Cellular and Molecular Life Sciences

, Volume 69, Issue 10, pp 1717–1731 | Cite as

Morphological and functional characterization of leech circulating blood cells: role in immunity and neural repair

  • Céline Boidin-Wichlacz
  • David Vergote
  • Christian Slomianny
  • Nathalie Jouy
  • Michel Salzet
  • Aurélie Tasiemski
Research Article


Unlike most invertebrates, annelids possess a closed vascular system distinct from the coelomic liquid. The morphology and the function of leech blood cells are reported here. We have demonstrated the presence of a unique cell type which participates in various immune processes. In contrast to the mammalian spinal cord, the leech CNS is able to regenerate and restore function after injury. The close contact of the blood with the nerve cord also led us to explore the participation of blood in neural repair. Our data evidenced that, in addition to exerting peripheral immune functions, leech blood optimizes CNS neural repair through the release of neurotrophic substances. Circulating blood cells also appeared able to infiltrate the injured CNS where, in conjunction with microglia, they limit the formation of a scar. In mammals, CNS injury leads to the generation of a glial scar that blocks the mechanism of regeneration by preventing axonal regrowth. The results presented here constitute the first description of neuroimmune functions of invertebrate blood cells. Understanding the basic function of the peripheral circulating cells and their interactions with lesioned CNS in the leech would allow us to acquire insights into the complexity of the neuroimmune response of the injured mammalian brain.


Blood Annelid Invertebrate Immunity Neural repair Central nervous system Antimicrobial peptide 



The authors are indebted to Loic Brunet for access to the Cellular Imaging Center (CCMIC, USTL, Lille 1, France) and for his help in acquiring pictures. We also thank Dr Maxence Wisztorski for assistance in mass spectrometry analysis. This work was supported by the Centre National de la Recherche scientifique (CNRS) and the Ministère de l’Enseignement, de la Recherche et des Technologies.


  1. 1.
    Hartenstein V (2006) Blood cells and blood cell development in the animal kingdom. Annu Rev Cell Dev Biol 22:677–712PubMedCrossRefGoogle Scholar
  2. 2.
    Evans CJ, Hartenstein V, Banerjee U (2003) Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev Cell 5(5):673–690PubMedCrossRefGoogle Scholar
  3. 3.
    Salzet M, Tasiemski A, Cooper E (2006) Innate immunity in lophotrochozoans: the annelids. Curr Pharm Des 12(24):3043–3050PubMedCrossRefGoogle Scholar
  4. 4.
    Adamowicz A (2005) Morphology and ultrastructure of the earthworm Dendrobaena veneta (Lumbricidae) coelomocytes. Tissue Cell 37(2):125–133PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper EL (1996) Earthworm immunity. Prog Mol Subcell Biol 15:10–45PubMedCrossRefGoogle Scholar
  6. 6.
    Stein E, Cooper EL (1981) The role of opsonins in phagocytosis by coelomocytes of the earthworm, Lumbricus terrestris. Dev Comp Immunol 5(3):415–425PubMedGoogle Scholar
  7. 7.
    Mladinic M, Muller KJ, Nicholls JG (2009) Central nervous system regeneration: from leech to opossum. J Physiol 587(Pt 12):2775–2782PubMedCrossRefGoogle Scholar
  8. 8.
    von Bernhardi R, Muller KJ (1995) Repair of the central nervous system: lessons from lesions in leeches. J Neurobiol 27(3):353–366CrossRefGoogle Scholar
  9. 9.
    Schikorski D, Cuvillier-Hot V, Leippe M, Boidin-Wichlacz C, Slomianny C, Macagno E, Salzet M, Tasiemski A (2008) Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia. J Immunol 181(2):1083–1095PubMedGoogle Scholar
  10. 10.
    Howe CL, Adelson JD, Rodriguez M (2007) Absence of perforin expression confers axonal protection despite demyelination. Neurobiol Dis 25(2):354–359PubMedCrossRefGoogle Scholar
  11. 11.
    Popovich PG, Stokes BT, Whitacre CC (1996) Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nervous system. J Neurosci Res 45(4):349–363PubMedCrossRefGoogle Scholar
  12. 12.
    Pineau I, Sun L, Bastien D, Lacroix S (2010) Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 24(4):540–553PubMedCrossRefGoogle Scholar
  13. 13.
    Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444PubMedCrossRefGoogle Scholar
  14. 14.
    Hafler DA (2004) Multiple sclerosis. J Clin Invest 113(6):788–794PubMedGoogle Scholar
  15. 15.
    Crutcher KA, Gendelman HE, Kipnis J, Perez-Polo JR, Perry VH, Popovich PG, Weaver LC (2006) Debate: “is increasing neuroinflammation beneficial for neural repair?”. J Neuroimmune Pharmacol 1(3):195–211PubMedCrossRefGoogle Scholar
  16. 16.
    Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4(7):814–821PubMedCrossRefGoogle Scholar
  17. 17.
    Moalem G, Monsonego A, Shani Y, Cohen IR, Schwartz M (1999) Differential T cell response in central and peripheral nerve injury: connection with immune privilege. FASEB J 13(10):1207–1217PubMedGoogle Scholar
  18. 18.
    Schikorski D, Cuvillier-Hot V, Boidin-Wichlacz C, Slomianny C, Salzet M, Tasiemski A (2009) Deciphering the immune function and regulation by a TLR of the cytokine EMAPII in the lesioned central nervous system using a leech model. J Immunol 183(11):7119–7128PubMedCrossRefGoogle Scholar
  19. 19.
    Lefebvre C, Vandenbulcke F, Bocquet B, Tasiemski A, Desmons A, Verstraete M, Salzet M, Cocquerelle C (2008) Cathepsin L and cystatin B gene expression discriminates immune coelomic cells in the leech Theromyzon tessulatum. Dev Comp Immunol 32(7):795–807PubMedCrossRefGoogle Scholar
  20. 20.
    Selsted ME, Martinez RJ (1980) A simple and ultrasensitive enzymatic assay for the quantitative determination of lysozyme in the picogram range. Anal Biochem 109(1):67–70PubMedCrossRefGoogle Scholar
  21. 21.
    Tasiemski A, Vandenbulcke F, Mitta G, Lemoine J, Lefebvre C, Sautiere PE, Salzet M (2004) Molecular characterization of two novel antibacterial peptides inducible upon bacterial challenge in an annelid, the leech Theromyzon tessulatum. J Biol Chem 279(30):30973–30982PubMedCrossRefGoogle Scholar
  22. 22.
    Tasiemski A, Salzet M, Benson H, Fricchione GL, Bilfinger TV, Goumon Y, Metz-Boutigue MH, Aunis D, Stefano GB (2000) The presence of antibacterial and opioid peptides in human plasma during coronary artery bypass surgery. J Neuroimmunol 109(2):228–235PubMedCrossRefGoogle Scholar
  23. 23.
    Sharlaimova NS, Pinaev GP, Petukhova OA (2010) Cells of coelomic liquid and cells of different tissues of sea star Asterias rubens L. isolated from intact and post-traumatic animals: behaviour and proliferation under cultivation in vitro. Tsitologiia 52(4):317–325PubMedGoogle Scholar
  24. 24.
    Meister M (2004) Blood cells of Drosophila: cell lineages and role in host defence. Curr Opin Immunol 16(1):10–15PubMedCrossRefGoogle Scholar
  25. 25.
    Callewaert L, Michiels CW (2010) Lysozymes in the animal kingdom. J Biosci 35(1):127–160PubMedCrossRefGoogle Scholar
  26. 26.
    Tasiemski A, Salzet M (2010) Leech immunity; “invertebrate immunity”. Landes Biosci 708:80–104Google Scholar
  27. 27.
    Zavalova LL, Baskova IP, Lukyanov SA, Sass AV, Snezhkov EV, Akopov SB, Artamonova II, Archipova VS, Nesmeyanov VA, Kozlov DG, Benevolensky SV, Kiseleva VI, Poverenny AM, Sverdlov ED (2000) Destabilase from the medicinal leech is a representative of a novel family of lysozymes. Biochim Biophys Acta 1478(1):69–77PubMedCrossRefGoogle Scholar
  28. 28.
    Fradkov A, Berezhnoy S, Barsova E, Zavalova L, Lukyanov S, Baskova I, Sverdlov ED (1996) Enzyme from the medicinal leech (Hirudo medicinalis) that specifically splits endo-epsilon(-gamma-Glu)-Lys isopeptide bonds: cDNA cloning and protein primary structure. FEBS Lett 390(2):145–148PubMedCrossRefGoogle Scholar
  29. 29.
    Muller KJ, Carbonetto S (1979) The morphological and physiological properties of a regenerating synapse in the CNS of the leech. J Comp Neurol 185(3):485–516PubMedCrossRefGoogle Scholar
  30. 30.
    Hurskainen M, Ruggiero F, Hagg P, Pihlajaniemi T, Huhtala P (2010) Recombinant human collagen XV regulates cell adhesion and migration. J Biol Chem 285(8):5258–5265. doi: 10.1074/jbc.M109.033787 PubMedCrossRefGoogle Scholar
  31. 31.
    Parry RL, Gordon S, Sherman NJ (1997) Pulmonary artery band migration producing endobronchial obstruction. J Pediatr Surg 32(1):48–49PubMedCrossRefGoogle Scholar
  32. 32.
    Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394PubMedCrossRefGoogle Scholar
  33. 33.
    Smith PJ, Howes EA, Treherne JE (1987) Mechanisms of glial regeneration in an insect central nervous system. J Exp Biol 132:59–78PubMedGoogle Scholar
  34. 34.
    Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132(Pt 2):288–295PubMedGoogle Scholar
  35. 35.
    M’Beri M, Debray H, Dhainaut A (1988) Separation of two different populations of granulocytes of Nereis diversicolor (Annelida) by selective agglutination with lectins. Dev Comp Immunol 12(2):279–285PubMedCrossRefGoogle Scholar
  36. 36.
    Jamieson BGM, Wampler JE, Schultz MC (1981) Preliminary ultrastructural description of coelomocytes of the luminescent oligochaete, Pontodrilus bermudensis (Annelida). In: DeLuca MA, McElroy WD (eds) Bioluminescence and chemiluminescence: basic chemistry and analytical applications. Academic Press, New York, pp 543–559Google Scholar
  37. 37.
    Cerenius L, Kawabata S, Lee BL, Nonaka M, Soderhall K (2010) Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem Sci 35(10):575–583PubMedCrossRefGoogle Scholar
  38. 38.
    Cerenius L, Lee BL, Soderhall K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29(6):263–271PubMedCrossRefGoogle Scholar
  39. 39.
    Amara U, Rittirsch D, Flierl M, Bruckner U, Klos A, Gebhard F, Lambris JD, Huber-Lang M (2008) Interaction between the coagulation and complement system. Adv Exp Med Biol 632:71–79PubMedGoogle Scholar
  40. 40.
    van der Hoorn RA, Jones JD (2004) The plant proteolytic machinery and its role in defence. Curr Opin Plant Biol 7(4):400–407PubMedCrossRefGoogle Scholar
  41. 41.
    Prochazkova P, Silerova M, Stijlemans B, Dieu M, Halada P, Joskova R, Beschin A, De Baetselier P, Bilej M (2006) Evidence for proteins involved in prophenoloxidase cascade Eisenia fetida earthworms. J Comp Physiol B 176(6):581–587PubMedCrossRefGoogle Scholar
  42. 42.
    Hearing VJ (2009) The expanding role and presence of neuromelanins in the human brain: why gray matter is gray. Pigment Cell Melanoma Res 22(1):10–11PubMedCrossRefGoogle Scholar
  43. 43.
    Fyffe WE, Kronz JD, Edmonds PA, Donndelinger TM (1999) Effect of high-level oxygen exposure on the peroxidase activity and the neuromelanin-like pigment content of the nerve net in the earthworm, Lumbricus terrestris. Cell Tissue Res 295(2):349–354PubMedCrossRefGoogle Scholar
  44. 44.
    Chalisova NI, Pennijajnen VP, Baskova IP, Zavalova LL, Bazanova AV (2003) The neurite-stimulating activity of components of the salivary gland secretion of the medicinal leech in cultures of sensory neurons. Neurosci Behav Physiol 33(4):411–414PubMedCrossRefGoogle Scholar
  45. 45.
    Olson JK, Girvin AM, Miller SD (2001) Direct activation of innate and antigen-presenting functions of microglia following infection with Theiler’s virus. J Virol 75(20):9780–9789PubMedCrossRefGoogle Scholar
  46. 46.
    Chan A, Seguin R, Magnus T, Papadimitriou C, Toyka KV, Antel JP, Gold R (2003) Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia 43(3):231–242PubMedCrossRefGoogle Scholar
  47. 47.
    Mariani MM, Kielian T (2009) Microglia in infectious diseases of the central nervous system. J Neuroimmune Pharmacol 4(4):448–461PubMedCrossRefGoogle Scholar
  48. 48.
    Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294–301PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Céline Boidin-Wichlacz
    • 1
    • 2
  • David Vergote
    • 3
  • Christian Slomianny
    • 4
  • Nathalie Jouy
    • 5
  • Michel Salzet
    • 1
  • Aurélie Tasiemski
    • 1
    • 2
  1. 1.Laboratoire de Neuroimmunologie et Neurochimie Evolutive, CNRS, FRE3249Université de Lille 1Villeneuve d’AscqFrance
  2. 2.Ecoimmunology of Marine Annelids (EMA) Group, CNRS, FRE3268, GEPVUniversité de Lille 1Villeneuve d’AscqFrance
  3. 3.Department of Medicine, Centre for Prions and Protein Folding DiseasesUniversity of AlbertaEdmontonCanada
  4. 4.Unité 800, Laboratoire de Physiologie Cellulaire, Institut National de la Santé et de la Recherche MédicaleUniversité de Lille 1Villeneuve d’AscqFrance
  5. 5.IFR114-IMPRTIRCLLille cedexFrance

Personalised recommendations