protein family as mediators of host defenses. Immunol Rev 243(1):109–118PubMedCrossRefGoogle Scholar
  59. 59.
    Billiau A (2006) Anti-inflammatory properties of type I interferons. Antivir Res 71(2–3):108–116PubMedCrossRefGoogle Scholar
  60. 60.
    Schlaak JF et al (2002) Cell-type and donor-specific transcriptional responses to interferon-alpha. Use of customized gene arrays. J Biol Chem 277(51):49428–49437PubMedCrossRefGoogle Scholar
  61. 61.
    Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6(9):644–658PubMedCrossRefGoogle Scholar
  62. 62.
    Goodbourn S, Didcock L, Randall RE (2000) Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81(Pt 10):2341–2364PubMedGoogle Scholar
  63. 63.
    Basler CF, Garcia-Sastre A (2002) Viruses and the type I interferon antiviral system: induction and evasion. Int Rev Immunol 21(4–5):305–337PubMedCrossRefGoogle Scholar
  64. 64.
    Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386PubMedCrossRefGoogle Scholar
  65. 65.
    Young HA, Bream JH (2007) IFN-gamma: recent advances in understanding regulation of expression, biological functions, and clinical applications. Curr Top Microbiol Immunol 316:97–117PubMedCrossRefGoogle Scholar
  66. 66.
    Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489PubMedCrossRefGoogle Scholar
  67. 67.
    Hwang ES (2010) Transcriptional regulation of T helper 17 cell differentiation. Yonsei Med J 51(4):484–491PubMedCrossRefGoogle Scholar
  68. 68.
    Schroder K et al (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189PubMedCrossRefGoogle Scholar
  69. 69.
    Coccia EM et al (2004) Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 34(3):796–805PubMedCrossRefGoogle Scholar
  70. 70.
    Witte K et al (2010) IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev 21(4):237–251PubMedCrossRefGoogle Scholar
  71. 71.
    Sheppard P et al (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4(1):63–68PubMedCrossRefGoogle Scholar
  72. 72.
    Kotenko SV et al (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4(1):69–77PubMedCrossRefGoogle Scholar
  73. 73.
    Uze G, Monneron D (2007) IL-28 and IL-29: newcomers to the interferon family. Biochimie 89(6–7):729–734PubMedCrossRefGoogle Scholar
  74. 74.
    Nickolaus P, Zawatzky R (1994) Inhibition by interleukin-4 of constitutive beta interferon synthesis in mouse macrophages. J Virol 68(10):6763–6766PubMedGoogle Scholar
  75. 75.
    Bautista EM et al (2005) Constitutive expression of alpha interferon by skin dendritic cells confers resistance to infection by foot-and-mouth disease virus. J Virol 79(8):4838–4847PubMedCrossRefGoogle Scholar
  76. 76.
    Lienenklaus S et al (2009) Novel reporter mouse reveals constitutive and inflammatory expression of IFN-beta in vivo. J Immunol 183(5):3229–3236PubMedCrossRefGoogle Scholar
  77. 77.
    Pulverer JE et al (2010) Temporal and spatial resolution of type I and III interferon responses in vivo. J Virol 84(17):8626–8638PubMedCrossRefGoogle Scholar
  78. 78.
    Taniguchi T, Takaoka A (2001) A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2(5):378–386PubMedCrossRefGoogle Scholar
  79. 79.
    Weber F et al (2006) Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80(10):5059–5064PubMedCrossRefGoogle Scholar
  80. 80.
    McCartney SA, Colonna M (2009) Viral sensors: diversity in pathogen recognition. Immunol Rev 227(1):87–94PubMedCrossRefGoogle Scholar
  81. 81.
    Meylan E et al (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437(7062):1167–1172PubMedCrossRefGoogle Scholar
  82. 82.
    Merika M, Thanos D (2001) Enhanceosomes. Curr Opin Genet Dev 11(2):205–208PubMedCrossRefGoogle Scholar
  83. 83.
    Schafer SL et al (1998) Regulation of type I interferon gene expression by interferon regulatory factor-3. J Biol Chem 273(5):2714–2720PubMedCrossRefGoogle Scholar
  84. 84.
    Honda K et al (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434(7034):772–777PubMedCrossRefGoogle Scholar
  85. 85.
    Rathinam VA, Fitzgerald KA (2011) Innate immune sensing of DNA viruses. Virology 411(2):153–162PubMedCrossRefGoogle Scholar
  86. 86.
    Ishikawa H, Barber GN (2011) The STING pathway and regulation of innate immune signaling in response to DNA pathogens. Cell Mol Life Sci 68(7):1157–1165PubMedCrossRefGoogle Scholar
  87. 87.
    Hornung V et al (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168(9):4531–4537PubMedGoogle Scholar
  88. 88.
    Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376PubMedCrossRefGoogle Scholar
  89. 89.
    Takeuchi O, Akira S (2009) Innate immunity to virus infection. Immunol Rev 227(1):75–86PubMedCrossRefGoogle Scholar
  90. 90.
    Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5(12):1219–1226PubMedCrossRefGoogle Scholar
  91. 91.
    Colonna M, Krug A, Cella M (2002) Interferon-producing cells: on the front line in immune responses against pathogens. Curr Opin Immunol 14(3):373–379PubMedCrossRefGoogle Scholar
  92. 92.
    Silvennoinen O et al (1993) Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature 366(6455):583–585PubMedCrossRefGoogle Scholar
  93. 93.
    Borden EC et al (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6(12):975–990PubMedCrossRefGoogle Scholar
  94. 94.
    de Veer MJ et al (2001) Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69(6):912–920PubMedGoogle Scholar
  95. 95.
    Harada H, Taniguchi T, Tanaka N (1998) The role of interferon regulatory factors in the interferon system and cell growth control. Biochimie 80(8–9):641–650PubMedCrossRefGoogle Scholar
  96. 96.
    Joshi S et al (2010) Mechanisms of mRNA translation of interferon stimulated genes. Cytokine 52(1–2):123–127PubMedCrossRefGoogle Scholar
  97. 97.
    Crow MK (2010) Type I interferon in organ-targeted autoimmune and inflammatory diseases. Arthritis Res Ther 12(Suppl 1):S5PubMedCrossRefGoogle Scholar
  98. 98.
    Choubey D, Moudgil KD (2011) Interferons in autoimmune and inflammatory diseases: regulation and roles. J Interferon Cytokine Res 31(12):857–865PubMedCrossRefGoogle Scholar
  99. 99.
    Kalie E et al (2008) The stability of the ternary interferon-receptor complex rather than the affinity to the individual subunits dictates differential biological activities. J Biol Chem 283(47):32925–32936PubMedCrossRefGoogle Scholar
  100. 100.
    Bowie AG, Unterholzner L (2008) Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8(12):911–922PubMedCrossRefGoogle Scholar
  101. 101.
    Garcia MA, Meurs EF, Esteban M (2007) The ds RNA protein kinase PKR: virus and cell control. Biochimie 89(6–7):799–811PubMedCrossRefGoogle Scholar
  102. 102.
    Hovanessian AG (2007) On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2′-5′oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev 18(5–6):351–361PubMedCrossRefGoogle Scholar
  103. 103.
    Randall RE, Goodbourn S (2008) Interferons and viruses: an inter play between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89(Pt 1):1–47PubMedCrossRefGoogle Scholar
  104. 104.
    Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8(7):559–568PubMedCrossRefGoogle Scholar
  105. 105.
    Mattei F, Schiavoni G, Tough DF (2010) Regulation of immune cell homeostasis by type I interferons. Cytokine Growth Factor Rev 21(4):227–236PubMedCrossRefGoogle Scholar
  106. 106.
    Longhi MP et al (2009) Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med 206(7):1589–1602PubMedCrossRefGoogle Scholar
  107. 107.
    Le Bon A et al (2003) Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat Immunol 4(10):1009–1015PubMedCrossRefGoogle Scholar
  108. 108.
    Theofilopoulos AN et al (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23:307–336PubMedCrossRefGoogle Scholar
  109. 109.
    Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5(11):1249–1255PubMedCrossRefGoogle Scholar
  110. 110.
    Brinkmann V et al (1993) Interferon alpha increases the frequency of interferon gamma-producing human CD4+ T cells. J Exp Med 178(5):1655–1663PubMedCrossRefGoogle Scholar
  111. 111.
    Krug A et al (2003) CpG-A oligonucleotides induce a monocyte-derived dendritic cell-like phenotype that preferentially activates CD8 T cells. J Immunol 170(7):3468–3477PubMedGoogle Scholar
  112. 112.
    Persky ME, Murphy KM, Farrar JD (2005) IL-12, but not IFN-alpha, promotes STAT4 activation and Th1 development in murine CD4+ T cells expressing a chimeric murine/human Stat2 gene. J Immunol 174(1):294–301PubMedGoogle Scholar
  113. 113.
    Berenson LS et al (2006) Distinct characteristics of murine STAT4 activation in response to IL-12 and IFN-alpha. J Immunol 177(8):5195–5203PubMedGoogle Scholar
  114. 114.
    Matikainen S et al (2001) IFN-alpha and IL-18 synergistically enhance IFN-gamma production in human NK cells: differential regulation of Stat4 activation and IFN-gamma gene expression by IFN-alpha and IL-12. Eur J Immunol 31(7):2236–2245PubMedCrossRefGoogle Scholar
  115. 115.
    Rogge L et al (1997) Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med 185(5):825–831PubMedCrossRefGoogle Scholar
  116. 116.
    Huber JP et al (2010) Cutting edge: Type I IFN reverses human Th2 commitment and stability by suppressing GATA3. J Immunol 185(2):813–817PubMedCrossRefGoogle Scholar
  117. 117.
    Harrington LE et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132PubMedCrossRefGoogle Scholar
  118. 118.
    Moschen AR et al (2008) Interferon-alpha controls IL-17 expression in vitro and in vivo. Immunobiology 213(9–10):779–787PubMedCrossRefGoogle Scholar
  119. 119.
    Sweeney CM et al (2011) IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun 25(6):1170–1181PubMedCrossRefGoogle Scholar
  120. 120.
    Ramgolam VS et al (2009) IFN-beta inhibits human Th17 cell differentiation. J Immunol 183(8):5418–5427PubMedCrossRefGoogle Scholar
  121. 121.
    Geng Y et al (1995) Tumor suppressor activity of the human consensus type I interferon gene. Cytokines Mol Ther 1(4):289–300PubMedGoogle Scholar
  122. 122.
    Tanaka N et al (1998) Type I interferons are essential mediators of apoptotic death in virally infected cells. Genes Cells 3(1):29–37PubMedCrossRefGoogle Scholar
  123. 123.
    Marrack P, Kappler J, Mitchell T (1999) Type I interferons keep activated T cells alive. J Exp Med 189(3):521–530PubMedCrossRefGoogle Scholar
  124. 124.
    Davis AM et al (2008) Cutting edge: a T-bet-independent role for IFN-alpha/beta in regulating IL-2 secretion in human CD4+ central memory T cells. J Immunol 181(12):8204–8208PubMedGoogle Scholar
  125. 125.
    Curtsinger JM et al (2005) Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 174(8):4465–4469PubMedGoogle Scholar
  126. 126.
    Le Bon A et al (2006) Direct stimulation of T cells by type I IFN enhances the CD8+ T cell response during cross-priming. J Immunol 176(8):4682–4689PubMedGoogle Scholar
  127. 127.
    Ronnblom L, Alm GV, Eloranta ML (2009) Type I interferon and lupus. Curr Opin Rheumatol 21(5):471–477PubMedCrossRefGoogle Scholar
  128. 128.
    Zhang X et al (1998) Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8(5):591–599PubMedCrossRefGoogle Scholar
  129. 129.
    Mattei F et al (2001) IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J Immunol 167(3):1179–1187PubMedGoogle Scholar
  130. 130.
    Di Sabatino A et al (2011) Role of IL-15 in immune-mediated and infectious diseases. Cytokine Growth Factor Rev 22(1):19–33PubMedCrossRefGoogle Scholar
  131. 131.
    Groom JR, Luster AD (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89(2):207–215PubMedCrossRefGoogle Scholar
  132. 132.
    Le Bon A et al (2001) Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14(4):461–470PubMedCrossRefGoogle Scholar
  133. 133.
    Jego G et al (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19(2):225–234PubMedCrossRefGoogle Scholar
  134. 134.
    Badr G et al (2010) Type I interferon (IFN-alpha/beta) rescues B-lymphocytes from apoptosis via PI3Kdelta/Akt, Rho-A, NFkappaB and Bcl-2/Bcl(XL). Cell Immunol 263(1):31–40PubMedCrossRefGoogle Scholar
  135. 135.
    Bekisz J et al (2010) Antiproliferative properties of type I and type II interferon. Pharmaceuticals 3(4):994–1015PubMedCrossRefGoogle Scholar
  136. 136.
    Rath PC, Aggarwal BB (2001) Antiproliferative effects of IFN-alpha correlate with the downregulation of nuclear factor-kappa B in human Burkitt lymphoma Daudi cells. J Interferon Cytokine Res 21(7):523–528PubMedCrossRefGoogle Scholar
  137. 137.
    Takaoka A et al (2003) Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424(6948):516–523PubMedCrossRefGoogle Scholar
  138. 138.
    Fuertes Marraco SA et al (2011) Type I interferon drives dendritic cell apoptosis via multiple BH3-only proteins following activation by Poly IC in vivo. PLoS ONE 6(6):e20189PubMedCrossRefGoogle Scholar
  139. 139.
    Eitz Ferrer P et al (2011) Induction of Noxa-mediated apoptosis by modified vaccinia virus Ankara depends on viral recognition by cytosolic helicases, leading to IRF-3/IFN-beta-dependent induction of pro-apoptotic Noxa. PLoS Pathog 7(6):e1002083PubMedCrossRefGoogle Scholar
  140. 140.
    Lee SB, Esteban M (1994) The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 199(2):491–496PubMedCrossRefGoogle Scholar
  141. 141.
    Gil J, Esteban M (2000) The interferon-induced protein kinase (PKR), triggers apoptosis through FADD-mediated activation of caspase 8 in a manner independent of Fas and TNF-alpha receptors. Oncogene 19(32):3665–3674PubMedCrossRefGoogle Scholar
  142. 142.
    Hsu LC et al (2004) The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 428(6980):341–345PubMedCrossRefGoogle Scholar
  143. 143.
    Chawla-Sarkar M et al (2003) Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8(3):237–249PubMedCrossRefGoogle Scholar
  144. 144.
    Salaun B, Romero P, Lebecque S (2007) Toll-like receptors’ two-edged sword: when immunity meets apoptosis. Eur J Immunol 37(12):3311–3318PubMedCrossRefGoogle Scholar
  145. 145.
    Haller O, Kochs G, Weber F (2006) The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344(1):119–130PubMedCrossRefGoogle Scholar
  146. 146.
    Besch R et al (2009) Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest 119(8):2399–2411PubMedGoogle Scholar
  147. 147.
    Hasan UA et al (2007) Cell proliferation and survival induced by Toll-like receptors is antagonized by type I IFNs. Proc Natl Acad Sci USA 104(19):8047–8052PubMedCrossRefGoogle Scholar
  148. 148.
    Colonna M (2006) Toll-like receptors and IFN-alpha: partners in autoimmunity. J Clin Invest 116(9):2319–2322PubMedCrossRefGoogle Scholar
  149. 149.
    Hall JC, Rosen A (2010) Type I interferons: crucial participants in disease amplification in autoimmunity. Nat Rev Rheumatol 6(1):40–49PubMedCrossRefGoogle Scholar
  150. 150.
    Akeno N et al (2011) IFN-alpha mediates the development of autoimmunity both by direct tissue toxicity and through immune cell recruitment mechanisms. J Immunol 186(8):4693–4706PubMedCrossRefGoogle Scholar
  151. 151.
    Borg FA, Isenberg DA (2007) Syndromes and complications of interferon therapy. Curr Opin Rheumatol 19(1):61–66PubMedCrossRefGoogle Scholar
  152. 152.
    Vallin H et al (1999) Anti-double-stranded DNA antibodies and immuno stimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J Immunol 163(11):6306–6313PubMedGoogle Scholar
  153. 153.
    Bave U et al (2003) Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J Immunol 171(6):3296–3302PubMedGoogle Scholar
  154. 154.
    Means TK et al (2005) Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115(2):407–417PubMedGoogle Scholar
  155. 155.
    Kahlenberg JM et al (2011) Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J Immunol 187(11):6143–6156PubMedCrossRefGoogle Scholar
  156. 156.
    Panchanathan R et al (2010) Aim2 deficiency stimulates the expression of IFN-inducible Ifi202, a lupus susceptibility murine gene within the Nba2 autoimmune susceptibility locus. J Immunol 185(12):7385–7393PubMedCrossRefGoogle Scholar
  157. 157.
    Martens HA et al (2009) An extensive screen of the HLA region reveals an independent association of HLA class I and class II with susceptibility for systemic lupus erythematosus. Scand J Rheumatol 38(4):256–262PubMedCrossRefGoogle Scholar
  158. 158.
    Sigurdsson S et al (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76(3):528–537PubMedCrossRefGoogle Scholar
  159. 159.
    Santiago-Raber ML et al (2003) Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J Exp Med 197(6):777–788PubMedCrossRefGoogle Scholar
  160. 160.
    Braun D, Geraldes P, Demengeot J (2003) Type I Interferon controls the onset and severity of autoimmune manifestations in lpr mice. J Autoimmun 20(1):15–25PubMedCrossRefGoogle Scholar
  161. 161.
    Hron JD, Peng SL (2004) Type I IFN protects against murine lupus. J Immunol 173(3):2134–2142PubMedGoogle Scholar
  162. 162.
    Wu X, Peng SL (2006) Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum 54(1):336–342PubMedCrossRefGoogle Scholar
  163. 163.
    Vakaloglou KM, Mavragani CP (2011) Activation of the type I interferon pathway in primary Sjogren’s syndrome: an update. Curr Opin Rheumatol 23(5):459–464PubMedCrossRefGoogle Scholar
  164. 164.
    van der Pouw Kraan TC et al (2007) Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann Rheum Dis 66(8):1008–1014PubMedCrossRefGoogle Scholar
  165. 165.
    Harboe E et al (2009) Fatigue in primary Sjogren’s syndrome—a link to sickness behaviour in animals? Brain Behav Immun 23(8):1104–1108PubMedCrossRefGoogle Scholar
  166. 166.
    Meijer JM et al (2007) The future of biologic agents in the treatment of Sjogren’s syndrome. Clin Rev Allergy Immunol 32(3):292–297PubMedCrossRefGoogle Scholar
  167. 167.
    Tak PP (2004) IFN-beta in rheumatoid arthritis. Front Biosci 9:3242–3247PubMedCrossRefGoogle Scholar
  168. 168.
    Ying F et al (2011) Type I IFN protects against antigen-induced arthritis. Eur J Immunol 41(6):1687–1695PubMedCrossRefGoogle Scholar
  169. 169.
    van Holten J et al (2004) Treatment with recombinant interferon-beta reduces inflammation and slows cartilage destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res Ther 6(3):R239–R249PubMedCrossRefGoogle Scholar
  170. 170.
    Tak PP et al (1999) The effects of interferon beta treatment on arthritis. Rheumatology (Oxford) 38(4):362–369CrossRefGoogle Scholar
  171. 171.
    Vervoordeldonk MJ, Aalbers CJ, Tak PP (2009) Interferon beta for rheumatoid arthritis: new clothes for an old kid on the block. Ann Rheum Dis 68(2):157–158PubMedCrossRefGoogle Scholar
  172. 172.
    Koltai M, Meos E (1973) Inhibition of the acute inflammatory response by interferon inducers. Nature 242(5399):525–526PubMedCrossRefGoogle Scholar
  173. 173.
    Triantaphyllopoulos KA et al (1999) Amelioration of collagen-induced arthritis and suppression of interferon-gamma, interleukin-12, and tumor necrosis factor alpha production by interferon-beta gene therapy. Arthritis Rheum 42(1):90–99PubMedCrossRefGoogle Scholar
  174. 174.
    Hirsch MS et al (1974) Immunosuppressive effects of an interferon preparation in vivo. Transplantation 17(2):234–236PubMedCrossRefGoogle Scholar
  175. 175.
    Veldhuis WB et al (2003) Interferon-beta prevents cytokine-induced neutrophil infiltration and attenuates blood-brain barrier disruption. J Cereb Blood Flow Metab 23(9):1060–1069PubMedCrossRefGoogle Scholar
  176. 176.
    Yu M et al (1996) Interferon-beta inhibits progression of relapsing-remitting experimental autoimmune encephalomyelitis. J Neuroimmunol 64(1):91–100PubMedCrossRefGoogle Scholar
  177. 177.
    Kraus J et al (2004) Interferon-beta stabilizes barrier characteristics of brain endothelial cells in vitro. Ann Neurol 56(2):192–205PubMedCrossRefGoogle Scholar
  178. 178.
    Trinchieri G (2010) Type I interferon: friend or foe? J Exp Med 207(10):2053–2063PubMedCrossRefGoogle Scholar
  179. 179.
    Sharma S et al (2011) Innate immune recognition of an AT-rich stem-loop DNA motif in the Plasmodium falciparum genome. Immunity 35(2):194–207PubMedCrossRefGoogle Scholar
  180. 180.
    Henry T et al (2010) Type I IFN signaling constrains IL-17A/F secretion by gammadelta T cells during bacterial infections. J Immunol 184(7):3755–3767PubMedCrossRefGoogle Scholar
  181. 181.
    Auerbuch V et al (2004) Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med 200(4):527–533PubMedCrossRefGoogle Scholar
  182. 182.
    O’Connell RM et al (2004) Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med 200(4):437–445PubMedCrossRefGoogle Scholar
  183. 183.
    Xin L et al (2010) Type I IFN receptor regulates neutrophil functions and innate immunity to Leishmania parasites. J Immunol 184(12):7047–7056PubMedCrossRefGoogle Scholar
  184. 184.
    Mayer-Barber KD et al (2011) Innate and adaptive interferons suppress IL-1 alpha and IL-1 beta production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35(6):1023–1034PubMedCrossRefGoogle Scholar
  185. 185.
    Manca C et al (2005) Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J Interferon Cytokine Res 25(11):694–701PubMedCrossRefGoogle Scholar
  186. 186.
    Berry MP et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977PubMedCrossRefGoogle Scholar
  187. 187.
    Shahangian A et al (2009) Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest 119(7):1910–1920PubMedCrossRefGoogle Scholar
  188. 188.
    Guarda G et al (2011) Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34(2):213–223PubMedCrossRefGoogle Scholar
  189. 189.
    Worthington M, Hasenclever HF (1972) Effect of an interferon stimulator, polyinosinic: polycytidylic acid, on experimental fungus infections. Infect Immun 5(2):199–202PubMedGoogle Scholar
  190. 190.
    Jensen J, Vazquez-Torres A, Balish E (1992) Poly (I. C)-induced interferons enhance susceptibility of SCID mice to systemic candidiasis. Infect Immun 60(11):4549–4557PubMedGoogle Scholar
  191. 191.
    Reznikov LL et al (1998) Spontaneous and inducible cytokine responses in healthy humans receiving a single dose of IFN-alpha2b: increased production of interleukin-1 receptor antagonist and suppression of IL-1-induced IL-8. J Interferon Cytokine Res 18(10):897–903PubMedCrossRefGoogle Scholar
  192. 192.
    Schindler R, Ghezzi P, Dinarello CA (1990) IL-1 induces IL-1. IV. IFN-gamma suppresses IL-1 but not lipopolysaccharide-induced transcription of IL-1. J Immunol 144(6):2216–2222PubMedGoogle Scholar
  193. 193.
    Guarda G, So A (2010) Regulation of inflammasome activity. Immunology 130(3):329–336PubMedCrossRefGoogle Scholar
  194. 194.
    Huang Y, Blatt LM, Taylor MW (1995) Type 1 interferon as an antiinflammatory agent: inhibition of lipopolysaccharide-induced interleukin-1 beta and induction of interleukin-1 receptor antagonist. J Interferon Cytokine Res 15(4):317–321PubMedCrossRefGoogle Scholar
  195. 195.
    Coclet-Ninin J, Dayer JM, Burger D (1997) Interferon-beta not only inhibits interleukin-1 beta and tumor necrosis factor-alpha but stimulates interleukin-1 receptor antagonist production in human peripheral blood mononuclear cells. Eur Cytokine Netw 8(4):345–349PubMedGoogle Scholar
  196. 196.
    Zang YC et al (2004) Regulation of differentiation and functional properties of monocytes and monocyte-derived dendritic cells by interferon beta in multiple sclerosis. Mult Scler 10(5):499–506PubMedCrossRefGoogle Scholar
  197. 197.
    Byrnes AA et al (2001) Type I interferons and IL-12: convergence and cross-regulation among mediators of cellular immunity. Eur J Immunol 31(7):2026–2034PubMedCrossRefGoogle Scholar
  198. 198.
    Nagai T et al (2003) Timing of IFN-beta exposure during human dendritic cell maturation and naive Th cell stimulation has contrasting effects on Th1 subset generation: a role for IFN-beta-mediated regulation of IL-12 family cytokines and IL-18 in naive Th cell differentiation. J Immunol 171(10):5233–5243PubMedGoogle Scholar
  199. 199.
    Novikov A et al (2011) Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1{beta} production in human macrophages. J Immunol 187(5):2540–2547PubMedCrossRefGoogle Scholar
  200. 200.
    Radwan M et al (2010) Tyrosine kinase 2 controls IL-1 beta production at the translational level. J Immunol 185(6):3544–3553PubMedCrossRefGoogle Scholar
  201. 201.
    Bellocchio S et al (2004) The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 172(5):3059–3069PubMedGoogle Scholar
  202. 202.
    Vonk AG et al (2006) Endogenous interleukin (IL)-1 alpha and IL-1 beta are crucial for host defense against disseminated candidiasis. J Infect Dis 193(10):1419–1426PubMedCrossRefGoogle Scholar
  203. 203.
    Fremond CM et al (2007) IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol 179(2):1178–1189PubMedGoogle Scholar
  204. 204.
    Mayer-Barber KD et al (2010) Caspase-1 independent IL-1 beta production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol 184(7):3326–3330PubMedCrossRefGoogle Scholar
  205. 205.
    Masters SL et al (2010) Regulation of interleukin-1 beta by interferon-gamma is species specific, limited by suppressor of cytokine signalling 1 and influences interleukin-17 production. EMBO Rep 11(8):640–646PubMedCrossRefGoogle Scholar
  206. 206.
    Aman MJ et al (1994) Regulation of cytokine expression by interferon-alpha in human bone marrow stromal cells: inhibition of hematopoietic growth factors and induction of interleukin-1 receptor antagonist. Blood 84(12):4142–4150PubMedGoogle Scholar
  207. 207.
    Chang EY et al (2007) Cutting edge: involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. J Immunol 178(11):6705–6709PubMedGoogle Scholar
  208. 208.
    de Waal Malefyt R et al (1991) Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174(5):1209–1220PubMedCrossRefGoogle Scholar
  209. 209.
    Fiorentino DF et al (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147(11):3815–3822PubMedGoogle Scholar
  210. 210.
    Berg DJ et al (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) Th1-like responses. J Clin Invest 98(4):1010–1020PubMedCrossRefGoogle Scholar
  211. 211.
    Wang H et al (2011) The role of glycogen synthase kinase 3 in regulating IFN-beta-mediated IL-10 production. J Immunol 186(2):675–684PubMedCrossRefGoogle Scholar
  212. 212.
    Ziegler-Heitbrock L et al (2003) IFN-alpha induces the human IL-10 gene by recruiting both IFN regulatory factor 1 and Stat3. J Immunol 171(1):285–290PubMedGoogle Scholar
  213. 213.
    Wang P et al (1994) IL-10 inhibits transcription of cytokine genes in human peripheral blood mononuclear cells. J Immunol 153(2):811–816PubMedGoogle Scholar
  214. 214.
    Jenkins JK, Malyak M, Arend WP (1994) The effects of interleukin-10 on interleukin-1 receptor antagonist and interleukin-1 beta production in human monocytes and neutrophils. Lymphokine Cytokine Res 13(1):47–54PubMedGoogle Scholar
  215. 215.
    Fernandes-Alnemri T et al (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11(5):385–393PubMedCrossRefGoogle Scholar
  216. 216.
    Rathinam VA et al (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11(5):395–402PubMedCrossRefGoogle Scholar
  217. 217.
    Zwaferink H et al (2008) IFN-beta increases listeriolysin O-induced membrane permeabilization and death of macrophages. J Immunol 180(6):4116–4123PubMedGoogle Scholar
  218. 218.
    Veeranki S et al (2011) IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes. PLoS ONE 6(10):e27040PubMedCrossRefGoogle Scholar
  219. 219.
    Dienstag JL (2008) Hepatitis B virus infection. N Engl J Med 359(14):1486–1500PubMedCrossRefGoogle Scholar
  220. 220.
    Foster GR (2010) Pegylated interferons for the treatment of chronic hepatitis C: pharmacological and clinical differences between peginterferon-alpha-2a and peginterferon-alpha-2b. Drugs 70(2):147–165PubMedCrossRefGoogle Scholar
  221. 221.
    Vezali E et al (2011) Does interferon therapy prevent hepatocellular carcinoma in patients with chronic viral hepatitis? Clin Res Hepatol Gastroenterol 35(6–7):455–464PubMedCrossRefGoogle Scholar
  222. 222.
    Yang J et al (2009) Interferon for the treatment of genital warts: a systematic review. BMC Infect Dis 9:156PubMedCrossRefGoogle Scholar
  223. 223.
    Krown SE (2007) AIDS-associated Kaposi’s sarcoma: is there still a role for interferon alfa? Cytokine Growth Factor Rev 18(5–6):395–402PubMedCrossRefGoogle Scholar
  224. 224.
    Kiladjian JJ, Mesa RA, Hoffman R (2011) The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood 117(18):4706–4715PubMedCrossRefGoogle Scholar
  225. 225.
    Habermann TM, Rai K (2011) Historical treatments of in hairy cell leukemia, splenectomy and interferon: past and current uses. Leuk Lymphoma 52(Suppl 2):18–20PubMedCrossRefGoogle Scholar
  226. 226.
    Eggermont AM et al (2012) Ulceration and stage are predictive of interferon efficacy in melanoma: results of the phase III adjuvant trials EORTC 18952 and EORTC 18991. Eur J Cancer 48(2):218–25Google Scholar
  227. 227.
    Anderson DW et al (1992) Revised estimate of the prevalence of multiple sclerosis in the United States. Ann Neurol 31(3):333–336PubMedCrossRefGoogle Scholar
  228. 228.
    Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517PubMedCrossRefGoogle Scholar
  229. 229.
    Kappos L et al (2007) Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370(9585):389–397PubMedCrossRefGoogle Scholar
  230. 230.
    Durelli L et al (1994) Chronic systemic high-dose recombinant interferon alfa-2a reduces exacerbation rate, MRI signs of disease activity, and lymphocyte interferon gamma production in relapsing-remitting multiple sclerosis. Neurology 44(3 Pt 1):406–413PubMedCrossRefGoogle Scholar
  231. 231.
    Squillacote D, Martinez M, Sheremata W (1996) Natural alpha interferon in multiple sclerosis: results of three preliminary series. J Int Med Res 24(3):246–257PubMedGoogle Scholar
  232. 232.
    Kinnunen E et al (1993) Effects of recombinant alpha-2b-interferon therapy in patients with progressive MS. Acta Neurol Scand 87(6):457–460PubMedCrossRefGoogle Scholar
  233. 233.
    Larrey D et al (1989) Exacerbation of multiple sclerosis after the administration of recombinant human interferon alfa. JAMA 261(14):2065PubMedCrossRefGoogle Scholar
  234. 234.
    Kataoka I et al (2002) Multiple sclerosis associated with interferon-alpha therapy for chronic myelogenous leukemia. Am J Hematol 70(2):149–153PubMedCrossRefGoogle Scholar
  235. 235.
    Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11(3):195–199PubMedCrossRefGoogle Scholar
  236. 236.
    Lassmann H, Wekerle H (2006) The pathology of multiple sclerosis. In: Compston A (ed) Mc Alpine’s multiple sclerosis. Elsevier, London, pp 557–599CrossRefGoogle Scholar
  237. 237.
    Babbe H et al (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192(3):393–404PubMedCrossRefGoogle Scholar
  238. 238.
    Lucchinetti C et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717PubMedCrossRefGoogle Scholar
  239. 239.
    Glass CK et al (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934PubMedCrossRefGoogle Scholar
  240. 240.
    Fernandez M, Montalban X, Comabella M (2010) Orchestrating innate immune responses in multiple sclerosis: molecular players. J Neuroimmunol 225(1–2):5–12PubMedCrossRefGoogle Scholar
  241. 241.
    Furlan R et al (1999) Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. J Immunol 163(5):2403–2409PubMedGoogle Scholar
  242. 242.
    Shaw PJ et al (2010) Cutting edge: critical role for PYCARD/ASC in the development of experimental autoimmune encephalomyelitis. J Immunol 184(9):4610–4614PubMedCrossRefGoogle Scholar
  243. 243.
    Gris D et al (2010) NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J Immunol 185(2):974–981PubMedCrossRefGoogle Scholar
  244. 244.
    Matsuki T et al (2006) Abnormal T cell activation caused by the imbalance of the IL-1/IL-1R antagonist system is responsible for the development of experimental autoimmune encephalomyelitis. Int Immunol 18(2):399–407PubMedCrossRefGoogle Scholar
  245. 245.
    Bhat R, Steinman L (2009) Innate and adaptive autoimmunity directed to the central nervous system. Neuron 64(1):123–132PubMedCrossRefGoogle Scholar
  246. 246.
    Kaser A et al (1999) Interferon-beta 1b augments activation-induced T-cell death in multiple sclerosis patients. Lancet 353(9162):1413–1414PubMedCrossRefGoogle Scholar
  247. 247.
    Christophi GP et al (2008) SHP-1 deficiency and increased inflammatory gene expression in PBMCs of multiple sclerosis patients. Lab Invest 88(3):243–255PubMedCrossRefGoogle Scholar
  248. 248.
    Christophi GP et al (2009) Interferon-beta treatment in multiple sclerosis attenuates inflammatory gene expression through inducible activity of the phosphatase SHP-1. Clin Immunol 133(1):27–44PubMedCrossRefGoogle Scholar
  249. 249.
    Dickensheets HL et al (1999) Interferons inhibit activation of STAT6 by interleukin 4 in human monocytes by inducing SOCS-1 gene expression. Proc Natl Acad Sci USA 96(19):10800–10805PubMedCrossRefGoogle Scholar
  250. 250.
    Shiow LR et al (2006) CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440(7083):540–544PubMedCrossRefGoogle Scholar
  251. 251.
    Kieseier BC, Archelos JJ, Hartung HP (2004) Different effects of simvastatin and interferon beta on the proteolytic activity of matrix metalloproteinases. Arch Neurol 61(6):929–932PubMedCrossRefGoogle Scholar
  252. 252.
    Gilli F et al (2004) Neutralizing antibodies against IFN-beta in multiple sclerosis: antagonization of IFN-beta mediated suppression of MMPs. Brain 127(Pt 2):259–268PubMedCrossRefGoogle Scholar
  253. 253.
    Muraro PA et al (2000) VLA-4/CD49d downregulated on primed T lymphocytes during interferon-beta therapy in multiple sclerosis. J Neuroimmunol 111(1–2):186–194PubMedCrossRefGoogle Scholar
  254. 254.
    Muraro PA et al (2004) Decreased integrin gene expression in patients with MS responding to interferon-beta treatment. J Neuroimmunol 150(1–2):123–131PubMedCrossRefGoogle Scholar
  255. 255.
    Becher B, Segal BM (2011) Th17 cytokines in autoimmune neuro-inflammation. Curr Opin Immunol 26:707–712CrossRefGoogle Scholar
  256. 256.
    Arnason BG (1999) Immunologic therapy of multiple sclerosis. Annu Rev Med 50:291–302PubMedCrossRefGoogle Scholar
  257. 257.
    Sturzebecher S et al (2003) Expression profiling identifies responder and non-responder phenotypes to interferon-beta in multiple sclerosis. Brain 126(Pt 6):1419–1429PubMedCrossRefGoogle Scholar
  258. 258.
    Axtell RC et al (2010) T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med 16(4):406–412PubMedCrossRefGoogle Scholar
  259. 259.
    Wang AG et al (2006) Early relapse in multiple sclerosis-associated optic neuritis following the use of interferon beta-1a in Chinese patients. Jpn J Ophthalmol 50(6):537–542PubMedCrossRefGoogle Scholar
  260. 260.
    Walther EU, Hohlfeld R (1999) Multiple sclerosis: side effects of interferon beta therapy and their management. Neurology 53(8):1622–1627PubMedCrossRefGoogle Scholar
  261. 261.
    The IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43(4):655–661CrossRefGoogle Scholar
  262. 262.
    The IFNB Multiple Sclerosis Study Group, The University of British Columbia MS/MRI Analysis Group (1995) Interferon beta-1b in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. Neurology 45(7):1277–1285CrossRefGoogle Scholar
  263. 263.
    Paty DW, Li DK, UBC MS/MRI Study Group, The IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43(4):662–667PubMedCrossRefGoogle Scholar
  264. 264.
    Jacobs LD, The Multiple Sclerosis Collaborative Research Group (MSCRG) et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol 39(3):285–294PubMedCrossRefGoogle Scholar
  265. 265.
    PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group (1998) Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet 352(9139):1498–1504CrossRefGoogle Scholar
  266. 266.
    European Study Group (1998) Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. Lancet 352(9139):1491–1497CrossRefGoogle Scholar
  267. 267.
    Reder AT et al (2010) Cross-sectional study assessing long-term safety of interferon-beta-1b for relapsing-remitting MS. Neurology 74(23):1877–1885PubMedCrossRefGoogle Scholar
  268. 268.
    Tremlett HL, Oger J (2004) Elevated aminotransferases during treatment with interferon-beta for multiple sclerosis: actions and outcomes. Mult Scler 10(3):298–301PubMedCrossRefGoogle Scholar
  269. 269.
    Yoshida EM et al (2001) Fulminant liver failure during interferon beta treatment of multiple sclerosis. Neurology 56(10):1416PubMedCrossRefGoogle Scholar
  270. 270.
    Pulicken M et al (2006) Unmasking of autoimmune hepatitis in a patient with MS following interferon beta therapy. Neurology 66(12):1954–1955PubMedCrossRefGoogle Scholar
  271. 271.
    Fragoso YD et al (2010) Severe depression, suicide attempts, and ideation during the use of interferon beta by patients with multiple sclerosis. Clin Neuropharmacol 33(6):312–316PubMedCrossRefGoogle Scholar
  272. 272.
    Borras C et al (1999) Emotional state of patients with relapsing-remitting MS treated with interferon beta-1b. Neurology 52(8):1636–1639PubMedCrossRefGoogle Scholar
  273. 273.
    Abdul-Ahad AK et al (1997) Incidence of antibodies to interferon-beta in patients treated with recombinant human interferon-beta 1a from mammalian cells. Cytokines Cell Mol Ther 3(1):27–32PubMedGoogle Scholar
  274. 274.
    Rudick RA, Multiple Sclerosis Collaborative Research Group (MSCRG) et al (1998) Incidence and significance of neutralizing antibodies to interferon beta-1a in multiple sclerosis. Neurology 50(5):1266–1272PubMedCrossRefGoogle Scholar
  275. 275.
    The IFNB Multiple Sclerosis Study Group, The University of British Columbia MS/MRI Analysis Group (1996) Neutralizing antibodies during treatment of multiple sclerosis with interferon beta-1b: experience during the first three years. Neurology 47(4):889–894CrossRefGoogle Scholar
  276. 276.
    Ross C, Danish Multiple Sclerosis Study Group et al (2000) Immunogenicity of interferon-beta in multiple sclerosis patients: influence of preparation, dosage, dose frequency, and route of administration. Ann Neurol 48(5):706–712PubMedCrossRefGoogle Scholar
  277. 277.
    Sorensen PS et al (2003) Clinical importance of neutralising antibodies against interferon beta in patients with relapsing-remitting multiple sclerosis. Lancet 362(9391):1184–1191PubMedCrossRefGoogle Scholar
  278. 278.
    McGonagle D, McDermott MF (2006) A proposed classification of the immunological diseases. PLoS Med 3(8):e297PubMedCrossRefGoogle Scholar
  279. 279.
    Hoffman HM et al (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29(3):301–305PubMedCrossRefGoogle Scholar
  280. 280.
    Hawkins PN et al (2004) Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum 50(2):607–612PubMedCrossRefGoogle Scholar
  281. 281.
    Goldbach-Mansky R et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355(6):581–592PubMedCrossRefGoogle Scholar
  282. 282.
    Lachmann HJ et al (2009) Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 360(23):2416–2425PubMedCrossRefGoogle Scholar
  283. 283.
    Lepore L et al (2010) Follow-up and quality of life of patients with cryopyrin-associated periodic syndromes treated with Anakinra. J Pediatr 157(2):310–315e1PubMedCrossRefGoogle Scholar
  284. 284.
    Neven B et al (2010) Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 62(1):258–267PubMedCrossRefGoogle Scholar
  285. 285.
    Kuemmerle-Deschner JB et al (2011) Efficacy and safety of anakinra therapy in pediatric and adult patients with the autoinflammatory Muckle-Wells syndrome. Arthritis Rheum 63(3):840–849PubMedCrossRefGoogle Scholar
  286. 286.
    The International FMF Consortium (1947) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90(4):797–807CrossRefGoogle Scholar
  287. 287.
    French Familial Mediterranean fever Consortium (1997) A candidate gene for familial Mediterranean fever. Nat Genet 17(1):25–31CrossRefGoogle Scholar
  288. 288.
    Rozenbaum M et al (1992) Decreased interleukin 1 activity released from circulating monocytes of patients with familial Mediterranean fever during in vitro stimulation by lipopolysaccharide. J Rheumatol 19(3):416–418PubMedGoogle Scholar
  289. 289.
    Papin S et al (2007) The SPRY domain of pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ 14(8):1457–1466PubMedCrossRefGoogle Scholar
  290. 290.
    Chae JJ et al (2011) Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity 34(5):755–768PubMedCrossRefGoogle Scholar
  291. 291.
    Mitroulis I et al (2008) Anakinra suppresses familial Mediterranean fever crises in a colchicine-resistant patient. Neth J Med 66(11):489–491PubMedGoogle Scholar
  292. 292.
    Calligaris L et al (2008) The efficacy of anakinra in an adolescent with colchicine-resistant familial Mediterranean fever. Eur J Pediatr 167(6):695–696PubMedCrossRefGoogle Scholar
  293. 293.
    Ozen S et al (2011) Anti-interleukin 1 treatment for patients with familial Mediterranean fever resistant to colchicine. J Rheumatol 38(3):516–518PubMedCrossRefGoogle Scholar
  294. 294.
    Meinzer U et al (2011) Interleukin-1 targeting drugs in familial Mediterranean fever: a case series and a review of the literature. Semin Arthritis Rheum 65(2):265–271CrossRefGoogle Scholar
  295. 295.
    Bilginer Y, Ayaz NA, Ozen S (2010) Anti-IL-1 treatment for secondary amyloidosis in an adolescent with FMF and Behcet’s disease. Clin Rheumatol 29(2):209–210PubMedCrossRefGoogle Scholar
  296. 296.
    Tweezer-Zaks N et al (2008) Interferon-alpha as a treatment modality for colchicine-resistant familial Mediterranean fever. J Rheumatol 35(7):1362–1365PubMedGoogle Scholar
  297. 297.
    Hugot JP et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603PubMedCrossRefGoogle Scholar
  298. 298.
    Ogura Y et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606PubMedCrossRefGoogle Scholar
  299. 299.
    Barrett JC et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962PubMedCrossRefGoogle Scholar
  300. 300.
    Fisher SA et al (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 40(6):710–712PubMedCrossRefGoogle Scholar
  301. 301.
    Franke A et al (2008) Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet 40(6):713–715PubMedCrossRefGoogle Scholar
  302. 302.
    Cho JH (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 8(6):458–466PubMedCrossRefGoogle Scholar
  303. 303.
    Massey DC, Parkes M (2007) Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn’s disease. Autophagy 3(6):649–651PubMedGoogle Scholar
  304. 304.
    Saitoh T et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456(7219):264–268PubMedCrossRefGoogle Scholar
  305. 305.
    Travassos LH et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11(1):55–62PubMedCrossRefGoogle Scholar
  306. 306.
    Maeda S et al (2005) Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307(5710):734–738PubMedCrossRefGoogle Scholar
  307. 307.
    Franke A et al (2008) Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 40(11):1319–1323PubMedCrossRefGoogle Scholar
  308. 308.
    Glocker EO et al (2009) Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 361(21):2033–2045PubMedCrossRefGoogle Scholar
  309. 309.
    Oussalah A, Danese S, Peyrin-Biroulet L (2010) Efficacy of TNF antagonists beyond one year in adult and pediatric inflammatory bowel diseases: a systematic review. Curr Drug Targets 11(2):156–175PubMedCrossRefGoogle Scholar
  310. 310.
    Sumer N, Palabiyikoglu M (1995) Induction of remission by interferon-alpha in patients with chronic active ulcerative colitis. Eur J Gastroenterol Hepatol 7(7):597–602PubMedGoogle Scholar
  311. 311.
    Nikolaus S et al (2003) Interferon beta-1a in ulcerative colitis: a placebo controlled, randomised, dose escalating study. Gut 52(9):1286–1290PubMedCrossRefGoogle Scholar
  312. 312.
    Tilg H, Kaser A (2004) Type I interferons and their therapeutic role in Th2-regulated inflammatory disorders. Expert Opin Biol Ther 4(4):469–481PubMedCrossRefGoogle Scholar
  313. 313.
    de Menthon M et al (2009) HLA-B51/B5 and the risk of Behcet’s disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheum 61(10):1287–1296PubMedCrossRefGoogle Scholar
  314. 314.
    Remmers EF et al (2010) Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behcet’s disease. Nat Genet 42(8):698–702PubMedCrossRefGoogle Scholar
  315. 315.
    Yurdakul S, Yazici H (2008) Behcet’s syndrome. Best Pract Res Clin Rheumatol 22(5):793–809PubMedCrossRefGoogle Scholar
  316. 316.
    Sfikakis PP et al (2007) Anti-TNF therapy in the management of Behcet’s disease—review and basis for recommendations. Rheumatology (Oxford) 46(5):736–741CrossRefGoogle Scholar
  317. 317.
    Melikoglu M et al (2005) Short-term trial of etanercept in Behcet’s disease: a double blind, placebo controlled study. J Rheumatol 32(1):98–105PubMedGoogle Scholar
  318. 318.
    Botsios C et al (2008) Resistant Behcet disease responsive to anakinra. Ann Intern Med 149(4):284–286PubMedGoogle Scholar
  319. 319.
    Kotter I et al (2004) The use of interferon alpha in Behcet disease: review of the literature. Semin Arthritis Rheum 33(5):320–335PubMedCrossRefGoogle Scholar
  320. 320.
    Sheikh A, Strachan DP (2004) The hygiene theory: fact or fiction? Curr Opin Otolaryngol Head Neck Surg 12(3):232–236PubMedCrossRefGoogle Scholar
  321. 321.
    Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8(3):193–204PubMedCrossRefGoogle Scholar
  322. 322.
    Lee HC, Ziegler SF (2007) Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFkappaB. Proc Natl Acad Sci USA 104(3):914–919PubMedCrossRefGoogle Scholar
  323. 323.
    Allakhverdi Z et al (2007) Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 204(2):253–258PubMedCrossRefGoogle Scholar
  324. 324.
    Rusznak C et al (2001) Interaction of cigarette smoke and house dust mite allergens on inflammatory mediator release from primary cultures of human bronchial epithelial cells. Clin Exp Allergy 31(2):226–238PubMedCrossRefGoogle Scholar
  325. 325.
    Nakamura Y et al (2009) Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine-independent urticaria. J Exp Med 206(5):1037–1046PubMedCrossRefGoogle Scholar
  326. 326.
    Okada S et al (1995) Potential role of interleukin-1 in allergen-induced late asthmatic reactions in guinea pigs: suppressive effect of interleukin-1 receptor antagonist on late asthmatic reaction. J Allergy Clin Immunol 95(6):1236–1245PubMedCrossRefGoogle Scholar
  327. 327.
    Schmitz N, Kurrer M, Kopf M (2003) The IL-1 receptor 1 is critical for Th2 cell type airway immune responses in a mild but not in a more severe asthma model. Eur J Immunol 33(4):991–1000PubMedCrossRefGoogle Scholar
  328. 328.
    Nakae S et al (2003) IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. Int Immunol 15(4):483–490PubMedCrossRefGoogle Scholar
  329. 329.
    Johnson VJ, Yucesoy B, Luster MI (2005) Prevention of IL-1 signaling attenuates airway hyperresponsiveness and inflammation in a murine model of toluene diisocyanate-induced asthma. J Allergy Clin Immunol 116(4):851–858PubMedCrossRefGoogle Scholar
  330. 330.
    Li T et al (2006) Pharmacokinetics and anti-asthmatic potential of non-parenterally administered recombinant human interleukin-1 receptor antagonist in animal models. J Pharmacol Sci 102(3):321–330PubMedCrossRefGoogle Scholar
  331. 331.
    Wang CC et al (2006) Adenovirus expressing interleukin-1 receptor antagonist alleviates allergic airway inflammation in a murine model of asthma. Gene Ther 13(19):1414–1421PubMedCrossRefGoogle Scholar
  332. 332.
    Idzko M et al (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 13(8):913–919PubMedCrossRefGoogle Scholar
  333. 333.
    Eisenbarth SC et al (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453(7198):1122–1126PubMedCrossRefGoogle Scholar
  334. 334.
    Kool M et al (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181(6):3755–3759PubMedGoogle Scholar
  335. 335.
    Kool M et al (2011) An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 34(4):527–540PubMedCrossRefGoogle Scholar
  336. 336.
    Simon HU et al (2003) Clinical and immunological effects of low-dose IFN-alpha treatment in patients with corticosteroid-resistant asthma. Allergy 58(12):1250–1255PubMedCrossRefGoogle Scholar
  337. 337.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  338. 338.
    Apte RN et al (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 25(3):387–408PubMedCrossRefGoogle Scholar
  339. 339.
    Sidky YA, Borden EC (1987) Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res 47(19):5155–5161PubMedGoogle Scholar
  340. 340.
    Tanaka T et al (2000) Induction of VEGF gene transcription by IL-1 beta is mediated through stress-activated MAP kinases and Sp1 sites in cardiac myocytes. J Mol Cell Cardiol 32(11):1955–1967PubMedCrossRefGoogle Scholar
  341. 341.
    El Awad B et al (2000) Hypoxia and interleukin-1beta stimulate vascular endothelial growth factor production in human proximal tubular cells. Kidney Int 58(1):43–50PubMedCrossRefGoogle Scholar
  342. 342.
    Jung YD et al (2001) Vascular endothelial growth factor is upregulated by interleukin-1 beta in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis 4(2):155–162PubMedCrossRefGoogle Scholar
  343. 343.
    Voronov E, Carmi Y, Apte RN (2007) Role of IL-1-mediated inflammation in tumor angiogenesis. Adv Exp Med Biol 601:265–270PubMedCrossRefGoogle Scholar
  344. 344.
    Moosig F et al (2004) IL-1RA in refractory systemic lupus erythematosus. Lupus 13(8):605–606PubMedCrossRefGoogle Scholar
  345. 345.
    Ostendorf B et al (2005) Preliminary results of safety and efficacy of the interleukin 1 receptor antagonist anakinra in patients with severe lupus arthritis. Ann Rheum Dis 64(4):630–633PubMedCrossRefGoogle Scholar
  346. 346.
    Voronov E et al (2006) IL-1 beta-deficient mice are resistant to induction of experimental SLE. Eur Cytokine Netw 17(2):109–116PubMedGoogle Scholar
  347. 347.
    Davis LS, Hutcheson J, Mohan C (2011) The role of cytokines in the pathogenesis and treatment of systemic lupus erythematosus. J Interferon Cytokine Res 31(10):781–789PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Kristina Ludigs
    • 1
  • Valeriy Parfenov
    • 2
  • Renaud A. Du Pasquier
    • 2
  • Greta Guarda
    • 1
  1. 1.Department of BiochemistryUniversity of LausanneEpalingesSwitzerland
  2. 2.Service of Neurology, Department of Clinical Neurosciences and Service of ImmunologyUniversity Hospital of LausanneLausanneSwitzerland

Personalised recommendations