Cellular and Molecular Life Sciences

, Volume 69, Issue 15, pp 2527–2541 | Cite as

Evolutionary functional analysis and molecular regulation of the ZEB transcription factors

  • Alexander Gheldof
  • Paco Hulpiau
  • Frans van Roy
  • Bram De Craene
  • Geert Berx


ZEB1 and ZEB2, which are members of the ZEB family of transcription factors, play a pivotal role in the development of the vertebrate embryo. However, recent evidence shows that both proteins can also drive the process of epithelial-mesenchymal transition during malignant cancer progression. The understanding of how both ZEBs act as transcription factors opens up new possibilities for future treatment of advanced carcinomas. This review gives insight into the molecular mechanisms that form the basis of the multitude of cellular processes controlled by both ZEB factors. By using an evolutionary approach, we analyzed how the specific organization of the different domains and regulatory sites in ZEB1 and ZEB2 came into existence. On the basis of this analysis, a detailed overview is provided of the different cofactors and post-translational mechanisms that are associated with ZEB protein functionality.


EMT ZEB transcription factors Evolution Neural crest cells CtBP TGF-beta 



This research was funded by grants from the FWO, the Geconcerteerde Onderzoeksacties of Ghent University, the Stichting tegen Kanker, Belgium, the Association for International Cancer Research (Scotland), the EU-FP6 framework program BRECOSM LSHC-CT-2004-503224, and the EU-FP7 framework program TuMIC 2008-201662. We acknowledge Dr. Amin Bredan for critical reading of the manuscript and the members of our research groups for valuable discussions.


  1. 1.
    Vandewalle C, Van Roy F, Berx G (2009) The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 66(5):773–787PubMedCrossRefGoogle Scholar
  2. 2.
    Peña C, Garcia JM, Silva J, Garcia V, Rodriguez R, Alonso I, Millan I, Salas C, de Herreros AG, Munoz A, Bonilla F (2005) E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet 14(22):3361–3370PubMedCrossRefGoogle Scholar
  3. 3.
    Sayan AE, Griffiths TR, Pal R, Browne GJ, Ruddick A, Yagci T, Edwards R, Mayer NJ, Qazi H, Goyal S, Fernandez S, Straatman K, Jones GD, Bowman KJ, Colquhoun A, Mellon JK, Kriajevska M, Tulchinsky E (2009) SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proc Natl Acad Sci USA 106(35):14884–14889PubMedCrossRefGoogle Scholar
  4. 4.
    Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S, Jung A, Kirchner T, Brabletz T (2006) A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131(3):830–840PubMedCrossRefGoogle Scholar
  5. 5.
    Berx G, Raspé E, Christofori G, Thiery JP, Sleeman JP (2007) Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis 24(8):587–597PubMedCrossRefGoogle Scholar
  6. 6.
    Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415–428PubMedCrossRefGoogle Scholar
  7. 7.
    Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev cell 14(6):818–829PubMedCrossRefGoogle Scholar
  8. 8.
    Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7(6):1267–1278PubMedCrossRefGoogle Scholar
  9. 9.
    Elloul S, Elstrand MB, Nesland JM, Tropa CG, Kvalheim G, Goldberg I, Reich R, Davidson B (2005) Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103(8):1631–1643PubMedCrossRefGoogle Scholar
  10. 10.
    Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hafler H, Becker K-F (2002) Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 161(5):1881–1891PubMedCrossRefGoogle Scholar
  11. 11.
    Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F, Berx G (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res 33(20):6566–6578PubMedCrossRefGoogle Scholar
  12. 12.
    Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep 11(9):670–677PubMedCrossRefGoogle Scholar
  13. 13.
    Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68(19):7846–7854PubMedCrossRefGoogle Scholar
  14. 14.
    Funahashi J, Sekido R, Murai K, Kamachi Y, Kondoh H (1993) Delta-crystallin enhancer binding protein delta EF1 is a zinc finger-homeodomain protein implicated in postgastrulation embryogenesis. Development 119(2):433–446PubMedGoogle Scholar
  15. 15.
    Williams TM, Moolten D, Burlein J, Romano J, Bhaerman R, Godillot A, Mellon M, Rauscher FJD, Kant JA (1991) Identification of a zinc finger protein that inhibits IL-2 gene expression. Science 254(5039):1791PubMedCrossRefGoogle Scholar
  16. 16.
    Franklin AJ, Jetton TL, Shelton KD, Magnuson MA (1994) BZP, a novel serum-responsive zinc finger protein that inhibits gene transcription. Mol Cell Biol 14(10):6773PubMedGoogle Scholar
  17. 17.
    Genetta T, Ruezinsky D, Kadesch T (1994) Displacement of an E-box-binding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Mol Cell Biol 14(9):6153–6163PubMedCrossRefGoogle Scholar
  18. 18.
    Watanabe Y, Kawakami K, Hirayama Y, Nagando K (1993) Transcription factors positively and negatively regulating the Na,K-ATPase alpha 1 subunit gene. J Biochem 114(6):849–855PubMedGoogle Scholar
  19. 19.
    Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, Nelles L, Wuytens G, Su MT, Bodmer R et al (1999) SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 274(29):20489PubMedCrossRefGoogle Scholar
  20. 20.
    Remacle JE, Kraft H, Lerchner W, Wuytens G, Collart C, Verschueren K, Smith JC, Huylebroeck D (1999) New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J 18(18):5073–5084PubMedCrossRefGoogle Scholar
  21. 21.
    Ikeda K, Kawakami K (1995) DNA binding through distinct domains of zinc-finger-homeodomain protein AREB6 has different effects on gene transcription. Eur J Biochem 233(1):73–82PubMedCrossRefGoogle Scholar
  22. 22.
    Holland LZ, Laudet V, Schubert M (2004) The chordate amphioxus: an emerging model organism for developmental biology. Cell Mol Life Sci 61(18):2290–2308PubMedCrossRefGoogle Scholar
  23. 23.
    Holland LZ, Short S (2008) Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain. Brain Behav Evol 72(2):91–105PubMedCrossRefGoogle Scholar
  24. 24.
    Lemaire P (2010) Evolutionary crossroads in developmental biology: the tunicates. Development 138(11):2143–2152CrossRefGoogle Scholar
  25. 25.
    Trainor PA, Melton KR, Manzanares M (2003) Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution. Int J Dev Biol 47(7–8):541–553PubMedGoogle Scholar
  26. 26.
    Van Hateren N, Shenton T, Borycki AG (2006) Expression of avian C-terminal binding proteins (Ctbp1 and Ctbp2) during embryonic development. Dev Dyn 235(2):490–495PubMedCrossRefGoogle Scholar
  27. 27.
    Hildebrand JD, Soriano P (2002) Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 22(15):5296–5307PubMedCrossRefGoogle Scholar
  28. 28.
    Nelles L, Van de Putte T, van Grunsven L, Huylebroeck D, Verschueren K (2003) Organization of the mouse Zfhx1b gene encoding the two-handed zinc finger repressor Smad-interacting protein-1. Genomics 82(4):460–469PubMedCrossRefGoogle Scholar
  29. 29.
    Takagi T, Moribe H, Kondoh H, Higashi Y (1998) DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development 125(1):21PubMedGoogle Scholar
  30. 30.
    Beltran M, Puig I, Peña C, Garcia JM, lvarez AB, Peña R, Bonilla F, De Herreros AG (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22(6):756PubMedCrossRefGoogle Scholar
  31. 31.
    Van de Putte T, Maruhashi M, Francis A, Nelles L, Kondoh H, Huylebroeck D, Higashi Y (2003) Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet 72(2):465–470PubMedCrossRefGoogle Scholar
  32. 32.
    Seuntjens E, Nityanandam A, Miquelajauregui A, Debruyn J, Stryjewska A, Goebbels S, Nave KA, Huylebroeck D, Tarabykin V (2009) Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat Neurosci 12(11):1373–1380PubMedCrossRefGoogle Scholar
  33. 33.
    Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, Krones A, Ohgi KA, Zhu P, Garcia-Bassets I, Liu F, Taylor H, Lozach J, Jayes FL, Korach KS, Glass CK, Fu X-D, Rosenfeld MG (2007) Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446(7138):882–887PubMedCrossRefGoogle Scholar
  34. 34.
    Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Natl Rev Mol Cell Biol 11(12):861–871CrossRefGoogle Scholar
  35. 35.
    Pires-daSilva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4(1):39–49PubMedCrossRefGoogle Scholar
  36. 36.
    Holland PWH, Booth HAF, Bruford EA (2007) Classification and nomenclature of all human homeobox genes. BMC Biol 5(1):47PubMedCrossRefGoogle Scholar
  37. 37.
    Mallo M, Wellik DM, Deschamps J (2010) Hox genes and regional patterning of the vertebrate body plan. Dev Biol 344(1):7–15PubMedCrossRefGoogle Scholar
  38. 38.
    Wolberger C (1996) Homeodomain interactions. Curr Opin Struct Biol 6(1):62–68PubMedCrossRefGoogle Scholar
  39. 39.
    Smith GE, Darling DS (2003) Combination of a zinc finger and homeodomain required for protein-interaction. Mol Biol Rep 30(4):199–206PubMedCrossRefGoogle Scholar
  40. 40.
    Pomerantz JL, Pabo CO, Sharp PA (1995) Analysis of homeodomain function by structure-based design of a transcription factor. Proc Natl Acad Sci 92(21):9752PubMedCrossRefGoogle Scholar
  41. 41.
    Gibson G, Schier A, LeMotte P, Gehring WJ (1990) The specificities of Sex combs reduced and Antennapedia are defined by a distinct portion of each protein that includes the homeodomain. Cell 62(6):1087–1103PubMedCrossRefGoogle Scholar
  42. 42.
    Li X, Murre C, McGinnis W (1999) Activity regulation of a Hox protein and a role for the homeodomain in inhibiting transcriptional activation. EMBO J 18(1):198–211PubMedCrossRefGoogle Scholar
  43. 43.
    Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4(6):1609PubMedGoogle Scholar
  44. 44.
    Evans RM, Hollenberg SM (1988) Zinc fingers: gilt by association. Cell 52(1):1–3PubMedCrossRefGoogle Scholar
  45. 45.
    Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231PubMedCrossRefGoogle Scholar
  46. 46.
    Brayer KJ, Segal DJ (2008) Keep your fingers off my DNA: protein–protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 50(3):111–131PubMedCrossRefGoogle Scholar
  47. 47.
    Nishimura G, Manabe I, Tsushima K, Fujiu K, Oishi Y, Imai Y, Maemura K, Miyagishi M, Higashi Y, Kondoh H, Nagai R (2006) DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Dev Cell 11(1):93–104PubMedCrossRefGoogle Scholar
  48. 48.
    Sekido R, Murai K, Funahashi J, Kamachi Y, Fujisawa-Sehara A, Nabeshima Y, Kondoh H (1994) The delta-crystallin enhancer-binding protein delta EF1 is a repressor of E2-box-mediated gene activation. Mol Cell Biol 14(9):5692–5700PubMedCrossRefGoogle Scholar
  49. 49.
    Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26(49):6979–6988PubMedCrossRefGoogle Scholar
  50. 50.
    Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24(14):2375–2385PubMedCrossRefGoogle Scholar
  51. 51.
    Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, de Herreros AG, Baulida J (2002) Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 277(42):39209PubMedCrossRefGoogle Scholar
  52. 52.
    Sanchez-Tillo E, Lazaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P, Postigo A (2010) ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 29(24):3490–3500PubMedCrossRefGoogle Scholar
  53. 53.
    Higashi Y, Moribe H, Takagi T, Sekido R, Kawakami K, Kikutani H, Kondoh H (1997) Impairment of T cell development in deltaEF1 mutant mice. J Exp Med 185(8):1467PubMedCrossRefGoogle Scholar
  54. 54.
    Wels C, Joshi S, Koefinger P, Bergler H, Schaider H (2011) Transcriptional activation of ZEB1 by Slug leads to cooperative regulation of the epithelial-mesenchymal transition-like phenotype in melanoma. J Invest Dermatol 131(9):1877–1885PubMedCrossRefGoogle Scholar
  55. 55.
    Dave N, Guaita-Esteruelas S, Gutarra S, Frias A, Beltran M, Peiro S, de Herreros AG (2011) Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J Biol Chem 286(14):12024–12032PubMedCrossRefGoogle Scholar
  56. 56.
    Renthal NE, Chen CC, Williams KC, Gerard RD, Prange-Kiel J, Mendelson CR (2010) miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci USA 107(48):20828–20833PubMedCrossRefGoogle Scholar
  57. 57.
    Liu Y, Xin Y, Ye F, Wang W, Lu Q, Kaplan HJ, Dean DC (2010) Taz-tead1 links cell–cell contact to zeb1 expression, proliferation, and dedifferentiation in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 51(7):3372–3378PubMedCrossRefGoogle Scholar
  58. 58.
    Bui T, Sequeira J, Wen TC, Sola A, Higashi Y, Kondoh H, Genetta T (2009) ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS One 4(2):e4373PubMedCrossRefGoogle Scholar
  59. 59.
    Testoni B, Borrelli S, Tenedini E, Alotto D, Castagnoli C, Piccolo S, Tagliafico E, Ferrari S, Vigano MA, Mantovani R (2006) Identification of new p63 targets in human keratinocytes. Cell Cycle 5(23):2805–2811PubMedCrossRefGoogle Scholar
  60. 60.
    Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R, Cohen Y, Jacob-Hirsch J, Ehrlich M, Ben-Sasson S, Goldfinger N, Loewenthal R, Gazit E, Rotter V, Berger R (2011) TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One 6(7):e21650PubMedCrossRefGoogle Scholar
  61. 61.
    Sanchez-Tillo E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A (2011) beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci USA 108(48):19204–19209PubMedCrossRefGoogle Scholar
  62. 62.
    Liu M, Su M, Lyons GE, Bodmer R (2006) Functional conservation of zinc-finger homeodomain gene zfh1/SIP1 in Drosophila heart development. Dev Genes Evol 216(11):683–693PubMedCrossRefGoogle Scholar
  63. 63.
    Sun W, Yang S, Shen W, Li H, Gao Y, Zhu T-H (2010) Identification of DeltaEF1 as a novel target that is negatively regulated by LMO2 in T-cell leukemia. Eur J Haematol 85(6):508–519PubMedCrossRefGoogle Scholar
  64. 64.
    Ikeda K, Halle JP, Stelzer G, Meisterernst M, Kawakami K (1998) Involvement of negative cofactor NC2 in active repression by zinc finger-homeodomain transcription factor AREB6. Mol Cell Biol 18(1):10–18PubMedGoogle Scholar
  65. 65.
    Mermelstein F, Yeung K, Cao J, Inostroza JA, Erdjument-Bromage H, Eagelson K, Landsman D, Levitt P, Tempst P, Reinberg D (1996) Requirement of a corepressor for Dr1-mediated repression of transcription. Genes Dev 10(8):1033PubMedCrossRefGoogle Scholar
  66. 66.
    Furusawa T, Moribe H, Kondoh H, Higashi Y (1999) Identification of CtBP1 and CtBP2 as corepressors of zinc finger-homeodomain factor delta EF1. Mol Cell Biol 19(12):8581PubMedGoogle Scholar
  67. 67.
    Papadopoulou V, Postigo A, Sanchez-Tillo E, Porter AC, Wagner SD (2010) ZEB1 and CtBP form a repressive complex at a distal promoter element of the BCL6 locus. Biochem J 427(3):541–550PubMedCrossRefGoogle Scholar
  68. 68.
    Postigo AA, Dean DC (1999) ZEB represses transcription through interaction with the corepressor CtBP. Proc Natl Acad Sci 96(12):6683–6688PubMedCrossRefGoogle Scholar
  69. 69.
    Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G (1993) A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J 12(2):469PubMedGoogle Scholar
  70. 70.
    Chinnadurai G (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 9(2):213–224PubMedCrossRefGoogle Scholar
  71. 71.
    Frisch SM (1991) Antioncogenic effect of adenovirus E1A in human tumor cells. Proc Natl Acad Sci USA 88(20):9077PubMedCrossRefGoogle Scholar
  72. 72.
    Gallimore PH, Turnell AS (2001) Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 20(54):7824–7835PubMedCrossRefGoogle Scholar
  73. 73.
    Grooteclaes ML, Frisch SM (2000) Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19(33):3823–3828PubMedCrossRefGoogle Scholar
  74. 74.
    van Grunsven LA, Taelman V, Michiels C, Verstappen G, Souopgui J, Nichane M, Moens E, Opdecamp K, Vanhomwegen J, Kricha S et al (2007) XSip1 neuralizing activity involves the co-repressor CtBP and occurs through BMP dependent and independent mechanisms. Dev Biol 306(1):34–49PubMedCrossRefGoogle Scholar
  75. 75.
    Nitta KR, Takahashi S, Haramoto Y, Fukuda M, Tanegashima K, Onuma Y, Asashima M (2007) The N-terminus zinc finger domain of Xenopus SIP1 is important for neural induction, but not for suppression of Xbra expression. Int J Dev Biol 51(4):321PubMedCrossRefGoogle Scholar
  76. 76.
    van Grunsven LA, Michiels C, Van de Putte T, Nelles L, Wuytens G, Verschueren K, Huylebroeck D (2003) Interaction between Smad-interacting protein-1 and the corepressor C-terminal binding protein is dispensable for transcriptional repression of E-cadherin. J Biol Chem 278(28):26135PubMedCrossRefGoogle Scholar
  77. 77.
    Shi Y, Sawada J, Sui G, Affar EB, Whetstine JR, Lan F, Ogawa H, Luke MPS, Nakatani Y (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422(6933):735–738PubMedCrossRefGoogle Scholar
  78. 78.
    Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8(12):947–956PubMedCrossRefGoogle Scholar
  79. 79.
    Kagey MH, Melhuish TA, Wotton D (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113(1):127–137PubMedCrossRefGoogle Scholar
  80. 80.
    Lin X, Sun B, Liang M, Liang YY, Gast A, Hildebrand J, Brunicardi FC, Melchior F, Feng XH (2003) Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell 11(5):1389–1396PubMedCrossRefGoogle Scholar
  81. 81.
    Long J, Zuo D, Park M (2005) Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin. J Biol Chem 280(42):35477PubMedCrossRefGoogle Scholar
  82. 82.
    Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, Krones A, Ohgi KA, Zhu P, Garcia-Bassets I et al (2007) Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446(7138):882–887PubMedCrossRefGoogle Scholar
  83. 83.
    Costantino ME, Stearman RP, Smith GE, Darling DS (2002) Cell-specific phosphorylation of Zfhep transcription factor. Biochem Biophys Res Commun 296(2):368–373PubMedCrossRefGoogle Scholar
  84. 84.
    Verstappen G, van Grunsven LA, Michiels C, Van de Putte T, Souopgui J, Van Damme J, Bellefroid E, Vandekerckhove J, Huylebroeck D (2008) Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex. Hum Mol Genet 17(8):1175–1183PubMedCrossRefGoogle Scholar
  85. 85.
    Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994) TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127(6 Pt 2):2021–2036PubMedCrossRefGoogle Scholar
  86. 86.
    Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer–a double-edged sword. Trends Cell Biol 11(11):S44–51PubMedCrossRefGoogle Scholar
  87. 87.
    Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172PubMedCrossRefGoogle Scholar
  88. 88.
    Postigo AA (2003) Opposing functions of ZEB proteins in the regulation of the TGF-beta/BMP signaling pathway. EMBO J 22(10):2443–2452PubMedCrossRefGoogle Scholar
  89. 89.
    van Grunsven LA, Taelman V, Michiels C, Opdecamp K, Huylebroeck D, Bellefroid EJ (2006) deltaEF1 and SIP1 are differentially expressed and have overlapping activities during Xenopus embryogenesis. Dev Dyn 235(6):1491–1500PubMedCrossRefGoogle Scholar
  90. 90.
    Shirakihara T, Saitoh M, Miyazono K (2007) Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta. Mol Biol Cell 18(9):3533–3544PubMedCrossRefGoogle Scholar
  91. 91.
    Lindley LE, Briegel KJ (2010) Molecular characterization of TGF-beta-induced epithelial-mesenchymal transition in normal finite lifespan human mammary epithelial cells. Biochem Biophys Res Commun 399(4):659–664PubMedCrossRefGoogle Scholar
  92. 92.
    Rees JR, Onwuegbusi BA, Save VE, Alderson D, Fitzgerald RC (2006) In vivo and in vitro evidence for transforming growth factor-beta1-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Res 66(19):9583–9590PubMedCrossRefGoogle Scholar
  93. 93.
    Nakahata S, Yamazaki S, Nakauchi H, Morishita K (2010) Downregulation of ZEB1 and overexpression of Smad7 contribute to resistance to TGF-beta1-mediated growth suppression in adult T-cell leukemia/lymphoma. Oncogene 29(29):4157–4169PubMedCrossRefGoogle Scholar
  94. 94.
    Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 104(9):3432–3437PubMedCrossRefGoogle Scholar
  95. 95.
    Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D (2010) Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21(3):438–447PubMedCrossRefGoogle Scholar
  96. 96.
    Argast GM, Krueger JS, Thomson S, Sujka-Kwok I, Carey K, Silva S, O’Connor M, Mercado P, Mulford IJ, Young GD, Sennello R, Wild R, Pachter JA, Kan JL, Haley J, Rosenfeld-Franklin M, Epstein DM (2011) Inducible expression of TGF-beta, Snail and Zeb1 recapitulates EMT in vitro and in vivo in a NSCLC model. Clin Exp Metastasis 28(7):593–614PubMedCrossRefGoogle Scholar
  97. 97.
    Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y, Abbruzzese JL, Hortobagyi GN, Hung MC (2007) Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 67(19):9066–9076PubMedCrossRefGoogle Scholar
  98. 98.
    Hipp S, Walch A, Schuster T, Losko S, Laux H, Bolton T, Hofler H, Becker KF (2009) Activation of epidermal growth factor receptor results in snail protein but not mRNA overexpression in endometrial cancer. J Cell Mol Med 13(9B):3858–3867PubMedCrossRefGoogle Scholar
  99. 99.
    Braun J, Hoang-Vu C, Dralle H, Huttelmaier S (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29(29):4237–4244PubMedCrossRefGoogle Scholar
  100. 100.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601PubMedCrossRefGoogle Scholar
  101. 101.
    Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, Jandeleit-Dahm K, Burns WC, Thomas MC, Cooper ME, Kantharidis P (2011) miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes 60(1):280–287PubMedCrossRefGoogle Scholar
  102. 102.
    Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, Morris M, Wyatt L, Farshid G, Lim YY, Lindeman GJ, Shannon MF, Drew PA, Khew-Goodall Y, Goodall GJ (2011) An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 22(10):1686–1698PubMedCrossRefGoogle Scholar
  103. 103.
    Gal A, Sjoblom T, Fedorova L, Imreh S, Beug H, Moustakas A (2008) Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene 27(9):1218–1230PubMedCrossRefGoogle Scholar
  104. 104.
    Netherton SJ, Bonni S (2010) Suppression of TGF-beta-induced epithelial-mesenchymal transition like phenotype by a PIAS1 regulated sumoylation pathway in NMuMG epithelial cells. PLoS One 5(11):e13971PubMedCrossRefGoogle Scholar
  105. 105.
    Postigo AA, Depp JL, Taylor JJ, Kroll KL (2003) Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. The EMBO Journal 22(10):2453–2462PubMedCrossRefGoogle Scholar
  106. 106.
    Gemmill RM, Roche J, Potiron VA, Nasarre P, Mitas M, Coldren CD, Helfrich BA, Garrett-Mayer E, Bunn PA, Drabkin HA (2011) ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett 300(1):66–78PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Alexander Gheldof
    • 1
    • 2
  • Paco Hulpiau
    • 2
  • Frans van Roy
    • 2
    • 3
  • Bram De Craene
    • 1
    • 2
  • Geert Berx
    • 1
    • 2
  1. 1.Unit of Molecular and Cellular Oncology, Department for Molecular Biomedical ResearchVIBGhentBelgium
  2. 2.Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
  3. 3.Molecular Cell Biology Unit, Department for Molecular Biomedical ResearchVIBGhentBelgium

Personalised recommendations