Cellular and Molecular Life Sciences

, Volume 69, Issue 16, pp 2671–2690

Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries

Review

Abstract

Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.

Keywords

Metabolic engineering Yeast Substrate range Biobutanol Isoprenoids Industrial biotechnology 

References

  1. 1.
    Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55(3):263–283PubMedCrossRefGoogle Scholar
  2. 2.
    Nielsen J, Keasling JD (2011) Synergies between synthetic biology and metabolic engineering. Nat Biotechnol 29(8):693–695PubMedCrossRefGoogle Scholar
  3. 3.
    Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25(3):132–137PubMedCrossRefGoogle Scholar
  4. 4.
    Tyo KE, Kocharin K, Nielsen J (2010) Toward design-based engineering of industrial microbes. Curr Opin Microbiol 13(3):255–262PubMedCrossRefGoogle Scholar
  5. 5.
    Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 8(1):122–131PubMedCrossRefGoogle Scholar
  6. 6.
    Conrad TM, Lewis NE, Palsson BO (2011) Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 7:509PubMedCrossRefGoogle Scholar
  7. 7.
    Petranovic D, Vemuri GN (2009) Impact of yeast systems biology on industrial biotechnology. J Biotechnol 144(3):204–211PubMedCrossRefGoogle Scholar
  8. 8.
    Lee JW, Kim TY, Jang YS, Choi S, Lee SY (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29(8):370–378PubMedCrossRefGoogle Scholar
  9. 9.
    Saling P (2005) Eco-efficiency analysis of biotechnological processes. Appl Microbiol Biotechnol 68(1):1–8PubMedCrossRefGoogle Scholar
  10. 10.
    Chandel AK, Singh OV (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘Biofuel’. Appl Microbiol Biotechnol 89(5):1289–1303PubMedCrossRefGoogle Scholar
  11. 11.
    Elkins JG, Raman B, Keller M (2010) Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr Opin Biotechnol 21(5):657–662PubMedCrossRefGoogle Scholar
  12. 12.
    Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14(3):259–263PubMedCrossRefGoogle Scholar
  13. 13.
    Krivoruchko A, Siewers V, Nielsen J (2011) Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol J 6(3):262–276PubMedCrossRefGoogle Scholar
  14. 14.
    Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72(3):379–412PubMedCrossRefGoogle Scholar
  15. 15.
    de Jong B, Siewers V, Nielsen J (2011) Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr Opin Biotechnol (in press)Google Scholar
  16. 16.
    Kim IK, Roldao A, Siewers V, Nielsen J (2012) A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 12(2):228–248Google Scholar
  17. 17.
    Guadalupe Medina V, Almering MJ, van Maris AJ, Pronk JT (2010) Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 76(1):190–195PubMedCrossRefGoogle Scholar
  18. 18.
    Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21PubMedCrossRefGoogle Scholar
  19. 19.
    Yu KO, Jung J, Kim SW, Park CH, Han SO (2012) Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol Bioeng 109(1):110–115PubMedCrossRefGoogle Scholar
  20. 20.
    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943PubMedCrossRefGoogle Scholar
  21. 21.
    Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483PubMedCrossRefGoogle Scholar
  22. 22.
    Lee W, Dasilva NA (2006) Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab Eng 8(1):58–65PubMedCrossRefGoogle Scholar
  23. 23.
    Toivari M, Maaheimo H, Penttilä M, Ruohonen L (2010) Enhancing the flux of d-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of d-ribose and ribitol. Appl Microbiol Biot 85(3):731–739CrossRefGoogle Scholar
  24. 24.
    Zhao L, Wang J, Zhou J, Liu L, Du G, Chen J (2011) Modification of carbon flux in Saccharomyces cerevisiae to improve l-lactic acid production. Wei Sheng Wu Xue Bao 51(1):50–58PubMedGoogle Scholar
  25. 25.
    Zhang B, Carlson R, Srienc F (2006) Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae. Appl Environ Microbiol 72(1):536–543PubMedCrossRefGoogle Scholar
  26. 26.
    van Maris AJ, Geertman JM, Vermeulen A, Groothuizen MK, Winkler AA, Piper MD, van Dijken JP, Pronk JT (2004) Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol 70(1):159–166PubMedCrossRefGoogle Scholar
  27. 27.
    Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng 12(6):518–525PubMedCrossRefGoogle Scholar
  28. 28.
    Madsen KM, Udatha GD, Semba S, Otero JM, Koetter P, Nielsen J, Ebizuka Y, Kushiro T, Panagiotou G (2011) Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS One 6(3):e14763PubMedCrossRefGoogle Scholar
  29. 29.
    Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73(13):4342–4350PubMedCrossRefGoogle Scholar
  30. 30.
    Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109(3):E111–118Google Scholar
  31. 31.
    Farhi M, Marhevka E, Masci T, Marcos E, Eyal Y, Ovadis M, Abeliovich H, Vainstein A (2011) Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab Eng 13(5):474–481PubMedCrossRefGoogle Scholar
  32. 32.
    Kirby J, Nishimoto M, Park JG, Withers ST, Nowroozi F, Behrendt D, Rutledge EJG, Fortman JL, Johnson HE, Anderson JV, Keasling JD (2010) Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry 71(13):1466–1473PubMedCrossRefGoogle Scholar
  33. 33.
    Eudes A, Baidoo E, Yang F, Burd H, Hadi M, Collins F, Keasling J, Loqué D (2011) Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 89(4):989–1000PubMedCrossRefGoogle Scholar
  34. 34.
    Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J (2010) Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 106(1):86–96PubMedGoogle Scholar
  35. 35.
    Tavares S, Grotkjaer T, Obsen T, Haslam RP, Napier JA, Gunnarsson N (2011) Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel {delta}5-desaturase from Paramecium tetraurelia. Appl Environ Microbiol 77(5):1854–1861PubMedCrossRefGoogle Scholar
  36. 36.
    Millis JRKWI, Maurina-Brunker JAWI, McMullin TWMWI (2003) Production of farnesol and geranylgeraniol. US Patent US 2003/0092144 A1Google Scholar
  37. 37.
    Sauer M, Branduardi P, Valli M, Porro D (2004) Production of l-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii. Appl Environ Microbiol 70(10):6086–6091PubMedCrossRefGoogle Scholar
  38. 38.
    Rico J, Pardo E, Orejas M (2010) Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae. Appl Environ Microbiol 76(19):6449–6454PubMedCrossRefGoogle Scholar
  39. 39.
    Mutka SC, Bondi SM, Carney JR, Da Silva NA, Kealey JT (2006) Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 6(1):40–47PubMedCrossRefGoogle Scholar
  40. 40.
    Albertsen L, Chen Y, Bach LS, Rattleff S, Maury J, Brix S, Nielsen J, Mortensen UH (2011) Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microbiol 77(3):1033–1040PubMedCrossRefGoogle Scholar
  41. 41.
    Becker JV, Armstrong GO, van der Merwe MJ, Lambrechts MG, Vivier MA, Pretorius IS (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4(1):79–85PubMedCrossRefGoogle Scholar
  42. 42.
    Brochado AR, Matos C, Moller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact 9:84PubMedCrossRefGoogle Scholar
  43. 43.
    Mapelli V, Hillestrøm PR, Kápolna E, Larsen EH, Olsson L (2011) Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine. Metab Eng 13(3):282–293PubMedCrossRefGoogle Scholar
  44. 44.
    Siewers V, San-Bento R, Nielsen J (2010) Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae. Biotechnol Bioeng 106(5):841–844PubMedCrossRefGoogle Scholar
  45. 45.
    Vai M, Brambilla L, Orlandi I, Rota N, Ranzi BM, Alberghina L, Porro D (2000) Improved secretion of native human insulin-like growth factor 1 from gas1 mutant Saccharomyces cerevisiae cells. Appl Environ Microbiol 66(12):5477–5479PubMedCrossRefGoogle Scholar
  46. 46.
    Egel-Mitani M, Andersen AS, Diers II, Hach M, Thim L, Hastrup S, Vad K (2000) Yield improvement of heterologous peptides expressed in yps1-disrupted Saccharomyces cerevisiae strains. Enzyme Microb Technol 26(9–10):671–677PubMedCrossRefGoogle Scholar
  47. 47.
    Hackel BJ, Huang D, Bubolz JC, Wang XX, Shusta EV (2006) Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae. Pharm Res 23(4):790–797PubMedCrossRefGoogle Scholar
  48. 48.
    Vellanki RN, Komaravelli N, Tatineni R, Mangamoori LN (2007) Expression of hepatitis B surface antigen in Saccharomyces cerevisiae utilizing glyceraldehyde-3-phosphate dehydrogenase promoter of Pichia pastoris. Biotechnol Lett 29(2):313–318PubMedCrossRefGoogle Scholar
  49. 49.
    Lowin T, Raab U, Schroeder J, Franssila R, Modrow S (2005) Parvovirus B19 VP2-proteins produced in Saccharomyces cerevisiae: comparison with VP2-particles produced by baculovirus-derived vectors. J Vet Med B Infect Dis Vet Public Health 52(7–8):348–352PubMedCrossRefGoogle Scholar
  50. 50.
    Chigira Y, Oka T, Okajima T, Jigami Y (2008) Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology 18(4):303–314PubMedCrossRefGoogle Scholar
  51. 51.
    Rakestraw JA, Sazinsky SL, Piatesi A, Antipov E, Wittrup KD (2009) Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng 103(6):1192–1201PubMedCrossRefGoogle Scholar
  52. 52.
    Kim E-J, Park Y-K, Lim H-K, Park Y-C, Seo J-H (2009) Expression of hepatitis B surface antigen S domain in recombinant Saccharomyces cerevisiae using GAL1 promoter. J Biotech 141(3–4):155–159CrossRefGoogle Scholar
  53. 53.
    Kim HJ, Lee SJ, Kim H-J (2010) Optimizing the secondary structure of human papillomavirus type 16 L1 mRNA enhances L1 protein expression in Saccharomyces cerevisiae. J Biotechnol 150(1):31–36PubMedCrossRefGoogle Scholar
  54. 54.
    Petranovic D, Tyo K, Vemuri GN, Nielsen J (2010) Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism. FEMS Yeast Res 10(8):1046–1059PubMedCrossRefGoogle Scholar
  55. 55.
    Snyder M, Gallagher JE (2009) Systems biology from a yeast omics perspective. FEBS Lett 583(24):3895–3899PubMedCrossRefGoogle Scholar
  56. 56.
    Canelas AB, Harrison N, Fazio A, Zhang J, Pitkanen JP, van den Brink J, Bakker BM, Bogner L, Bouwman J, Castrillo JI, Cankorur A, Chumnanpuen P, Daran-Lapujade P, Dikicioglu D, van Eunen K, Ewald JC, Heijnen JJ, Kirdar B, Mattila I, Mensonides FI, Niebel A, Penttila M, Pronk JT, Reuss M, Salusjarvi L, Sauer U, Sherman D, Siemann-Herzberg M, Westerhoff H, de Winde J, Petranovic D, Oliver SG, Workman CT, Zamboni N, Nielsen J (2010) Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat Commun 1:145PubMedCrossRefGoogle Scholar
  57. 57.
    Alberghina L, Cirulli C (2010) Proteomics and systems biology to tackle biological complexity: yeast as a case study. Proteomics 10(24):4337–4341PubMedCrossRefGoogle Scholar
  58. 58.
    Josling T, Blandford D, Earley J (2010) Biofuel and biomass subsidies in the US, EU and Brazil: towards a transparent system of notification. IPC position paperGoogle Scholar
  59. 59.
    Vennestrom PN, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed Engl 50(45):10502–10509PubMedCrossRefGoogle Scholar
  60. 60.
    Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. (Tech Rep ORNL/TM-2006/66, Oak Ridge National Laboratory, Oak Ridge, TN). Also available at http://feedstockreviewornlgov/pdf/billion_ton_visionpdf
  61. 61.
    Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953PubMedCrossRefGoogle Scholar
  62. 62.
    Pronk JT, van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Anton Leeuw Int J G 90(4):391–418CrossRefGoogle Scholar
  63. 63.
    Bettiga M, Gorwa-Grauslund MF, Hahn-Hägerdal B (2009) Metabolic engineering in yeast. In: The metabolic pathway engineering handbook. Metabolic pathway engineering handbook. CRC Press, Boca Raton pp 22-21–22-48Google Scholar
  64. 64.
    Den Haan R, Rose SH, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9(1):87–94CrossRefGoogle Scholar
  65. 65.
    Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A (2004) Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Appl Environ Microbiol 70(8):5037–5040PubMedCrossRefGoogle Scholar
  66. 66.
    Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70(9):5407–5414PubMedCrossRefGoogle Scholar
  67. 67.
    Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207–1212PubMedCrossRefGoogle Scholar
  68. 68.
    Siso MIG, Beccerra M, Prado SD, Rodriguez-Belmonte E, Cerdan ME (2002) Metabolic engineering for direct lactose utilization by Saccharomyces cerevisiae. Biotechnol Lett 24(17):1391–1396CrossRefGoogle Scholar
  69. 69.
    Ostergaard S, Roca C, Ronnow B, Nielsen J, Olsson L (2000) Physiological studies in aerobic batch cultivations of Saccharomyces cerevisiae strains harboring the MEL1 gene. Biotechnol Bioeng 68(3):252–259PubMedCrossRefGoogle Scholar
  70. 70.
    Dmytruk OV, Voronovsky AY, Abbas CA, Dmytruk KV, Ishchuk OP, Sibirny AA (2008) Overexpression of bacterial xylose isomerase and yeast host xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. FEMS Yeast Res 8(1):165–173PubMedCrossRefGoogle Scholar
  71. 71.
    Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS (2011) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng 108(3):621–631PubMedCrossRefGoogle Scholar
  72. 72.
    Wisselink HW, Toirkens MJ, Del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, van Maris AJ (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-arabinose. Appl Environ Microbiol 73(15):4881–4891PubMedCrossRefGoogle Scholar
  73. 73.
    Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, Labutti KM, Sun H, Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C, Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev IV, Gasch AP (2011) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci USA 108(32):13212–13217PubMedCrossRefGoogle Scholar
  74. 74.
    Ghosh A, Zhao H, Price ND (2011) Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae. PLoS One 6(11):e27316PubMedCrossRefGoogle Scholar
  75. 75.
    Garcia Sanchez R, Hahn-Hagerdal B, Gorwa-Grauslund MF (2010) PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae. Microb Cell Fact 9:40PubMedCrossRefGoogle Scholar
  76. 76.
    Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71(11):6465–6472PubMedCrossRefGoogle Scholar
  77. 77.
    Ostergaard S, Olsson L, Johnston M, Nielsen J (2000) Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat Biotechnol 18(12):1283–1286PubMedCrossRefGoogle Scholar
  78. 78.
    Hong KK, Vongsangnak W, Vemuri GN, Nielsen J (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci USA 108(29):12179–12184PubMedCrossRefGoogle Scholar
  79. 79.
    Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JH, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108(2):504–509PubMedCrossRefGoogle Scholar
  80. 80.
    Teunissen AWRH, De Bont JAM (2010) Xylose isomerase genes and their use in fermentation of pentose sugars. WO Patent WO 2010/074577 A1Google Scholar
  81. 81.
    Op Den Camp HJMO, Harhangi HR, Van Der Drift C, Pronk JT (2009) Transformed eukaryotic cells that directly convert xylose to xylulose. US Patent US 7622284Google Scholar
  82. 82.
    Klaassen P, van der Laan JM, Gielesen BEM, van Suylekom GP (2009) A pentose sugar fermenting cell. WO Patent WO 2009/109630 A1Google Scholar
  83. 83.
    Klaassen P, van der Laan JM, Gielesen BEM, van Suylekom GP (2009) A pentose sugar fermenting cell. WO Patent WO 2009/109631 A1Google Scholar
  84. 84.
    Ho NWY, Chen Z-D (2009) Stable recombinant yeasts for fermenting xylose to ethanol. US Patent US 7527927Google Scholar
  85. 85.
    De Bont JAM (2009) Novel arabinose-fermenting eukaryotic cells. WO Patent WO 2009/011591 A2Google Scholar
  86. 86.
    Van Maris AJA, Pronk JT, Wisselink W, Van Dijken JP, Winkler AA, De Winde H (2008) Metabolic engineering of arabinose- fermenting yeast cells. WO Patent WO 2008/041840 A1Google Scholar
  87. 87.
    Hughes SR, Butt TR (2010) Saccharomyces cerevisiae engineered for xylose utilization. WO Patent WO 2010/039692 A2Google Scholar
  88. 88.
    Mainguet SE, Liao JC (2010) Bioengineering of microorganisms for C3 to C5 alcohols production. Biotechnol J 5(12):1297–1308PubMedCrossRefGoogle Scholar
  89. 89.
    Yan Y, Liao JC (2009) Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36(4):471–479PubMedCrossRefGoogle Scholar
  90. 90.
    Feldman RMR, Gunawardena U, Urano J, Meinhold P, Aristidou A, Dundon CA, Smith C (2011) Yeast organism producing isobutanol at a high yield. US Patent US 2011/0020889 A1Google Scholar
  91. 91.
    Gunawardena U, Meinhold P, Peters MW, Urano J, Feldman RMR (2010) Butanol production by metabolically engineered yeast. US Patent US 2010/0062505 A1Google Scholar
  92. 92.
    Ramey DE (2008) Butanol: the other alternative fuel. agricultural biofuels: technology, sustainability and profitability, 137–147. (http://nabc.cals.cornell.edu/pubs/nabc_19/NABC19_5Plenary2_Ramey.pdf)
  93. 93.
    Wallner T, Miers SA, McConnell S (2009) A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition engine. J Eng Gas Turb Power 131(3):032802. (http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000131000003032802000001&idtype=cvips&gifs=yes)Google Scholar
  94. 94.
    Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87(4):1303–1315PubMedCrossRefGoogle Scholar
  95. 95.
    Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11(4–5):262–273PubMedCrossRefGoogle Scholar
  96. 96.
    Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74(8):2259–2266PubMedCrossRefGoogle Scholar
  97. 97.
    Dickinson JR, Harrison SJ, Hewlins MJ (1998) An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 273(40):25751–25756PubMedCrossRefGoogle Scholar
  98. 98.
    Porro D, Gasser B, Fossati T, Maurer M, Branduardi P, Sauer M, Mattanovich D (2011) Production of recombinant proteins and metabolites in yeasts: when are these systems better than bacterial production systems? Appl Microbiol Biotechnol 89(4):939–948PubMedCrossRefGoogle Scholar
  99. 99.
    Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101(2):209–228PubMedCrossRefGoogle Scholar
  100. 100.
    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89PubMedCrossRefGoogle Scholar
  101. 101.
    Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36PubMedCrossRefGoogle Scholar
  102. 102.
    Donaldson GK, Eliot AC, Flint D, Maggio-Hall LA, Nagarajan V (2011) Fermentive production of four carbon alcohols. US Patent US 7993889 B1Google Scholar
  103. 103.
    Anthony LC, Huang LL, Ye RW (2010) Production of isobutanol in yeast mitochondria. US Patent US 2010/0129886 A1Google Scholar
  104. 104.
    Festel G, Boles E, Weber C, Brat D (2011) Fermentative production of isobutanol with yeast. US Patent US 2011/0053235 A1Google Scholar
  105. 105.
    Urano J, Dundon CA, Meinhold P, Feldman RMR, Aristidou A, Hawkins A, Buelter T, Peters M, Lies D, Porter-Scheinman S, Berry R, Kalra I (2011) Cytosolic isobutanol pathway localization for the production of isobutanol. US Patent US 2011/0076733 A1Google Scholar
  106. 106.
    Buelter T, Meinhold P, Smith C, Aristidou A, Dundon CA, Urano J (2010) Engineered microorganisms for the production of one or more target compounds. WO Patent WO 2010/075504 A2Google Scholar
  107. 107.
    Bakker BM, Overkamp KM, van Maris AJ, Kotter P, Luttik MA, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25(1):15–37PubMedCrossRefGoogle Scholar
  108. 108.
    Dundon CA, Aristidou A, Hawkins A, Lies D, Albert LH (2011) Methods of increasing dihydroxy acid dehydratase activity to improve production of fuels, chemicals, and amino acids. US Patent US 2011/0183393 A1Google Scholar
  109. 109.
    Liao D-I, Nelson MJ, Bramucci MG (2008) Fermentive production of isobutanol using highly active ketol-acid reductoisomerase enzymes. US Patent US 2008/0261230 A1Google Scholar
  110. 110.
    Donaldson GK, Huang LL, Maggio-Hall LA, Nagarajan V, Nakamura CE, Suh W (2008) Fermentive production of four carbon alcohols. US Patent US 2008/0182308 A1Google Scholar
  111. 111.
    Donaldson GK, Eliot AC, Nagarajan V, Nakamura CE, Huang LL (2007) Fermentive production of four carbon alcohols. US Patent US 2007/0259410 A1Google Scholar
  112. 112.
    Flint D, Rothman SC, Suh W, Tomb J-F, Ye RW (2010) Identification and use of bacterial [2Fe-2S] dihydroxy-acid dehydratases. US Patent US 2010/0081154 A1Google Scholar
  113. 113.
    Anthony LC, Maggio-Hall LA, Rothman SC, Tomb J-F (2010) Increased heterologous Fe-S enzyme activity in yeast. US Patent US 2010/0081179 A1Google Scholar
  114. 114.
    Van Dyk TK (2010) Yeast with increased butanol tolerance involving a multidrug efflux pump gene. US Patent US 2010/0221801 A1Google Scholar
  115. 115.
    Bramucci MG, Larossa RA, Smulski DR (2010) Yeast with increased butanol tolerance involving cell wall integrity pathway. US Patent US 2010/0167364 A1Google Scholar
  116. 116.
    Bramucci MG, Larossa RA, Smulski DR (2010) Yeast with increased butanol tolerance involving high osmolarity/glycerol response pathway. US Patent US 2010/0167365 A1Google Scholar
  117. 117.
    Bramucci MG, Larossa RA, Singh M (2010) Yeast with increased butanol tolerance involving filamentous growth response. US Patent US 2010/0167363 A1Google Scholar
  118. 118.
    Larossa RA (2009) Yeast strain for production of four carbon alcohols. US Patent US 2009/0280546 A1Google Scholar
  119. 119.
    Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153(1–3):13–20PubMedCrossRefGoogle Scholar
  120. 120.
    Maury J, Asadollahi MA, Moller K, Clark A, Nielsen J (2005) Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol 100:19–51PubMedGoogle Scholar
  121. 121.
    Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22(6):775–783Google Scholar
  122. 122.
    Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73(5):980–990PubMedCrossRefGoogle Scholar
  123. 123.
    Kirby J, Keasling JD (2008) Metabolic engineering of microorganisms for isoprenoid production. Nat Prod Rep 25(4):656–661PubMedCrossRefGoogle Scholar
  124. 124.
    Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9(2):160–168PubMedCrossRefGoogle Scholar
  125. 125.
    Clark A, Maury J, Asadollahi MA, MØLler K, Nielsen J, Schalk M (2009) Method for producing terpenes and MEP-transformed microorganisms therefore. US Patent US 2009/0155874 A1Google Scholar
  126. 126.
    Maury J, Asadollahi MA, Moller K, Schalk M, Clark A, Formenti LR, Nielsen J (2008) Reconstruction of a bacterial isoprenoid biosynthetic pathway in Saccharomyces cerevisiae. FEBS Lett 582(29):4032–4038PubMedCrossRefGoogle Scholar
  127. 127.
    Muntendam R, Melillo E, Ryden A, Kayser O (2009) Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Appl Microbiol Biotechnol 84(6):1003–1019PubMedCrossRefGoogle Scholar
  128. 128.
    Chang MC, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2(12):674–681PubMedCrossRefGoogle Scholar
  129. 129.
    Ubersax JA, Platt DM (2010) Genetically modified microbes producing isoprenoids. WO Patent WO 2010/141452 A1Google Scholar
  130. 130.
    Tsuruta H, Lenihan JR, Regentin R (2009) Production of isoprenoids. WO Patent WO 2009/042070 A2Google Scholar
  131. 131.
    Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8(7):1155–1163PubMedCrossRefGoogle Scholar
  132. 132.
    Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802PubMedCrossRefGoogle Scholar
  133. 133.
    Keasling JD, Newman JD, Pitera DJ (2010) Method for enhancing production of isoprenoid compounds. US Patent US 7670825Google Scholar
  134. 134.
    Johnston M, Flick JS, Pexton T (1994) Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol 14(6):3834–3841PubMedGoogle Scholar
  135. 135.
    Asadollahi MA, Maury J, Moller K, Nielsen KF, Schalk M, Clark A, Nielsen J (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99(3):666–677PubMedCrossRefGoogle Scholar
  136. 136.
    Kizer J (2009) Methods of increasing isoprenoid or isoprenoid precursor production. WO Patent WO 2009/005704 A1Google Scholar
  137. 137.
    Chang M, Krupa RA, Ro D-K, Yoshikuni Y, Keasling JD (2009) Nucleic acids encoding modified cytochrome P450 enzymes and methods of use thereof. US Patent US 2009/0098626 A1Google Scholar
  138. 138.
    Bajad S, Leavell M (2009) Methods of monitoring metabolic pathways. WO Patent WO 2009/097339 A1Google Scholar
  139. 139.
    Millis JR, Maurina-Brunker J, McMullin TW (2011) Production of isoprenoids. US Patent US 7927862Google Scholar
  140. 140.
    Julien B, Burlingame R (2010) Method for production of isoprenoids. US Patent US 2010/0151519 A1Google Scholar
  141. 141.
    Kinney AJ, Ni H, Rouviere PE, Suh W (2007) Method to increase hydrophobic compound titer in a recombinant microorganism. US Patent US 7256014Google Scholar
  142. 142.
    Brzostowicz PC, Rouviere PE, Pollak DM (2006) Biological production of tetradehydrolycopene. US Patent US 7087403Google Scholar
  143. 143.
    Bramucci MG, Brzostowicz PC, Cheng Q, Kostichka KN, Rouviere PE, Nagarajan V, Tao L, Thomas SM (2006) Genes involved in isoprenoid compound production. US Patent US 7034140Google Scholar
  144. 144.
    Cheng Q, Koffas M, Norton KC, Odom JM, Picataggio SK, Rouviere PE, Schenzle A, Tomb J-F (2002) Genes involved in isoprenoid compound production. WO Patent WO 2002/020733 A2Google Scholar
  145. 145.
    van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin ML, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindelov J, Pronk JT (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26(9–10):706–714PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Novo Nordisk Centre for BiosustainabilityDepartment of Chemical and Biological Engineering, Chalmers University of TechnologyGothenburgSweden
  2. 2.Research Institute of BiotechnologySeoulKorea

Personalised recommendations