Cellular and Molecular Life Sciences

, Volume 69, Issue 17, pp 2951–2966 | Cite as

Bioportide: an emergent concept of bioactive cell-penetrating peptides

  • John Howl
  • Sabine Matou-Nasri
  • David C. West
  • Michelle Farquhar
  • Jiřina Slaninová
  • Claes-Göran Östenson
  • Matjaz Zorko
  • Pernilla Östlund
  • Shant Kumar
  • Ülo Langel
  • Jane McKeating
  • Sarah Jones
Research Article


Cell-penetrating peptides (CPPs) have proven utility for the highly efficient intracellular delivery of bioactive cargoes that include peptides, proteins, and oligonucleotides. The many strategies developed to utilize CPPs solely as pharmacokinetic modifiers necessarily requires them to be relatively inert. Moreover, it is feasible to combine one or multiple CPPs with bioactive cargoes either by direct chemical conjugation or, more rarely, as non-covalent complexes. In terms of the message-address hypothesis, this combination of cargo (message) linked to a CPP (address) as a tandem construct conforms to the sychnological organization. More recently, we have introduced the term bioportide to describe monomeric CPPs that are intrinsically bioactive. Herein, we describe the design and biochemical properties of two rhegnylogically organized monometic CPPs that collectively modulate a variety of biological and pathophysiological phenomena. Thus, camptide, a cell-penetrant sequence located within the first intracellular loop of a human calcitonin receptor, regulates cAMP-dependent processes to modulate insulin secretion and viral infectivity. Nosangiotide, a bioportide derived from endothelial nitric oxide synthase, potently inhibits many aspects of the endothelial cell morphology and movement and displays potent anti-angiogenic activity in vivo. We conclude that, due to their capacity to translocate and target intracellular signaling events, bioportides represent an innovative generic class of bioactive agents.


Angiogenesis Bioportide Camptide Cell-penetrating peptide Nosangiotide Second messenger Insulin secretion Viral infectivity 


  1. 1.
    Langel Ü (ed) (2011) Cell-penetrating peptides (Methods in molecular biology 683) Humana Press, New YorkGoogle Scholar
  2. 2.
    Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450PubMedGoogle Scholar
  3. 3.
    Vives E, Brodin P, Lebleau B (1997) A truncated HIV-1 TAT protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017PubMedCrossRefGoogle Scholar
  4. 4.
    Pooga M, Hällbrink M, Zorko M, Langel Ü (1998) Cell penetration by transportan. FASEB J 12:67–77PubMedGoogle Scholar
  5. 5.
    Deshayes S, Konate K, Aldrian G, Heitz F, Divita G (2011) Interactions of amphipathic CPPs with model membranes. In: Langel Ü (ed) Cell-penetrating peptides (Methods in Molecular Biology 683). Humana Press, New York, pp 41–56CrossRefGoogle Scholar
  6. 6.
    Verdurmen WPR, Brock R (2011) Biological responses towards cationic peptides and drug carriers. Trends Pharamcol Sci 32:116–124CrossRefGoogle Scholar
  7. 7.
    Jones S, Martel C, Belzacq-Casagrande A, Brenner C, Howl J (2008) Mitoparan and target-selective chimeric analogues: membrane translocation and intracellular redistribution induces mitochondrial apoptosis. Biochim Biophys Acta 1783:849–863PubMedCrossRefGoogle Scholar
  8. 8.
    Jones S, Holm T, Mäger I, Langel Ü, Howl J (2010) Characterisation of bioactive cell-penetrating peptides from cytochrome c: protein mimicry and the development of a novel apoptogenic agent. Chem Biol 17:735–744PubMedCrossRefGoogle Scholar
  9. 9.
    Portoghese P (1989) Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. Trends Pharmacol Sci 10:230–235PubMedCrossRefGoogle Scholar
  10. 10.
    Howl J, Jones S (2008) Proteomimetic cell-penetrating peptides. Int J Pept Res Ther 14:359–366CrossRefGoogle Scholar
  11. 11.
    Baker RD, Howl J, Nicholl ID (2007) A sychnological cell-penetrating peptide mimic of p21WAF1/CIP1 is pro-apoptogenic. Peptides 28:731–740PubMedCrossRefGoogle Scholar
  12. 12.
    Hällbrink M, Kilk K, Elmquist A, Lundberg P, Lindgren M, Jiang Y, Pooga M, Soomets U, Langel Ü (2005) Prediction of cell-penetrating peptides. Int J Pept Res Ther 11:249–259CrossRefGoogle Scholar
  13. 13.
    Hansen M, Kilk K, Langel Ü (2007) Predicting cell-penetrating peptides. Adv Drug Deliver Rev 60:572–579CrossRefGoogle Scholar
  14. 14.
    Östlund P, Kilk K, Lindgren M, Hällbrink M, Jiang Y, Budhina M, Cerne K, Bavec A, Östenson C-G, Zorko M, Langel Ü (2005) Cell-penetrating mimics of agonist-activated G-protein coupled receptors. Int J Pept Res Ther 11:237–247CrossRefGoogle Scholar
  15. 15.
    Moore EE, Kuestener RE, Stroop SD, Grant FJ, Matthewes SL, Brady CL, Sexton PM, Findlay DM (1995) Functionally different isoforms of the human calcitonin receptor result from alternative splicing of the gene transcript. Mol Endocrinol 9:959–968PubMedCrossRefGoogle Scholar
  16. 16.
    Aoyagi M, Arvai AS, Tainer JA, Getzoff ED (2003) Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J 22:766–775PubMedCrossRefGoogle Scholar
  17. 17.
    Ponten P, Macintyre EH (1968) Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 74:465–486PubMedCrossRefGoogle Scholar
  18. 18.
    Brown J, Reading SJ, Jones S, Fitchett CJ, Howl J, Martin A, Longland C, Michelangeli F, Dubrova YE, Brown C (2000) Critical evaluation of ECV304 as a human endothelial cell model determined by genetic analysis and functional responses: a comparison with the human bladder cancer derived epithelial cell line T24/83. Lab Invest 80:37–45PubMedCrossRefGoogle Scholar
  19. 19.
    Blight KJ, McKeating JA, Rice CM (2002) Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76:13001–13014PubMedCrossRefGoogle Scholar
  20. 20.
    Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC, Maruyama T, Hynes RO, Burton DR, McKeating JA, Rice CM (2005) Complete replication of hepatitis C virus in cell culture. Science 309:623–626PubMedCrossRefGoogle Scholar
  21. 21.
    Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–805PubMedCrossRefGoogle Scholar
  22. 22.
    Östenson C-G, Efendic S (2007) Islet gene expression and function in type 2 diabetes; studies in the Goto-Kakizaki rat and humans. Diabetes Obes Metab 9:180–186PubMedCrossRefGoogle Scholar
  23. 23.
    Howl J, Mondszein RM, Wheatley M (1998) Characterization of G protein-coupled receptors expressed by ECV304 human endothelial cells. Endothelium 6:23–32PubMedCrossRefGoogle Scholar
  24. 24.
    Holton P (1948) A modification of the method of Dale and Lindlow for standardization of posterior pituitary extract. Br J Pharmacol 3:328–334Google Scholar
  25. 25.
    Munsick R (1960) Effect of magnesium ion on the response of the rat uterus to neurohypophysial hormones and analogues. Endocrinology 66:451–457CrossRefGoogle Scholar
  26. 26.
    Slaninová J (1987) Fundamental biological evaluation. In: Lebl M, Jost K, Brtnik F (eds) Handbook of neurohypophyseal hormone analogs, vol I. CRC Press, Boca Raton, pp 83–107Google Scholar
  27. 27.
    Dekanski J (1952) The quantitative assay of vasopressin. Br J Pharmacol 7:567–572Google Scholar
  28. 28.
    Farquhar MJ, Harris HJ, Jones S, Nielsen SU, Brimacombe CL, Molina S, Toms GL, Maurel P, Howl J, van Ijzendoorn SVD, Balfe P, McKeating A (2008) Protein kinase A dependent step(s) in hepatitis c virus entry and infectivity. J Virol 82:8797–8811PubMedCrossRefGoogle Scholar
  29. 29.
    West DC, Thompson WD, Sells PG, Burbridge MF (2001) Angiogenesis assays using the chick chorioallantoic membrane. In: Murray JC (ed) Methods in molecular medicine—angiogenesis: reviews and protocols. Humana Press, New York, pp 107–130Google Scholar
  30. 30.
    Li Y, Gama V, Yoshida T, Gomez JA, Ishikawa K, Sasaguri H, Cohen HY, Sinclair DA, Mizusawa H, Matsuyama S (2007) Bax-inhibiting peptide protects cells from polyglutamine toxicity caused by Ku70 acetylation. Cell Death Differ 14:2058–2067PubMedCrossRefGoogle Scholar
  31. 31.
    Löfgren K, Wahlström A, Lundberg P, Langel Ü, Gräslund A, Bedecs K (2008) Antiprion properties of prion protein-derived cell-penetrating peptides. FASEB J 22:2177–2184PubMedCrossRefGoogle Scholar
  32. 32.
    Hirose M, Takatori M, Kuroda Y, Abe M, Murata E, Isada T, Ueda K, Shigemi K, Shibazaki M, Shimizu F, Hirata M, Fukazawa K, Sakaguchi M, Kegeyama K, Tanaka Y (2008) Effect of synthetic cell-penetrating peptides on TrkA activity in PC12 cells. J Pharamcol Sci 106:107–113CrossRefGoogle Scholar
  33. 33.
    Choi J-M, Ahn M-H, Chae W-J, Jung Y-G, Park J-C, Park J-W, Park T-K, Lee J-H, Seo B-F, Kim K-D, Kim E-S, Lee D-H, Lee S-K, Lee S-K (2006) Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nat Med 12:574–579PubMedCrossRefGoogle Scholar
  34. 34.
    McCusker CT, Wang Y, Shan J, Kinyanjui MW, Villeneuve A, Michael H, Fixman ED (2007) Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominant-negative STAT-6 peptide. J Immunol 179:2556–2564PubMedGoogle Scholar
  35. 35.
    Makino E, Sakaguchi N, Iwatsuki K, Huh N-H (2004) Introduction of an N-terminal peptide of S100C/A11 into human cells induces apoptotic cell death. J Mol Med 82:612–620PubMedCrossRefGoogle Scholar
  36. 36.
    Keleman BR, Hsiao K, Goueli SA (2002) Selective in vivo inhibition of mitogen-activated protein kinase activation using cell-permeable peptides. J Biol Chem 277:8741–8748CrossRefGoogle Scholar
  37. 37.
    Jones S, Farquhar M, Martin A, Howl J (2005) Intracellular translocation of the decapeptide carboxyl terminal of Gi3α induces the dual phosphorylation of p42/p44 MAP kinases. Biochim Biophys Acta 1745:207–214PubMedCrossRefGoogle Scholar
  38. 38.
    Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev 61:953–964PubMedCrossRefGoogle Scholar
  39. 39.
    Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840PubMedCrossRefGoogle Scholar
  40. 40.
    Vanhee P, van der Sloot AM, Verschueren E, Serrano L, Rousseau F, Schymkowitz J (2011) Computational design of peptide ligands. Trends Biotechnol 29:231–239PubMedCrossRefGoogle Scholar
  41. 41.
    Verdurmen WPR, Brock R (2011) Biological responses towards cationic peptides and drug carriers. Trends Pharmacol Sci 32:116–124PubMedCrossRefGoogle Scholar
  42. 42.
    Brugnano J, Ward BC, Panitch A (2010) Cell-penetrating peptides can exert biological activity: a review. BioMol Concepts 1:109–116CrossRefGoogle Scholar
  43. 43.
    Saar K, Lindgren M, Hansen M, Eiríksdóttir E, Jiang Y, Rosenthal-Aizman K, Sassian M, Langel Ü (2005) Cell-penetrating peptides: a comparative membrane toxicity study. Anal Biochem 345:55–65PubMedCrossRefGoogle Scholar
  44. 44.
    Ward B, Seal BL, Brophy CM, Panitch A (2009) Design of a bioactive cell-penetrating peptide: when a transduction domain does more than transducer. J Pept Sci 15:668–674PubMedCrossRefGoogle Scholar
  45. 45.
    Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590PubMedCrossRefGoogle Scholar
  46. 46.
    Ter-Avetisyan G, Tünnemann G, Nowak D, Nitschke M, Herrmann A, Drab M, Cardoso MC (2009) Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem 284:3370–3378PubMedCrossRefGoogle Scholar
  47. 47.
    Räägel H, Säälik P, Hansen M, Langel Ü, Pooga M (2009) CPP–protein constructs induce a population of non-acidic vesicles during trafficking through endo-lysosomal pathway. J Control Release 139:10–117CrossRefGoogle Scholar
  48. 48.
    Fry DC, Vasilev LT (2005) Targeting protein–protein interactions for cancer therapy. J Mol Med 83:955–963PubMedCrossRefGoogle Scholar
  49. 49.
    D’Andrea LD, Del Gatto A, Pedone C, Benedetti E (2006) Peptide-based molecules in angiogenesis. Chem Biol Drug Des 67:115–126PubMedCrossRefGoogle Scholar
  50. 50.
    Low W, Mortlock A, Petrovska L, Dottorini T, Dougan G, Crisanti A (2007) Functional cell permeable motifs within medically relevant proteins. J Biotechnol 129:55–564CrossRefGoogle Scholar
  51. 51.
    Moore EE, Kuestener RE, Stroop SD, Grant FJ, Matthewes SL, Brady CL, Sexton PM, Findlay DM (1995) Functionally different isoforms of the human calcitonin receptor result from alternative splicing of the gene transcript. Mol Endocrinol 9:959–968PubMedCrossRefGoogle Scholar
  52. 52.
    Nussenzveig DR, Thaw CN, Gershengorn MC (1994) Inhibition of inositol phosphate second messenger formation by intracellular loop one of a human calcitonin receptor. J Biol Chem 269:28123–28129PubMedGoogle Scholar
  53. 53.
    Rivinoja A, Laakkonen P (2011) Identification of homing peptides using the in vivo phage display technology. In: Langel Ü (ed) Cell-penetrating peptides. Methods and Protocols. Humana Press, New York, pp 401–415CrossRefGoogle Scholar
  54. 54.
    Aina OH, Liu R, Sutcliffe JL, Marik J, Pan C-X, Lam KS (2007) From combinatorial chemistry to cancer-targeting peptides. Mol Pharm 5:631–651CrossRefGoogle Scholar
  55. 55.
    Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci USA 101:17867–17872PubMedCrossRefGoogle Scholar
  56. 56.
    Chorev M, Goodman M (1995) Recent developments in retro peptides and proteins—an ongoing topochemical exploration. Trends Biotechnol 13:438–445PubMedCrossRefGoogle Scholar
  57. 57.
    Howl J, Jones S (2009) Transport molecules using reverse sequence HIV-Tat polypeptides: not just any old Tat? Expert Opin Ther Pat 19:1329–1333PubMedCrossRefGoogle Scholar
  58. 58.
    Holm T, Räägel H, El Andaloussi S, Hein M, Mäe M, Pooga M, Langel Ü (2011) Retro-inversion of certain cell-penetrating peptides causes severe cellular toxicity. Biochim Biophys Acta 1808:1544–1551PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • John Howl
    • 1
  • Sabine Matou-Nasri
    • 2
  • David C. West
    • 3
  • Michelle Farquhar
    • 4
  • Jiřina Slaninová
    • 5
  • Claes-Göran Östenson
    • 6
  • Matjaz Zorko
    • 7
  • Pernilla Östlund
    • 8
  • Shant Kumar
    • 9
  • Ülo Langel
    • 8
  • Jane McKeating
    • 4
  • Sarah Jones
    • 1
  1. 1.Research Institute in Healthcare Science, School of Applied SciencesUniversity of WolverhamptonWolverhamptonUK
  2. 2.Institute for Biomedical Research into Human Movement and HealthManchester Metropolitan UniversityManchesterUK
  3. 3.School of Biological SciencesUniversity of LiverpoolLiverpoolUK
  4. 4.School of Immunity and InfectionUniversity of BirminghamBirminghamUK
  5. 5.Department of Antimicrobial PeptidesInstitute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech RepublicPrague 6Czech Republic
  6. 6.Department of Molecular Medicine and SurgeryKarolinska InstituteStockholmSweden
  7. 7.Medical Faculty, Institute of BiochemistryUniversity of LjubljanaLjubljanaSlovenia
  8. 8.Department of NeurochemistryStockholm UniversityStockholmSweden
  9. 9.Faculty of Medical and Human SciencesSchool of Medicine, University of ManchesterManchesterUK

Personalised recommendations