Advertisement

Cellular and Molecular Life Sciences

, Volume 69, Issue 17, pp 2895–2906 | Cite as

Crosstalk between the DNA damage response pathway and microRNAs

  • Cecil Han
  • Guohui Wan
  • Robert R. Langley
  • Xinna Zhang
  • Xiongbin Lu
Review

Abstract

MicroRNAs (miRNAs) are a family of small, non-coding RNAs that control gene expression at the post-transcriptional level by destabilizing and inhibiting translation of their target messenger RNAs. MiRNAs are involved in the regulation of a number of fundamental biological processes, and their dysregulation is thought to contribute to several disease processes. Emerging evidence suggests that miRNAs also play a critical role in protecting the heritable genome by contributing to the regulation of the DNA damage response. Consequently, much recent investigative effort has been directed towards an improved understanding of how miRNAs are regulated in response to DNA damage. In this review, we discuss the most recent findings regarding the regulation of miRNA expression and the functional roles of miRNAs in the DNA damage response.

Keywords

DNA damage response MicroRNA DNA repair Transcriptional regulation Post-transcriptional regulation MicroRNA biogenesis 

Notes

Acknowledgments

X.L. is supported by a National Institutes of Health grant (CA136549) and a research grant from the American Cancer Society (119135-RSG-10-185-01-TBE).

References

  1. 1.
    Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204PubMedCrossRefGoogle Scholar
  2. 2.
    Lindahl T, Barnes DE (2000) Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65:127–133PubMedCrossRefGoogle Scholar
  3. 3.
    Jackson SP (2009) The DNA-damage response: new molecular insights and new approaches to cancer therapy. Biochem Soc Trans 37(Pt 3):483–494PubMedCrossRefGoogle Scholar
  4. 4.
    Shiloh Y (2001) ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev 11(1):71–77PubMedCrossRefGoogle Scholar
  5. 5.
    Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078PubMedCrossRefGoogle Scholar
  6. 6.
    Huen MS, Chen J (2010) Assembly of checkpoint and repair machineries at DNA damage sites. Trends Biochem Sci 35(2):101–108PubMedCrossRefGoogle Scholar
  7. 7.
    Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25(5):409–433PubMedCrossRefGoogle Scholar
  8. 8.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  9. 9.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139PubMedCrossRefGoogle Scholar
  10. 10.
    Wan G, Mathur R, Hu X, Zhang X, Lu X (2011) miRNA response to DNA damage. Trends Biochem Sci 36(9):478–484PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang X, Lu X (2011) Posttranscriptional regulation of miRNAs in the DNA damage response. RNA Biol 8(6):960–963PubMedCrossRefGoogle Scholar
  12. 12.
    Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385PubMedCrossRefGoogle Scholar
  13. 13.
    Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26(3):775–783PubMedCrossRefGoogle Scholar
  14. 14.
    Saini HK, Griffiths-Jones S, Enright AJ (2007) Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 104(45):17719–17724PubMedCrossRefGoogle Scholar
  15. 15.
    Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966PubMedCrossRefGoogle Scholar
  16. 16.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419PubMedCrossRefGoogle Scholar
  17. 17.
    Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016PubMedCrossRefGoogle Scholar
  18. 18.
    Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744PubMedCrossRefGoogle Scholar
  19. 19.
    Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123(4):631–640PubMedCrossRefGoogle Scholar
  20. 20.
    Kai ZS, Pasquinelli AE (2010) MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol 17(1):5–10PubMedCrossRefGoogle Scholar
  21. 21.
    Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321(5895):1490–1492PubMedCrossRefGoogle Scholar
  22. 22.
    Chatterjee S, Grosshans H (2009) Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461(7263):546–549PubMedCrossRefGoogle Scholar
  23. 23.
    Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28(5):739–745PubMedCrossRefGoogle Scholar
  24. 24.
    Wouters MD, van Gent DC, Hoeijmakers JH, Pothof J (2011) MicroRNAs, the DNA damage response and cancer. Mutat Res 717(1–2):54–66PubMedGoogle Scholar
  25. 25.
    Hu H, Gatti RA (2011) MicroRNAs: new players in the DNA damage response. J Mol Cell Biol 3(3):151–158PubMedCrossRefGoogle Scholar
  26. 26.
    Lal A, Pan Y, Navarro F, Dykxhoorn DM, Moreau L, Meire E, Bentwich Z, Lieberman J, Chowdhury D (2009) miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 16(5):492–498PubMedCrossRefGoogle Scholar
  27. 27.
    Wang Y, Huang JW, Li M, Cavenee WK, Mitchell PS, Zhou X, Tewari M, Furnari FB, Taniguchi T (2011) MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression. Mol Cancer Res 9(8):1100–1111PubMedCrossRefGoogle Scholar
  28. 28.
    Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166PubMedCrossRefGoogle Scholar
  29. 29.
    Lu X, Nannenga B, Donehower LA (2005) PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 19(10):1162–1174PubMedCrossRefGoogle Scholar
  30. 30.
    Hu H, Du L, Nagabayashi G, Seeger RC, Gatti RA (2010) ATM is down-regulated by N-Myc-regulated microRNA-421. Proc Natl Acad Sci USA 107(4):1506–1511PubMedCrossRefGoogle Scholar
  31. 31.
    Jhanwar-Uniyal M (2003) BRCA1 in cancer, cell cycle and genomic stability. Frontiers Biosci J Virtual Library 8:s1107–s1117CrossRefGoogle Scholar
  32. 32.
    Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ, Beech J, Kulshrestha R, Abdelmohsen K, Weinstock DM, Gorospe M, Harris AL, Helleday T, Chowdhury D (2011) miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 41(2):210–220PubMedCrossRefGoogle Scholar
  33. 33.
    Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, Wojcik SE, Ferdin J, Kunej T, Xiao L, Manoukian S, Secreto G, Ravagnani F, Wang X, Radice P, Croce CM, Davuluri RV, Calin GA (2010) Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res 70(7):2789–2798PubMedCrossRefGoogle Scholar
  34. 34.
    Lane D, Levine A (2010) p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2(12):a000893PubMedCrossRefGoogle Scholar
  35. 35.
    Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF, Lim B (2009) MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23(7):862–876PubMedCrossRefGoogle Scholar
  36. 36.
    Hu W, Chan CS, Wu R, Zhang C, Sun Y, Song JS, Tang LH, Levine AJ, Feng Z (2010) Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 38(5):689–699PubMedCrossRefGoogle Scholar
  37. 37.
    Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo YY (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Nat Acad Sci USA 106(9):3207–3212PubMedCrossRefGoogle Scholar
  38. 38.
    Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299PubMedCrossRefGoogle Scholar
  39. 39.
    Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303PubMedCrossRefGoogle Scholar
  40. 40.
    Xiao J, Lin H, Luo X, Wang Z (2011) miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J 30(3):524–532PubMedCrossRefGoogle Scholar
  41. 41.
    Lu X, Nguyen TA, Donehower LA (2005) Reversal of the ATM/ATR-mediated DNA damage response by the oncogenic phosphatase PPM1D. Cell Cycle 4(8):1060–1064PubMedCrossRefGoogle Scholar
  42. 42.
    Fujimoto H, Onishi N, Kato N, Takekawa M, Xu XZ, Kosugi A, Kondo T, Imamura M, Oishi I, Yoda A, Minami Y (2006) Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death Differ 13(7):1170–1180PubMedCrossRefGoogle Scholar
  43. 43.
    Lu X, Nguyen TA, Zhang X, Donehower LA (2008) The Wip1 phosphatase and Mdm2: cracking the “Wip” on p53 stability. Cell Cycle 7(2):164–168PubMedCrossRefGoogle Scholar
  44. 44.
    Shreeram S, Demidov ON, Hee WK, Yamaguchi H, Onishi N, Kek C, Timofeev ON, Dudgeon C, Fornace AJ, Anderson CW, Minami Y, Appella E, Bulavin DV (2006) Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell 23(5):757–764PubMedCrossRefGoogle Scholar
  45. 45.
    Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H, Taya Y, Imai K (2000) p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 19(23):6517–6526PubMedCrossRefGoogle Scholar
  46. 46.
    Castellino RC, De Bortoli M, Lu X, Moon SH, Nguyen TA, Shepard MA, Rao PH, Donehower LA, Kim JY (2008) Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D. J Neurooncol 86(3):245–256PubMedCrossRefGoogle Scholar
  47. 47.
    Fuku T, Semba S, Yutori H, Yokozaki H (2007) Increased wild-type p53-induced phosphatase 1 (Wip1 or PPM1D) expression correlated with downregulation of checkpoint kinase 2 in human gastric carcinoma. Pathol Int 57(9):566–571PubMedCrossRefGoogle Scholar
  48. 48.
    Hirasawa A, Saito-Ohara F, Inoue J, Aoki D, Susumu N, Yokoyama T, Nozawa S, Inazawa J, Imoto I (2003) Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clin Cancer Res 9(6):1995–2004PubMedGoogle Scholar
  49. 49.
    Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven WG, Nguyen KC, Gabriele T, McCurrach ME, Marks JR, Hoey T, Lowe SW, Powers S (2002) Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 31(2):133–134PubMedCrossRefGoogle Scholar
  50. 50.
    Saito-Ohara F, Imoto I, Inoue J, Hosoi H, Nakagawara A, Sugimoto T, Inazawa J (2003) PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res 63(8):1876–1883PubMedGoogle Scholar
  51. 51.
    Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW, Appella E, Fornace AJ Jr (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet 36(4):343–350PubMedCrossRefGoogle Scholar
  52. 52.
    Choi J, Nannenga B, Demidov ON, Bulavin DV, Cooney A, Brayton C, Zhang Y, Mbawuike IN, Bradley A, Appella E, Donehower LA (2002) Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control. Mol Cell Biol 22(4):1094–1105PubMedCrossRefGoogle Scholar
  53. 53.
    Harrison M, Li J, Degenhardt Y, Hoey T, Powers S (2004) Wip1-deficient mice are resistant to common cancer genes. Trends Mol Med 10(8):359–361PubMedCrossRefGoogle Scholar
  54. 54.
    Nannenga B, Lu X, Dumble M, Van Maanen M, Nguyen TA, Sutton R, Kumar TR, Donehower LA (2006) Augmented cancer resistance and DNA damage response phenotypes in PPM1D null mice. Mol Carcinog 45(8):594–604PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang X, Wan G, Mlotshwa S, Vance V, Berger FG, Chen H, Lu X (2010) Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 70(18):7176–7186PubMedCrossRefGoogle Scholar
  56. 56.
    Ugalde AP, Ramsay AJ, de la Rosa J, Varela I, Marino G, Cadinanos J, Lu J, Freije JM, Lopez-Otin C (2011) Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J 30(11):2219–2232PubMedCrossRefGoogle Scholar
  57. 57.
    Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3 K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6(3):184–192PubMedCrossRefGoogle Scholar
  58. 58.
    Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100(4):387–390PubMedCrossRefGoogle Scholar
  59. 59.
    Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128(1):157–170PubMedCrossRefGoogle Scholar
  60. 60.
    Ming M, Feng L, Shea CR, Soltani K, Zhao B, Han W, Smart RC, Trempus CS, He YY (2011) PTEN positively regulates UVB-induced DNA damage repair. Cancer Res 71(15):5287–5295PubMedCrossRefGoogle Scholar
  61. 61.
    Ming M, Shea CR, Feng L, Soltani K, He YY (2011) UVA induces lesions resembling seborrheic keratoses in mice with keratinocyte-specific PTEN downregulation. J Invest Dermatol 131(7):1583–1586PubMedCrossRefGoogle Scholar
  62. 62.
    Tan G, Shi Y, Wu ZH (2012) MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN. Biochem Biophys Res Commun 417(1):546–551PubMedCrossRefGoogle Scholar
  63. 63.
    Cha HJ, Shin S, Yoo H, Lee EM, Bae S, Yang KH, Lee SJ, Park IC, Jin YW, An S (2009) Identification of ionizing radiation-responsive microRNAs in the IM9 human B lymphoblastic cell line. Int J Oncol 34(6):1661–1668PubMedGoogle Scholar
  64. 64.
    Faraonio R, Salerno P, Passaro F, Sedia C, Iaccio A, Bellelli R, Nappi TC, Comegna M, Romano S, Salvatore G, Santoro M, Cimino F (2011) A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts. Cell Death Differ 19(4):713–721Google Scholar
  65. 65.
    Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A, Servant N, Paccard C, Hupe P, Robert T, Ripoche H, Lazar V, Harel-Bellan A, Dessen P, Barillot E, Kroemer G (2010) miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res 70(5):1793–1803PubMedCrossRefGoogle Scholar
  66. 66.
    Josson S, Sung SY, Lao K, Chung LW, Johnstone PA (2008) Radiation modulation of microRNA in prostate cancer cell lines. Prostate 68(15):1599–1606PubMedCrossRefGoogle Scholar
  67. 67.
    Pothof J, Verkaik NS, van Ijcken W, Wiemer EA, Ta VT, van der Horst GT, Jaspers NG, van Gent DC, Hoeijmakers JH, Persengiev SP (2009) MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 28(14):2090–2099PubMedCrossRefGoogle Scholar
  68. 68.
    Shin S, Cha HJ, Lee EM, Lee SJ, Seo SK, Jin HO, Park IC, Jin YW, An S (2009) Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells. Int J Oncol 35(1):81–86PubMedGoogle Scholar
  69. 69.
    Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, Degraff W, Cook J, Harris CC, Gius D, Mitchell JB (2009) Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS ONE 4(7):e6377PubMedCrossRefGoogle Scholar
  70. 70.
    Wagner-Ecker M, Schwager C, Wirkner U, Abdollahi A, Huber PE (2010) MicroRNA expression after ionizing radiation in human endothelial cells. Radiat Oncol 5:25PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang X, Wan G, Berger FG, He X, Lu X (2011) The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol Cell 41(4):371–383PubMedCrossRefGoogle Scholar
  72. 72.
    Lin YL, Sengupta S, Gurdziel K, Bell GW, Jacks T, Flores ER (2009) p63 and p73 transcriptionally regulate genes involved in DNA repair. PLoS Genet 5(10):e1000680PubMedCrossRefGoogle Scholar
  73. 73.
    Su X, Chakravarti D, Cho MS, Liu L, Gi YJ, Lin YL, Leung ML, El-Naggar A, Creighton CJ, Suraokar MB, Wistuba I, Flores ER (2010) TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467(7318):986–990PubMedCrossRefGoogle Scholar
  74. 74.
    Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51(23 Pt 1):6304–6311PubMedGoogle Scholar
  75. 75.
    Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412PubMedCrossRefGoogle Scholar
  76. 76.
    Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752PubMedCrossRefGoogle Scholar
  77. 77.
    Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67(18):8433–8438PubMedCrossRefGoogle Scholar
  78. 78.
    Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307PubMedCrossRefGoogle Scholar
  79. 79.
    Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67(18):8433–8438PubMedCrossRefGoogle Scholar
  80. 80.
    He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134PubMedCrossRefGoogle Scholar
  81. 81.
    Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199PubMedCrossRefGoogle Scholar
  82. 82.
    Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13):1586–1593PubMedCrossRefGoogle Scholar
  83. 83.
    Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 105(36):13421–13426PubMedCrossRefGoogle Scholar
  84. 84.
    Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, Orntoft TF, Andersen CL, Dobbelstein M (2008) p53-Responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68(24):10094–10104PubMedCrossRefGoogle Scholar
  85. 85.
    Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN, Jackson AL, Carleton MO, Linsley PS, Cleary MA, Chau BN (2008) Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res 68(24):10105–10112PubMedCrossRefGoogle Scholar
  86. 86.
    Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, Liu J, Tabatabai ZL, Kakar S, Deng G, Tanaka Y, Dahiya R (2011) MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 32(5):772–778PubMedCrossRefGoogle Scholar
  87. 87.
    Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF, Lu MH, Tang Y, Yu HY, Sun SH (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28(18):2719–2732PubMedCrossRefGoogle Scholar
  88. 88.
    Newman MA, Hammond SM (2010) Emerging paradigms of regulated microRNA processing. Genes Dev 24(11):1086–1092PubMedCrossRefGoogle Scholar
  89. 89.
    Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533PubMedCrossRefGoogle Scholar
  90. 90.
    Suzuki HI, Miyazono K (2011) Emerging complexity of microRNA generation cascades. J Biochem 149(1):15–25PubMedCrossRefGoogle Scholar
  91. 91.
    Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC, Wardrop J, Gregory DJ, Lane DP, Perkins ND, Fuller-Pace FV (2005) The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 24(3):543–553PubMedCrossRefGoogle Scholar
  92. 92.
    Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240PubMedCrossRefGoogle Scholar
  93. 93.
    Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K, Mihara M, Naitou M, Endoh H, Nakamura T, Akimoto C, Yamamoto Y, Katagiri T, Foulds C, Takezawa S, Kitagawa H, Takeyama K, O’Malley BW, Kato S (2007) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9(5):604–611PubMedCrossRefGoogle Scholar
  94. 94.
    Briata P, Chen CY, Giovarelli M, Pasero M, Trabucchi M, Ramos A, Gherzi R (2011) KSRP, many functions for a single protein. Front Biosci 16:1787–1796PubMedCrossRefGoogle Scholar
  95. 95.
    Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A, Gherzi R, Rosenfeld MG (2009) The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459(7249):1010–1014PubMedCrossRefGoogle Scholar
  96. 96.
    Guil S, Caceres JF (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 14(7):591–596PubMedCrossRefGoogle Scholar
  97. 97.
    Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10(8):987–993PubMedCrossRefGoogle Scholar
  98. 98.
    Paroo Z, Ye X, Chen S, Liu Q (2009) Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 139(1):112–122PubMedCrossRefGoogle Scholar
  99. 99.
    Zeng Y, Sankala H, Zhang X, Graves PR (2008) Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem J 413(3):429–436PubMedCrossRefGoogle Scholar
  100. 100.
    Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S (2003) MAPK pathways in radiation responses. Oncogene 22(37):5885–5896PubMedCrossRefGoogle Scholar
  101. 101.
    Miyoshi K, Miyoshi T, Siomi H (2010) Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics 284(2):95–103PubMedCrossRefGoogle Scholar
  102. 102.
    Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(7035):864–870PubMedCrossRefGoogle Scholar
  103. 103.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866PubMedCrossRefGoogle Scholar
  104. 104.
    Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355PubMedCrossRefGoogle Scholar
  105. 105.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Cecil Han
    • 1
  • Guohui Wan
    • 1
  • Robert R. Langley
    • 1
  • Xinna Zhang
    • 2
  • Xiongbin Lu
    • 1
  1. 1.Department of Cancer BiologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Gynecologic OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations