Cellular and Molecular Life Sciences

, Volume 69, Issue 8, pp 1211–1259 | Cite as

Protein intrinsic disorder as a flexible armor and a weapon of HIV-1

  • Bin Xue
  • Marcin J. Mizianty
  • Lukasz Kurgan
  • Vladimir N. Uversky
Review

Abstract

Many proteins and protein regions are disordered in their native, biologically active states. These proteins/regions are abundant in different organisms and carry out important biological functions that complement the functional repertoire of ordered proteins. Viruses, with their highly compact genomes, small proteomes, and high adaptability for fast change in their biological and physical environment utilize many of the advantages of intrinsic disorder. In fact, viral proteins are generally rich in intrinsic disorder, and intrinsically disordered regions are commonly used by viruses to invade the host organisms, to hijack various host systems, and to help viruses in accommodation to their hostile habitats and to manage their economic usage of genetic material. In this review, we focus on the structural peculiarities of HIV-1 proteins, on the abundance of intrinsic disorder in viral proteins, and on the role of intrinsic disorder in their functions.

Keywords

HIV-1 Viral protein Protein–protein interaction Intrinsically disordered protein MoRF 

Supplementary material

18_2011_859_MOESM1_ESM.docx (71 kb)
Supplementary material 1 (DOCX 70 kb)

References

  1. 1.
    Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 3:473–484Google Scholar
  2. 2.
    Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331PubMedCrossRefGoogle Scholar
  3. 3.
    Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41(3):415–427PubMedCrossRefGoogle Scholar
  4. 4.
    Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19(1):26–59PubMedCrossRefGoogle Scholar
  5. 5.
    Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27(10):527–533PubMedCrossRefGoogle Scholar
  6. 6.
    Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK (2005) Natively disordered proteins. In: Buchner J, Kiefhaber T (eds) Handbook of protein folding. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, pp 271–353Google Scholar
  7. 7.
    Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804(6):1231–1264PubMedGoogle Scholar
  8. 8.
    Dziedzic-Letka A, Rymarczyk G, Kaplon TM, Gorecki A, Szamborska-Gbur A, Wojtas M, Dobryszycki P, Ozyhar A (2011) Intrinsic disorder of Drosophila melanogaster hormone receptor 38 N-terminal domain. Proteins 79(2):376–392PubMedCrossRefGoogle Scholar
  9. 9.
    Holt C, Sawyer L (1993) Caseins as rheomorphic proteins: interpretation of primary and secondary structures of the as1-, b-, and k-caseins. J Chem Soc Faraday Trans 89:2683–2692CrossRefGoogle Scholar
  10. 10.
    Pullen RA, Jenkins JA, Tickle IJ, Wood SP, Blundell TL (1975) The relation of polypeptide hormone structure and flexibility to receptor binding: the relevance of X-ray studies on insulins, glucagon and human placental lactogen. Mol Cell Biochem 8(1):5–20PubMedCrossRefGoogle Scholar
  11. 11.
    Cary PD, Moss T, Bradbury EM (1978) High-resolution proton-magnetic-resonance studies of chromatin core particles. Eur J Biochem 89(2):475–482PubMedCrossRefGoogle Scholar
  12. 12.
    Linderstrom-Lang K, Schellman JA (1959) Protein structure and enzyme activity. In: Boyer PD, Lardy H, Myrback K (eds) The enzymes, 2nd edn. Academic Press, New York, pp 443–510Google Scholar
  13. 13.
    Schweers O, Schonbrunn-Hanebeck E, Marx A, Mandelkow E (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem 269(39):24290–24297PubMedGoogle Scholar
  14. 14.
    Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43):13709–13715PubMedCrossRefGoogle Scholar
  15. 15.
    Dunker AK, Obradovic Z (2001) The protein trinity–linking function and disorder. Nat Biotechnol 19(9):805–806PubMedCrossRefGoogle Scholar
  16. 16.
    Chen J, Liang H, Fernandez A (2008) Protein structure protection commits gene expression patterns. Genome Biol 9(7):R107PubMedCrossRefGoogle Scholar
  17. 17.
    Uversky VN (2003) A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 21(2):211–234PubMedGoogle Scholar
  18. 18.
    Uversky VN (2010) Flexible nets of malleable guardians: intrinsically disordered chaperones in neurodegenerative diseases. Chem Rev 111:1134–1166PubMedCrossRefGoogle Scholar
  19. 19.
    Toth-Petroczy A, Oldfield CJ, Simon I, Takagi Y, Dunker AK, Uversky VN, Fuxreiter M (2008) Malleable machines in transcription regulation: the mediator complex. PLoS Comput Biol 4(12):e1000243PubMedCrossRefGoogle Scholar
  20. 20.
    Fuxreiter M, Tompa P, Simon I, Uversky VN, Hansen JC, Asturias FJ (2008) Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol 4(12):728–737PubMedCrossRefGoogle Scholar
  21. 21.
    Tsvetkov P, Asher G, Paz A, Reuven N, Sussman JL, Silman I, Shaul Y (2008) Operational definition of intrinsically unstructured protein sequences based on susceptibility to the 20S proteasome. Proteins 70(4):1357–1366PubMedCrossRefGoogle Scholar
  22. 22.
    Dunker AK, Uversky VN (2010) Drugs for ‘protein clouds’: targeting intrinsically disordered transcription factors. Curr Opin Pharmacol 10(6):782–788PubMedCrossRefGoogle Scholar
  23. 23.
    Uversky VN (2010) Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem Soc Rev 40:1623–1635PubMedCrossRefGoogle Scholar
  24. 24.
    Livesay DR (2010) Protein dynamics: dancing on an ever-changing free energy stage. Curr Opin Pharmacol 10(6):706–708PubMedCrossRefGoogle Scholar
  25. 25.
    Uversky VN (2010) The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010:568068PubMedCrossRefGoogle Scholar
  26. 26.
    Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11(4):739–756PubMedCrossRefGoogle Scholar
  27. 27.
    Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323(3):573–584PubMedCrossRefGoogle Scholar
  28. 28.
    Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets: the roles of intrinsic disorder in protein interaction networks. FEBS J 272(20):5129–5148PubMedCrossRefGoogle Scholar
  29. 29.
    Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18(5):343–384PubMedCrossRefGoogle Scholar
  30. 30.
    Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92(5):1439–1456Google Scholar
  31. 31.
    Vucetic S, Xie H, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 6(5):1899–1916PubMedCrossRefGoogle Scholar
  32. 32.
    Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 6(5):1917–1932PubMedCrossRefGoogle Scholar
  33. 33.
    Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6(5):1882–1898PubMedCrossRefGoogle Scholar
  34. 34.
    Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246PubMedCrossRefGoogle Scholar
  35. 35.
    Lee H, Mok KH, Muhandiram R, Park KH, Suk JE, Kim DH, Chang J, Sung YC, Choi KY, Han KH (2000) Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem 275(38):29426–29432PubMedCrossRefGoogle Scholar
  36. 36.
    Adkins JN, Lumb KJ (2002) Intrinsic structural disorder and sequence features of the cell cycle inhibitor p57Kip2. Proteins 46(1):1–7PubMedCrossRefGoogle Scholar
  37. 37.
    Chang BS, Minn AJ, Muchmore SW, Fesik SW, Thompson CB (1997) Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2. EMBO J 16(5):968–977PubMedCrossRefGoogle Scholar
  38. 38.
    Campbell KM, Terrell AR, Laybourn PJ, Lumb KJ (2000) Intrinsic structural disorder of the C-terminal activation domain from the bZIP transcription factor Fos. Biochemistry 39(10):2708–2713PubMedCrossRefGoogle Scholar
  39. 39.
    Sunde M, McGrath KC, Young L, Matthews JM, Chua EL, Mackay JP, Death AK (2004) TC-1 is a novel tumorigenic and natively disordered protein associated with thyroid cancer. Cancer Res 64(8):2766–2773PubMedCrossRefGoogle Scholar
  40. 40.
    Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122(3):1131–1135PubMedCrossRefGoogle Scholar
  41. 41.
    Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4(11):2757–2763PubMedGoogle Scholar
  42. 42.
    Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251(4994):675–678PubMedCrossRefGoogle Scholar
  43. 43.
    Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90(23):11282–11286PubMedCrossRefGoogle Scholar
  44. 44.
    Wisniewski KE, Dalton AJ, McLachlan C, Wen GY, Wisniewski HM (1985) Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology 35(7):957–961PubMedGoogle Scholar
  45. 45.
    Dev KK, Hofele K, Barbieri S, Buchman VL, van der Putten H (2003) Part II: alpha-synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology 45(1):14–44PubMedCrossRefGoogle Scholar
  46. 46.
    Prusiner SB (2001) Shattuck lecture–neurodegenerative diseases and prions. N Engl J Med 344(20):1516–1526PubMedCrossRefGoogle Scholar
  47. 47.
    Zoghbi HY, Orr HT (1999) Polyglutamine diseases: protein cleavage and aggregation. Curr Opin Neurobiol 9(5):566–570PubMedCrossRefGoogle Scholar
  48. 48.
    Uversky VN, Roman A, Oldfield CJ, Dunker AK (2006) Protein intrinsic disorder and human papillomaviruses: increased amount of disorder in E6 and E7 oncoproteins from high risk HPVs. J Proteome Res 5(8):1829–1842PubMedCrossRefGoogle Scholar
  49. 49.
    Cheng Y, LeGall T, Oldfield CJ, Dunker AK, Uversky VN (2006) Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry 45(35):10448–10460PubMedCrossRefGoogle Scholar
  50. 50.
    Uversky VN (2008) Amyloidogenesis of natively unfolded proteins. Curr Alzheimer Res 5(3):260–287PubMedCrossRefGoogle Scholar
  51. 51.
    Uversky VN (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci 14:5188–5238PubMedCrossRefGoogle Scholar
  52. 52.
    Mohan A, Sullivan WJ Jr, Radivojac P, Dunker AK, Uversky VN (2008) Intrinsic disorder in pathogenic and non-pathogenic microbes: discovering and analyzing the unfoldomes of early branching eukaryotes. Mol Biosyst 4(4):328–340PubMedCrossRefGoogle Scholar
  53. 53.
    Midic U, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2008) Protein disorder in the human diseasome: Unfoldomics of human genetic diseases. PLoS Comput Biol (In press)Google Scholar
  54. 54.
    Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B, Vucetic S, Iakoucheva LM, Obradovic Z, Dunker AK (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 10(Suppl):S7PubMedCrossRefGoogle Scholar
  55. 55.
    Koonin EV, Senkevich TG, Dolja VV (2006) The ancient Virus World and evolution of cells. Biol Direct 1:29PubMedCrossRefGoogle Scholar
  56. 56.
    Forterre P, Prangishvili D (2009) The origin of viruses. Res Microbiol 160(7):466–472PubMedCrossRefGoogle Scholar
  57. 57.
    Prangishvili D, Forterre P, Garrett RA (2006) Viruses of the Archaea: a unifying view. Nat Rev Microbiol 4(11):837–848PubMedCrossRefGoogle Scholar
  58. 58.
    Reanney DC (1982) The evolution of RNA viruses. Annu Rev Microbiol 36:47–73PubMedCrossRefGoogle Scholar
  59. 59.
    Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148(4):1667–1686PubMedGoogle Scholar
  60. 60.
    Tokuriki N, Oldfield CJ, Uversky VN, Berezovsky IN, Tawfik DS (2009) Do viral proteins possess unique biophysical features? Trends Biochem Sci 34(2):53–59PubMedCrossRefGoogle Scholar
  61. 61.
    Vacic V, Uversky VN, Dunker AK, Lonardi S (2007) Composition Profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 8:211PubMedCrossRefGoogle Scholar
  62. 62.
    Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171PubMedGoogle Scholar
  63. 63.
    Romero P, Obradovic Z, Kissinger CR, Villafranca JE, Garner E, Guilliot S, Dunker AK (1998) Thousands of proteins likely to have long disordered regions. Pac Symp Biocomput 3:437–448Google Scholar
  64. 64.
    Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645PubMedCrossRefGoogle Scholar
  65. 65.
    Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry 44(6):1989–2000PubMedCrossRefGoogle Scholar
  66. 66.
    Clements JE, Zink MC (1996) Molecular biology and pathogenesis of animal lentivirus infections. Clin Microbiol Rev 9(1):100–117PubMedGoogle Scholar
  67. 67.
    Goudsmit J (1997) Viral sex: the nature of AIDS. Oxford University Press, New YorkGoogle Scholar
  68. 68.
    Leroux C, Cadore JL, Montelaro RC (2004) Equine infectious anemia virus (EIAV): what has HIV’s country cousin got to tell us? Vet Res 35(4):485–512PubMedCrossRefGoogle Scholar
  69. 69.
    Marx PA, Li Y, Lerche NW, Sutjipto S, Gettie A, Yee JA, Brotman BH, Prince AM, Hanson A, Webster RG et al (1991) Isolation of a simian immunodeficiency virus related to human immunodeficiency virus type 2 from a west African pet sooty mangabey. J Virol 65(8):4480–4485PubMedGoogle Scholar
  70. 70.
    Greene WC (2007) A history of AIDS: looking back to see ahead. Eur J Immunol 37(Suppl 1):S94–S102PubMedCrossRefGoogle Scholar
  71. 71.
    Weiss RA (2001) Gulliver’s travels in HIV land. Nature 410(6831):963–967PubMedCrossRefGoogle Scholar
  72. 72.
    Coffin JM, Hughes SH, Varmus HE (1997) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  73. 73.
    Frankel AD, Young JA (1998) HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67:1–25PubMedCrossRefGoogle Scholar
  74. 74.
    Schlessinger A, Punta M, Yachdav G, Kajan L, Rost B (2009) Improved disorder prediction by combination of orthogonal approaches. PLoS One 4(2):e4433PubMedCrossRefGoogle Scholar
  75. 75.
    Mizianty MJ, Stach W, Chen K, Kedarisetti KD, Disfani FM, Kurgan L (2010) Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 26(18):i489–i496PubMedCrossRefGoogle Scholar
  76. 76.
    Mizianty MJ, Zhang T, Xue B, Zhou Y, Dunker AK, Uversky VN, Kurgan L (2011) In-silico prediction of disorder content using hybrid sequence representation. BMC Bioinformatics 12(1):245Google Scholar
  77. 77.
    Noivirt-Brik O, Prilusky J, Sussman JL (2009) Assessment of disorder predictions in CASP8. Proteins 77(Suppl 9):210–216PubMedCrossRefGoogle Scholar
  78. 78.
    Longhi S (2010) Structural disorder in viral proteins. Protein Pept Lett 17(8):930–931PubMedCrossRefGoogle Scholar
  79. 79.
    Uversky VN, Longhi S (eds) (2012) Flexible viruses structural disorder in viral proteins. The Wiley Protein and Peptide Science Series John Wiley and Sons, Hoboken, New JerseyGoogle Scholar
  80. 80.
    Xue B, Oldfield CJ, Dunker AK, Uversky VN (2009) CDF it all: consensus prediction of intrinsically disordered proteins based on various cumulative distribution functions. FEBS Lett 583(9):1469–1474PubMedCrossRefGoogle Scholar
  81. 81.
    Bienkiewicz EA, Adkins JN, Lumb KJ (2002) Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27(Kip1). Biochemistry 41(3):752–759PubMedCrossRefGoogle Scholar
  82. 82.
    Chi SW, Kim DH, Lee SH, Chang I, Han KH (2007) Pre-structured motifs in the natively unstructured preS1 surface antigen of hepatitis B virus. Protein Sci 16(10):2108–2117PubMedCrossRefGoogle Scholar
  83. 83.
    Ramelot TA, Gentile LN, Nicholson LK (2000) Transient structure of the amyloid precursor protein cytoplasmic tail indicates preordering of structure for binding to cytosolic factors. Biochemistry 39(10):2714–2725PubMedCrossRefGoogle Scholar
  84. 84.
    Sayers EW, Gerstner RB, Draper DE, Torchia DA (2000) Structural preordering in the N-terminal region of ribosomal protein S4 revealed by heteronuclear NMR spectroscopy. Biochemistry 39(44):13602–13613PubMedCrossRefGoogle Scholar
  85. 85.
    Zitzewitz JA, Ibarra-Molero B, Fishel DR, Terry KL, Matthews CR (2000) Preformed secondary structure drives the association reaction of GCN4–p1, a model coiled-coil system. J Mol Biol 296(4):1105–1116PubMedCrossRefGoogle Scholar
  86. 86.
    Jensen MR, Blackledge M (2008) On the origin of NMR dipolar waves in transient helical elements of partially folded proteins. J Am Chem Soc 130(34):11266–11267PubMedCrossRefGoogle Scholar
  87. 87.
    Jensen MR, Houben K, Lescop E, Blanchard L, Ruigrok RW, Blackledge M (2008) Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: application to the molecular recognition element of Sendai virus nucleoprotein. J Am Chem Soc 130(25):8055–8061PubMedCrossRefGoogle Scholar
  88. 88.
    Jensen MR, Communie G, Ribeiro EA Jr, Martinez N, Desfosses A, Salmon L, Mollica L, Gabel F, Jamin M, Longhi S, Ruigrok RW, Blackledge M (2011) Intrinsic disorder in measles virus nucleocapsids. Proc Natl Acad Sci USA 108(24):9839–9844PubMedCrossRefGoogle Scholar
  89. 89.
    Garner E, Romero P, Dunker AK, Brown C, Obradovic Z (1999) Predicting binding regions within disordered proteins. Genome Inform Ser Workshop Genome Inform 10:41–50PubMedGoogle Scholar
  90. 90.
    Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44(37):12454–12470PubMedCrossRefGoogle Scholar
  91. 91.
    Cheng Y, Oldfield CJ, Meng J, Romero P, Uversky VN, Dunker AK (2007) Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 46(47):13468–13477PubMedCrossRefGoogle Scholar
  92. 92.
    Zhu P, Liu J, Bess J Jr, Chertova E, Lifson JD, Grise H, Ofek GA, Taylor KA, Roux KH (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441(7095):847–852PubMedCrossRefGoogle Scholar
  93. 93.
    Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89(2):263–273PubMedCrossRefGoogle Scholar
  94. 94.
    Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S (2008) Molecular architecture of native HIV-1 gp120 trimers. Nature 455(7209):109–113PubMedCrossRefGoogle Scholar
  95. 95.
    Freed EO, Martin MA (1995) The role of human immunodeficiency virus type 1 envelope glycoproteins in virus infection. J Biol Chem 270(41):23883–23886PubMedCrossRefGoogle Scholar
  96. 96.
    Freed EO, Myers DJ, Risser R (1989) Mutational analysis of the cleavage sequence of the human immunodeficiency virus type 1 envelope glycoprotein precursor gp160. J Virol 63(11):4670–4675PubMedGoogle Scholar
  97. 97.
    McCune JM, Rabin LB, Feinberg MB, Lieberman M, Kosek JC, Reyes GR, Weissman IL (1988) Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell 53(1):55–67PubMedCrossRefGoogle Scholar
  98. 98.
    Colman PM, Lawrence MC (2003) The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 4(4):309–319PubMedCrossRefGoogle Scholar
  99. 99.
    Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312(5996):763–767PubMedCrossRefGoogle Scholar
  100. 100.
    Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N, Gerard C, Sodroski J (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85(7):1135–1148PubMedCrossRefGoogle Scholar
  101. 101.
    Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381(6584):661–666PubMedCrossRefGoogle Scholar
  102. 102.
    Chan DC, Kim PS (1998) HIV entry and its inhibition. Cell 93(5):681–684PubMedCrossRefGoogle Scholar
  103. 103.
    Gallo SA, Finnegan CM, Viard M, Raviv Y, Dimitrov A, Rawat SS, Puri A, Durell S, Blumenthal R (2003) The HIV Env-mediated fusion reaction. Biochim Biophys Acta 1614(1):36–50PubMedCrossRefGoogle Scholar
  104. 104.
    Ugolini S, Mondor I, Sattentau QJ (1999) HIV-1 attachment: another look. Trends Microbiol 7(4):144–149PubMedCrossRefGoogle Scholar
  105. 105.
    Karlsson Hedestam GB, Fouchier RA, Phogat S, Burton DR, Sodroski J, Wyatt RT (2008) The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nat Rev Microbiol 6(2):143–155PubMedCrossRefGoogle Scholar
  106. 106.
    Allan JS, Coligan JE, Barin F, McLane MF, Sodroski JG, Rosen CA, Haseltine WA, Lee TH, Essex M (1985) Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 228(4703):1091–1094PubMedCrossRefGoogle Scholar
  107. 107.
    Kowalski M, Potz J, Basiripour L, Dorfman T, Goh WC, Terwilliger E, Dayton A, Rosen C, Haseltine W, Sodroski J (1987) Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science 237(4820):1351–1355PubMedCrossRefGoogle Scholar
  108. 108.
    Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki C, Patzer E, Berman P, Gregory T, Capon DJ (1987) Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell 50(6):975–985PubMedCrossRefGoogle Scholar
  109. 109.
    Olshevsky U, Helseth E, Furman C, Li J, Haseltine W, Sodroski J (1990) Identification of individual human immunodeficiency virus type 1 gp120 amino acids important for CD4 receptor binding. J Virol 64(12):5701–5707PubMedGoogle Scholar
  110. 110.
    Trkola A, Dragic T, Arthos J, Binley JM, Olson WC, Allaway GP, Cheng-Mayer C, Robinson J, Maddon PJ, Moore JP (1996) CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384(6605):184–187PubMedCrossRefGoogle Scholar
  111. 111.
    Wu L, Gerard NP, Wyatt R, Choe H, Parolin C, Ruffing N, Borsetti A, Cardoso AA, Desjardin E, Newman W, Gerard C, Sodroski J (1996) CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384(6605):179–183PubMedCrossRefGoogle Scholar
  112. 112.
    Freed EO, Myers DJ, Risser R (1991) Identification of the principal neutralizing determinant of human immunodeficiency virus type 1 as a fusion domain. J Virol 65(1):190–194PubMedGoogle Scholar
  113. 113.
    Groenink M, Fouchier RA, Broersen S, Baker CH, Koot M, van’t Wout AB, Huisman HG, Miedema F, Tersmette M, Schuitemaker H (1993) Relation of phenotype evolution of HIV-1 to envelope V2 configuration. Science 260(5113):1513–1516PubMedCrossRefGoogle Scholar
  114. 114.
    Gu R, Westervelt P, Ratner L (1993) Role of HIV-1 envelope V3 loop cleavage in cell tropism. AIDS Res Hum Retroviruses 9(10):1007–1015PubMedCrossRefGoogle Scholar
  115. 115.
    Ebenbichler C, Westervelt P, Carrillo A, Henkel T, Johnson D, Ratner L (1993) Structure-function relationships of the HIV-1 envelope V3 loop tropism determinant: evidence for two distinct conformations. Aids 7(5):639–646PubMedCrossRefGoogle Scholar
  116. 116.
    Koito A, Harrowe G, Levy JA, Cheng-Mayer C (1994) Functional role of the V1/V2 region of human immunodeficiency virus type 1 envelope glycoprotein gp120 in infection of primary macrophages and soluble CD4 neutralization. J Virol 68(4):2253–2259PubMedGoogle Scholar
  117. 117.
    Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393(6686):648–659PubMedCrossRefGoogle Scholar
  118. 118.
    Kwong PD, Wyatt R, Majeed S, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (2000) Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure 8(12):1329–1339PubMedCrossRefGoogle Scholar
  119. 119.
    Liu SQ, Liu SX, Fu YX (2008) Molecular motions of human HIV-1 gp120 envelope glycoproteins. J Mol Model 14(9):857–870PubMedCrossRefGoogle Scholar
  120. 120.
    Kong L, Huang CC, Coales SJ, Molnar KS, Skinner J, Hamuro Y, Kwong PD (2010) Local conformational stability of HIV-1 gp120 in unliganded and CD4-bound states as defined by amide hydrogen/deuterium exchange. J Virol 84(19):10311–10321PubMedCrossRefGoogle Scholar
  121. 121.
    Pancera M, Majeed S, Ban YE, Chen L, Huang CC, Kong L, Kwon YD, Stuckey J, Zhou T, Robinson JE, Schief WR, Sodroski J, Wyatt R, Kwong PD (2010) Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proc Natl Acad Sci USA 107(3):1166–1171PubMedCrossRefGoogle Scholar
  122. 122.
    Gallaher WR, Ball JM, Garry RF, Griffin MC, Montelaro RC (1989) A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res Hum Retroviruses 5(4):431–440PubMedCrossRefGoogle Scholar
  123. 123.
    Cleveland SM, McLain L, Cheung L, Jones TD, Hollier M, Dimmock NJ (2003) A region of the C-terminal tail of the gp41 envelope glycoprotein of human immunodeficiency virus type 1 contains a neutralizing epitope: evidence for its exposure on the surface of the virion. J Gen Virol 84(Pt 3):591–602PubMedCrossRefGoogle Scholar
  124. 124.
    Cheung L, McLain L, Hollier MJ, Reading SA, Dimmock NJ (2005) Part of the C-terminal tail of the envelope gp41 transmembrane glycoprotein of human immunodeficiency virus type 1 is exposed on the surface of infected cells and is involved in virus-mediated cell fusion. J Gen Virol 86(Pt 1):131–138PubMedCrossRefGoogle Scholar
  125. 125.
    Sattentau QJ, Moore JP (1991) Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J Exp Med 174(2):407–415PubMedCrossRefGoogle Scholar
  126. 126.
    Sattentau QJ, Moore JP (1993) The role of CD4 in HIV binding and entry. Philos Trans R Soc Lond B Biol Sci 342(1299):59–66PubMedCrossRefGoogle Scholar
  127. 127.
    Sattentau QJ, Moore JP, Vignaux F, Traincard F, Poignard P (1993) Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J Virol 67(12):7383–7393PubMedGoogle Scholar
  128. 128.
    Sullivan N, Sun Y, Li J, Hofmann W, Sodroski J (1995) Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T cell line-passaged human immunodeficiency virus type 1 isolates. J Virol 69(7):4413–4422PubMedGoogle Scholar
  129. 129.
    Allan JS, Strauss J, Buck DW (1990) Enhancement of SIV infection with soluble receptor molecules. Science 247(4946):1084–1088PubMedCrossRefGoogle Scholar
  130. 130.
    Weissenhorn W, Calder LJ, Dessen A, Laue T, Skehel JJ, Wiley DC (1997) Assembly of a rod-shaped chimera of a trimeric GCN4 zipper and the HIV-1 gp41 ectodomain expressed in Escherichia coli. Proc Natl Acad Sci USA 94(12):6065–6069PubMedCrossRefGoogle Scholar
  131. 131.
    Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387(6631):426–430PubMedCrossRefGoogle Scholar
  132. 132.
    Caffrey M, Cai M, Kaufman J, Stahl SJ, Wingfield PT, Covell DG, Gronenborn AM, Clore GM (1998) Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J 17(16):4572–4584PubMedCrossRefGoogle Scholar
  133. 133.
    Tan K, Liu J, Wang J, Shen S, Lu M (1997) Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci USA 94(23):12303–12308PubMedCrossRefGoogle Scholar
  134. 134.
    Skehel JJ, Wiley DC (1998) Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95(7):871–874PubMedCrossRefGoogle Scholar
  135. 135.
    Li X, Romero P, Rani M, Dunker AK, Obradovic Z (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform 10:30–40PubMedGoogle Scholar
  136. 136.
    Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42(1):38–48PubMedCrossRefGoogle Scholar
  137. 137.
    Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7:208PubMedCrossRefGoogle Scholar
  138. 138.
    Kwong PD, Wyatt R, Sattentau QJ, Sodroski J, Hendrickson WA (2000) Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. J Virol 74(4):1961–1972PubMedCrossRefGoogle Scholar
  139. 139.
    Carr CM, Kim PS (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73(4):823–832PubMedCrossRefGoogle Scholar
  140. 140.
    Gheysen D, Jacobs E, de Foresta F, Thiriart C, Francotte M, Thines D, De Wilde M (1989) Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 59(1):103–112PubMedCrossRefGoogle Scholar
  141. 141.
    Wills JW, Craven RC (1991) Form, function, and use of retroviral gag proteins. Aids 5(6):639–654PubMedCrossRefGoogle Scholar
  142. 142.
    Campbell S, Rein A (1999) In vitro assembly properties of human immunodeficiency virus type 1 Gag protein lacking the p6 domain. J Virol 73(3):2270–2279PubMedGoogle Scholar
  143. 143.
    Gross I, Hohenberg H, Wilk T, Wiegers K, Grattinger M, Muller B, Fuller S, Krausslich HG (2000) A conformational switch controlling HIV-1 morphogenesis. EMBO J 19(1):103–113PubMedCrossRefGoogle Scholar
  144. 144.
    Campbell S, Fisher RJ, Towler EM, Fox S, Issaq HJ, Wolfe T, Phillips LR, Rein A (2001) Modulation of HIV-like particle assembly in vitro by inositol phosphates. Proc Natl Acad Sci USA 98(19):10875–10879PubMedCrossRefGoogle Scholar
  145. 145.
    Resh MD (2005) Intracellular trafficking of HIV-1 Gag: how Gag interacts with cell membranes and makes viral particles. AIDS Rev 7(2):84–91PubMedGoogle Scholar
  146. 146.
    Bieniasz PD (2006) Late budding domains and host proteins in enveloped virus release. Virology 344(1):55–63PubMedCrossRefGoogle Scholar
  147. 147.
    Klein KC, Reed JC, Lingappa JR (2007) Intracellular destinies: degradation, targeting, assembly, and endocytosis of HIV Gag. AIDS Rev 9(3):150–161PubMedGoogle Scholar
  148. 148.
    Williams RL, Urbe S (2007) The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8(5):355–368PubMedCrossRefGoogle Scholar
  149. 149.
    Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18(2):203–217PubMedCrossRefGoogle Scholar
  150. 150.
    Gelderblom HR (1991) Assembly and morphology of HIV: potential effect of structure on viral function. Aids 5(6):617–637PubMedCrossRefGoogle Scholar
  151. 151.
    Freed EO (1998) HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 251(1):1–15PubMedCrossRefGoogle Scholar
  152. 152.
    Gottlinger HG, Sodroski JG, Haseltine WA (1989) Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86(15):5781–5785PubMedCrossRefGoogle Scholar
  153. 153.
    Bryant M, Ratner L (1990) Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci USA 87(2):523–527PubMedCrossRefGoogle Scholar
  154. 154.
    Morikawa Y, Zhang WH, Hockley DJ, Nermut MV, Jones IM (1998) Detection of a trimeric human immunodeficiency virus type 1 Gag intermediate is dependent on sequences in the matrix protein, p17. J Virol 72(9):7659–7663PubMedGoogle Scholar
  155. 155.
    Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF (2004) Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc Natl Acad Sci USA 101(2):517–522PubMedCrossRefGoogle Scholar
  156. 156.
    Hill CP, Worthylake D, Bancroft DP, Christensen AM, Sundquist WI (1996) Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci USA 93(7):3099–3104PubMedCrossRefGoogle Scholar
  157. 157.
    Alfadhli A, Barklis RL, Barklis E (2009) HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4, 5)-bisphosphate. Virology 387(2):466–472PubMedCrossRefGoogle Scholar
  158. 158.
    Massiah MA, Starich MR, Paschall C, Summers MF, Christensen AM, Sundquist WI (1994) Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. J Mol Biol 244(2):198–223PubMedCrossRefGoogle Scholar
  159. 159.
    Matthews S, Barlow P, Boyd J, Barton G, Russell R, Mills H, Cunningham M, Meyers N, Burns N, Clark N et al (1994) Structural similarity between the p17 matrix protein of HIV-1 and interferon-gamma. Nature 370(6491):666–668PubMedCrossRefGoogle Scholar
  160. 160.
    Dingwall C, Laskey RA (1991) Nuclear targeting sequences–a consensus? Trends Biochem Sci 16(12):478–481PubMedCrossRefGoogle Scholar
  161. 161.
    Riviere L, Darlix JL, Cimarelli A (2010) Analysis of the viral elements required in the nuclear import of HIV-1 DNA. J Virol 84(2):729–739PubMedCrossRefGoogle Scholar
  162. 162.
    Spearman P, Horton R, Ratner L, Kuli-Zade I (1997) Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J Virol 71(9):6582–6592PubMedGoogle Scholar
  163. 163.
    Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci USA 103(30):11364–11369PubMedCrossRefGoogle Scholar
  164. 164.
    Hearps AC, Wagstaff KM, Piller SC, Jans DA (2008) The N-terminal basic domain of the HIV-1 matrix protein does not contain a conventional nuclear localization sequence but is required for DNA binding and protein self-association. Biochemistry 47(7):2199–2210PubMedCrossRefGoogle Scholar
  165. 165.
    Cai M, Huang Y, Craigie R, Clore GM (2010) Structural basis of the association of HIV-1 matrix protein with DNA. PLoS One 5(12):e15675PubMedCrossRefGoogle Scholar
  166. 166.
    Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG, Stout CD, Sundquist WI, Hill CP, Yeager M (2009) X-ray structures of the hexameric building block of the HIV capsid. Cell 137(7):1282–1292PubMedCrossRefGoogle Scholar
  167. 167.
    Mateu MG (2009) The capsid protein of human immunodeficiency virus: intersubunit interactions during virus assembly. FEBS J 276(21):6098–6109PubMedCrossRefGoogle Scholar
  168. 168.
    Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP (1997) Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278(5339):849–853PubMedCrossRefGoogle Scholar
  169. 169.
    Worthylake DK, Wang H, Yoo S, Sundquist WI, Hill CP (1999) Structures of the HIV-1 capsid protein dimerization domain at 2.6 A resolution. Acta Crystallogr D Biol Crystallogr 55(Pt 1):85–92PubMedCrossRefGoogle Scholar
  170. 170.
    Momany C, Kovari LC, Prongay AJ, Keller W, Gitti RK, Lee BM, Gorbalenya AE, Tong L, McClure J, Ehrlich LS, Summers MF, Carter C, Rossmann MG (1996) Crystal structure of dimeric HIV-1 capsid protein. Nat Struct Biol 3(9):763–770PubMedCrossRefGoogle Scholar
  171. 171.
    Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI (1996) Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273(5272):231–235PubMedCrossRefGoogle Scholar
  172. 172.
    Berthet-Colominas C, Monaco S, Novelli A, Sibai G, Mallet F, Cusack S (1999) Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. EMBO J 18(5):1124–1136PubMedCrossRefGoogle Scholar
  173. 173.
    Ganser-Pornillos BK, Cheng A, Yeager M (2007) Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell 131(1):70–79PubMedCrossRefGoogle Scholar
  174. 174.
    Srinivasakumar N, Hammarskjold ML, Rekosh D (1995) Characterization of deletion mutations in the capsid region of human immunodeficiency virus type 1 that affect particle formation and Gag-Pol precursor incorporation. J Virol 69(10):6106–6114PubMedGoogle Scholar
  175. 175.
    Ebbets-Reed D, Scarlata S, Carter CA (1996) The major homology region of the HIV-1 gag precursor influences membrane affinity. Biochemistry 35(45):14268–14275PubMedCrossRefGoogle Scholar
  176. 176.
    Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP (1996) Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87(7):1285–1294PubMedCrossRefGoogle Scholar
  177. 177.
    Sokolskaja E, Sayah DM, Luban J (2004) Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J Virol 78(23):12800–12808PubMedCrossRefGoogle Scholar
  178. 178.
    Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD (2003) Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat Med 9(9):1138–1143PubMedCrossRefGoogle Scholar
  179. 179.
    Owens CM, Song B, Perron MJ, Yang PC, Stremlau M, Sodroski J (2004) Binding and susceptibility to postentry restriction factors in monkey cells are specified by distinct regions of the human immunodeficiency virus type 1 capsid. J Virol 78(10):5423–5437PubMedCrossRefGoogle Scholar
  180. 180.
    Hatziioannou T, Perez-Caballero D, Cowan S, Bieniasz PD (2005) Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells. J Virol 79(1):176–183PubMedCrossRefGoogle Scholar
  181. 181.
    Berthoux L, Sebastian S, Sokolskaja E, Luban J (2005) Cyclophilin A is required for TRIM5{alpha}-mediated resistance to HIV-1 in Old World monkey cells. Proc Natl Acad Sci USA 102(41):14849–14853PubMedCrossRefGoogle Scholar
  182. 182.
    Kelly BN, Howard BR, Wang H, Robinson H, Sundquist WI, Hill CP (2006) Implications for viral capsid assembly from crystal structures of HIV-1 Gag(1–278) and CA(N)(133–278). Biochemistry 45(38):11257–11266PubMedCrossRefGoogle Scholar
  183. 183.
    Schmalzbauer E, Strack B, Dannull J, Guehmann S, Moelling K (1996) Mutations of basic amino acids of NCp7 of human immunodeficiency virus type 1 affect RNA binding in vitro. J Virol 70(2):771–777PubMedGoogle Scholar
  184. 184.
    Poon DT, Wu J, Aldovini A (1996) Charged amino acid residues of human immunodeficiency virus type 1 nucleocapsid p7 protein involved in RNA packaging and infectivity. J Virol 70(10):6607–6616PubMedGoogle Scholar
  185. 185.
    Summers MF, Henderson LE, Chance MR, Bess JW Jr, South TL, Blake PR, Sagi I, Perez-Alvarado G, Sowder RC 3rd, Hare DR et al (1992) Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Protein Sci 1(5):563–574PubMedCrossRefGoogle Scholar
  186. 186.
    Morellet N, Jullian N, De Rocquigny H, Maigret B, Darlix JL, Roques BP (1992) Determination of the structure of the nucleocapsid protein NCp7 from the human immunodeficiency virus type 1 by 1H NMR. EMBO J 11(8):3059–3065PubMedGoogle Scholar
  187. 187.
    Huang Y, Khorchid A, Wang J, Parniak MA, Darlix JL, Wainberg MA, Kleiman L (1997) Effect of mutations in the nucleocapsid protein (NCp7) upon Pr160(gag-pol) and tRNA(Lys) incorporation into human immunodeficiency virus type 1. J Virol 71(6):4378–4384PubMedGoogle Scholar
  188. 188.
    Guo J, Henderson LE, Bess J, Kane B, Levin JG (1997) Human immunodeficiency virus type 1 nucleocapsid protein promotes efficient strand transfer and specific viral DNA synthesis by inhibiting TAR-dependent self-priming from minus-strand strong-stop DNA. J Virol 71(7):5178–5188PubMedGoogle Scholar
  189. 189.
    Cameron CE, Ghosh M, Le Grice SF, Benkovic SJ (1997) Mutations in HIV reverse transcriptase which alter RNase H activity and decrease strand transfer efficiency are suppressed by HIV nucleocapsid protein. Proc Natl Acad Sci USA 94(13):6700–6705PubMedCrossRefGoogle Scholar
  190. 190.
    Carteau S, Batson SC, Poljak L, Mouscadet JF, de Rocquigny H, Darlix JL, Roques BP, Kas E, Auclair C (1997) Human immunodeficiency virus type 1 nucleocapsid protein specifically stimulates Mg2+-dependent DNA integration in vitro. J Virol 71(8):6225–6229PubMedGoogle Scholar
  191. 191.
    Fossen T, Wray V, Bruns K, Rachmat J, Henklein P, Tessmer U, Maczurek A, Klinger P, Schubert U (2005) Solution structure of the human immunodeficiency virus type 1 p6 protein. J Biol Chem 280(52):42515–42527PubMedCrossRefGoogle Scholar
  192. 192.
    Accola MA, Ohagen A, Gottlinger HG (2000) Isolation of human immunodeficiency virus type 1 cores: retention of Vpr in the absence of p6(gag). J Virol 74(13):6198–6202PubMedCrossRefGoogle Scholar
  193. 193.
    Welker R, Hohenberg H, Tessmer U, Huckhagel C, Krausslich HG (2000) Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1. J Virol 74(3):1168–1177PubMedCrossRefGoogle Scholar
  194. 194.
    Yu XF, Matsuda Z, Yu QC, Lee TH, Essex M (1995) Role of the C terminus Gag protein in human immunodeficiency virus type 1 virion assembly and maturation. J Gen Virol 76(Pt 12):3171–3179PubMedCrossRefGoogle Scholar
  195. 195.
    Gottlinger HG, Dorfman T, Sodroski JG, Haseltine WA (1991) Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci USA 88(8):3195–3199PubMedCrossRefGoogle Scholar
  196. 196.
    Huang M, Orenstein JM, Martin MA, Freed EO (1995) p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol 69(11):6810–6818PubMedGoogle Scholar
  197. 197.
    Kondo E, Mammano F, Cohen EA, Gottlinger HG (1995) The p6gag domain of human immunodeficiency virus type 1 is sufficient for the incorporation of Vpr into heterologous viral particles. J Virol 69(5):2759–2764PubMedGoogle Scholar
  198. 198.
    Yu XF, Dawson L, Tian CJ, Flexner C, Dettenhofer M (1998) Mutations of the human immunodeficiency virus type 1 p6Gag domain result in reduced retention of Pol proteins during virus assembly. J Virol 72(4):3412–3417PubMedGoogle Scholar
  199. 199.
    Garnier L, Ratner L, Rovinski B, Cao SX, Wills JW (1998) Particle size determinants in the human immunodeficiency virus type 1 Gag protein. J Virol 72(6):4667–4677PubMedGoogle Scholar
  200. 200.
    Muller B, Patschinsky T, Krausslich HG (2002) The late-domain-containing protein p6 is the predominant phosphoprotein of human immunodeficiency virus type 1 particles. J Virol 76(3):1015–1024PubMedCrossRefGoogle Scholar
  201. 201.
    Hemonnot B, Cartier C, Gay B, Rebuffat S, Bardy M, Devaux C, Boyer V, Briant L (2004) The host cell MAP kinase ERK-2 regulates viral assembly and release by phosphorylating the p6gag protein of HIV-1. J Biol Chem 279(31):32426–32434PubMedCrossRefGoogle Scholar
  202. 202.
    Stys D, Blaha I, Strop P (1993) Structural and functional studies in vitro on the p6 protein from the HIV-1 gag open reading frame. Biochim Biophys Acta 1182(2):157–161PubMedGoogle Scholar
  203. 203.
    Strack B, Calistri A, Craig S, Popova E, Gottlinger HG (2003) AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114(6):689–699PubMedCrossRefGoogle Scholar
  204. 204.
    Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049PubMedCrossRefGoogle Scholar
  205. 205.
    Leiherer A, Ludwig C, Wagner R (2009) Uncoupling human immunodeficiency virus type 1 Gag and Pol reading frames: role of the transframe protein p6* in viral replication. J Virol 83(14):7210–7220PubMedCrossRefGoogle Scholar
  206. 206.
    Chatterjee A, Mridula P, Mishra RK, Mittal R, Hosur RV (2005) Folding regulates autoprocessing of HIV-1 protease precursor. J Biol Chem 280(12):11369–11378PubMedCrossRefGoogle Scholar
  207. 207.
    Dautin N, Karimova G, Ladant D (2003) Human immunodeficiency virus (HIV) type 1 transframe protein can restore activity to a dimerization-deficient HIV protease variant. J Virol 77(15):8216–8226PubMedCrossRefGoogle Scholar
  208. 208.
    Louis JM, Dyda F, Nashed NT, Kimmel AR, Davies DR (1998) Hydrophilic peptides derived from the transframe region of Gag-Pol inhibit the HIV-1 protease. Biochemistry 37(8):2105–2110PubMedCrossRefGoogle Scholar
  209. 209.
    Candotti D, Chappey C, Rosenheim M, M’Pele P, Huraux JM, Agut H (1994) High variability of the gag/pol transframe region among HIV-1 isolates. C R Acad Sci III 317(2):183–189PubMedGoogle Scholar
  210. 210.
    Leiherer A, Ludwig C, Wagner R (2009) Influence of extended mutations of the HIV-1 transframe protein p6 on Nef-dependent viral replication and infectivity in vitro. Virology 387(1):200–210PubMedCrossRefGoogle Scholar
  211. 211.
    Paulus C, Ludwig C, Wagner R (2004) Contribution of the Gag-Pol transframe domain p6* and its coding sequence to morphogenesis and replication of human immunodeficiency virus type 1. Virology 330(1):271–283PubMedCrossRefGoogle Scholar
  212. 212.
    Beissinger M, Paulus C, Bayer P, Wolf H, Rosch P, Wagner R (1996) Sequence-specific resonance assignments of the 1H-NMR spectra and structural characterization in solution of the HIV-1 transframe protein p6. Eur J Biochem 237(2):383–392PubMedCrossRefGoogle Scholar
  213. 213.
    Swanstrom R, Wills JW (1997) Synthesis, assembly, and processing of viral proteins. In: Coffin H, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 263–334Google Scholar
  214. 214.
    Zybarth G, Carter C (1995) Domains upstream of the protease (PR) in human immunodeficiency virus type 1 Gag-Pol influence PR autoprocessing. J Virol 69(6):3878–3884PubMedGoogle Scholar
  215. 215.
    Wlodawer A, Erickson JW (1993) Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem 62:543–585PubMedCrossRefGoogle Scholar
  216. 216.
    Xie D, Gulnik S, Gustchina E, Yu B, Shao W, Qoronfleh W, Nathan A, Erickson JW (1999) Drug resistance mutations can effect dimer stability of HIV-1 protease at neutral pH. Protein Sci 8(8):1702–1707PubMedCrossRefGoogle Scholar
  217. 217.
    Ishima R, Ghirlando R, Tozser J, Gronenborn AM, Torchia DA, Louis JM (2001) Folded monomer of HIV-1 protease. J Biol Chem 276(52):49110–49116PubMedCrossRefGoogle Scholar
  218. 218.
    Noel AF, Bilsel O, Kundu A, Wu Y, Zitzewitz JA, Matthews CR (2009) The folding free-energy surface of HIV-1 protease: insights into the thermodynamic basis for resistance to inhibitors. J Mol Biol 387(4):1002–1016PubMedCrossRefGoogle Scholar
  219. 219.
    Ishima R, Torchia DA, Lynch SM, Gronenborn AM, Louis JM (2003) Solution structure of the mature HIV-1 protease monomer: insight into the tertiary fold and stability of a precursor. J Biol Chem 278(44):43311–43319PubMedCrossRefGoogle Scholar
  220. 220.
    Temin HM (1993) Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation. Proc Natl Acad Sci USA 90(15):6900–6903PubMedCrossRefGoogle Scholar
  221. 221.
    Pathak VK, Hu W-S (1997) “Might as well jump!” Template switching by retroviral reverse transcriptase, defective genome formation, and recombination. Semin Virol 8:141–150CrossRefGoogle Scholar
  222. 222.
    Mansky LM, Temin HM (1995) Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69(8):5087–5094PubMedGoogle Scholar
  223. 223.
    Freed EO (2001) HIV-1 replication. Somat Cell Mol Genet 26(1–6):13–33PubMedCrossRefGoogle Scholar
  224. 224.
    Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256(5065):1783–1790PubMedCrossRefGoogle Scholar
  225. 225.
    Jacobo-Molina A, Ding J, Nanni RG, Clark AD Jr, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P et al (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci USA 90(13):6320–6324PubMedCrossRefGoogle Scholar
  226. 226.
    Bahar I, Erman B, Jernigan RL, Atilgan AR, Covell DG (1999) Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function. J Mol Biol 285(3):1023–1037PubMedCrossRefGoogle Scholar
  227. 227.
    Seckler JM, Howard KJ, Barkley MD, Wintrode PL (2009) Solution structural dynamics of HIV-1 reverse transcriptase heterodimer. Biochemistry 48(32):7646–7655PubMedCrossRefGoogle Scholar
  228. 228.
    Liu S, Abbondanzieri EA, Rausch JW, Le Grice SF, Zhuang X (2008) Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science 322(5904):1092–1097PubMedCrossRefGoogle Scholar
  229. 229.
    Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SF, Zhuang X (2008) Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453(7192):184–189PubMedCrossRefGoogle Scholar
  230. 230.
    Pari K, Mueller GA, DeRose EF, Kirby TW, London RE (2003) Solution structure of the RNase H domain of the HIV-1 reverse transcriptase in the presence of magnesium. Biochemistry 42(3):639–650PubMedCrossRefGoogle Scholar
  231. 231.
    Chen H, Wei SQ, Engelman A (1999) Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome. J Biol Chem 274(24):17358–17364PubMedCrossRefGoogle Scholar
  232. 232.
    Wei SQ, Mizuuchi K, Craigie R (1997) A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J 16(24):7511–7520PubMedCrossRefGoogle Scholar
  233. 233.
    Katz RA, Skalka AM (1994) The retroviral enzymes. Annu Rev Biochem 63:133–173PubMedCrossRefGoogle Scholar
  234. 234.
    Lataillade M, Kozal MJ (2006) The hunt for HIV-1 integrase inhibitors. AIDS Patient Care STDS 20(7):489–501PubMedCrossRefGoogle Scholar
  235. 235.
    Pommier Y, Johnson AA, Marchand C (2005) Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov 4(3):236–248PubMedCrossRefGoogle Scholar
  236. 236.
    Semenova EA, Marchand C, Pommier Y (2008) HIV-1 integrase inhibitors: update and perspectives. Adv Pharmacol 56:199–228PubMedCrossRefGoogle Scholar
  237. 237.
    Ceccherini-Silberstein F, Malet I, D’Arrigo R, Antinori A, Marcelin AG, Perno CF (2009) Characterization and structural analysis of HIV-1 integrase conservation. AIDS Rev 11(1):17–29PubMedGoogle Scholar
  238. 238.
    Rice P, Craigie R, Davies DR (1996) Retroviral integrases and their cousins. Curr Opin Struct Biol 6(1):76–83PubMedCrossRefGoogle Scholar
  239. 239.
    Polard P, Chandler M (1995) Bacterial transposases and retroviral integrases. Mol Microbiol 15(1):13–23PubMedCrossRefGoogle Scholar
  240. 240.
    Avidan O, Hizi A (2008) Expression and characterization of the integrase of bovine immunodeficiency virus. Virology 371(2):309–321PubMedCrossRefGoogle Scholar
  241. 241.
    Kulkosky J, Katz RA, Merkel G, Skalka AM (1995) Activities and substrate specificity of the evolutionarily conserved central domain of retroviral integrase. Virology 206(1):448–456PubMedCrossRefGoogle Scholar
  242. 242.
    Wang JY, Ling H, Yang W, Craigie R (2001) Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. EMBO J 20(24):7333–7343PubMedCrossRefGoogle Scholar
  243. 243.
    Chen JC, Krucinski J, Miercke LJ, Finer-Moore JS, Tang AH, Leavitt AD, Stroud RM (2000) Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc Natl Acad Sci USA 97(15):8233–8238PubMedCrossRefGoogle Scholar
  244. 244.
    Eijkelenboom AP, Lutzke RA, Boelens R, Plasterk RH, Kaptein R, Hard K (1995) The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nat Struct Biol 2(9):807–810PubMedCrossRefGoogle Scholar
  245. 245.
    Eijkelenboom AP, van den Ent FM, Vos A, Doreleijers JF, Hard K, Tullius TD, Plasterk RH, Kaptein R, Boelens R (1997) The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Curr Biol 7(10):739–746PubMedCrossRefGoogle Scholar
  246. 246.
    Lodi PJ, Ernst JA, Kuszewski J, Hickman AB, Engelman A, Craigie R, Clore GM, Gronenborn AM (1995) Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34(31):9826–9833PubMedCrossRefGoogle Scholar
  247. 247.
    Cai M, Zheng R, Caffrey M, Craigie R, Clore GM, Gronenborn AM (1997) Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat Struct Biol 4(7):567–577PubMedCrossRefGoogle Scholar
  248. 248.
    Wei P, Garber ME, Fang SM, Fischer WH, Jones KA (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92(4):451–462PubMedCrossRefGoogle Scholar
  249. 249.
    D’Orso I, Frankel AD (2010) RNA-mediated displacement of an inhibitory snRNP complex activates transcription elongation. Nat Struct Mol Biol 17(7):815–821PubMedCrossRefGoogle Scholar
  250. 250.
    Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M (2010) HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Molecular Cell 38(3):439–451PubMedCrossRefGoogle Scholar
  251. 251.
    Barboric M, Lenasi T (2010) Kick-sTARting HIV-1 transcription elongation by 7SK snRNP deporTATion. Nat Struct Mol Biol 17(8):928–930PubMedCrossRefGoogle Scholar
  252. 252.
    He N, Liu M, Hsu J, Xue Y, Chou S, Burlingame A, Krogan NJ, Alber T, Zhou Q (2010) HIV-1 tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Molecular Cell 38(3):428–438PubMedCrossRefGoogle Scholar
  253. 253.
    Schulte A, Czudnochowski N, Barboric M, Schonichen A, Blazek D, Peterlin BM, Geyer M (2005) Identification of a cyclin T-binding domain in Hexim1 and biochemical analysis of its binding competition with HIV-1 Tat. J Biol Chem 280(26):24968–24977PubMedCrossRefGoogle Scholar
  254. 254.
    Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH (2010) Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465(7299):747–751PubMedCrossRefGoogle Scholar
  255. 255.
    Bannwarth S, Gatignol A (2005) HIV-1 TAR RNA: the target of molecular interactions between the virus and its host. Curr HIV Res 3(1):61–71PubMedCrossRefGoogle Scholar
  256. 256.
    Mujtaba S, He Y, Zeng L, Farooq A, Carlson JE, Ott M, Verdin E, Zhou MM (2002) Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Molecular Cell 9(3):575–586PubMedCrossRefGoogle Scholar
  257. 257.
    Shojania S, O’Neil JD (2010) Intrinsic disorder and function of the HIV-1 Tat protein. Protein Pept Lett 17(8):999–1011PubMedCrossRefGoogle Scholar
  258. 258.
    Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F (1990) Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345(6270):84–86PubMedCrossRefGoogle Scholar
  259. 259.
    Albini A, Soldi R, Giunciuglio D, Giraudo E, Benelli R, Primo L, Noonan D, Salio M, Camussi G, Rockl W, Bussolino F (1996) The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nat Med 2(12):1371–1375PubMedCrossRefGoogle Scholar
  260. 260.
    Albini A, Benelli R, Presta M, Rusnati M, Ziche M, Rubartelli A, Paglialunga G, Bussolino F, Noonan D (1996) HIV-tat protein is a heparin-binding angiogenic growth factor. Oncogene 12(2):289–297PubMedGoogle Scholar
  261. 261.
    Goldstein G (1996) HIV-1 Tat protein as a potential AIDS vaccine. Nat Med 2(9):960–964PubMedCrossRefGoogle Scholar
  262. 262.
    Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70(3):1475–1480PubMedGoogle Scholar
  263. 263.
    Pocernich CB, Sultana R, Mohmmad-Abdul H, Nath A, Butterfield DA (2005) HIV-dementia, Tat-induced oxidative stress, and antioxidant therapeutic considerations. Brain Res Rev 50(1):14–26PubMedCrossRefGoogle Scholar
  264. 264.
    András IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M (2003) HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 74(2):255–265PubMedCrossRefGoogle Scholar
  265. 265.
    Banks WA, Robinson SM, Nath A (2005) Permeability of the blood-brain barrier to HIV-1 Tat. Exp Neurol 193(1):218–227PubMedCrossRefGoogle Scholar
  266. 266.
    Westendorp MO, Shatrov VA, Schulze-Osthoff K, Frank R, Kraft M, Los M, Krammer PH, Droge W, Lehmann V (1995) HIV-1 Tat potentiates TNF-induced NF-kappaB activation and cytotoxicity by altering the cellular redox state. EMBO J 14(3):546–554PubMedGoogle Scholar
  267. 267.
    Pumfery A, Deng L, Maddukuri A, de la Fuente C, Li H, Wade JD, Lambert P, Kumar A, Kashanchi F (2003) Chromatin remodeling and modification during HIV-1 Tat-activated transcription. Curr HIV Res 1(3):343–362PubMedCrossRefGoogle Scholar
  268. 268.
    Guo X, Kameoka M, Wei X, Roques B, Gotte M, Liang C, Wainberg MA (2003) Suppression of an intrinsic strand transfer activity of HIV-1 Tat protein by its second-exon sequences. Virology 307(1):154–163PubMedCrossRefGoogle Scholar
  269. 269.
    Chiu Y-L, Ho CK, Saha N, Schwer B, Shuman S, Rana TM (2002) Tat stimulates cotranscriptional capping of HIV mRNA. Molecular Cell 10(3):585–597PubMedCrossRefGoogle Scholar
  270. 270.
    Bennasser Y, Jeang K (2006) HIV-1 Tat interaction with Dicer: requirement for RNA. Retrovirology 3:95–101PubMedCrossRefGoogle Scholar
  271. 271.
    Kuciak M, Gabus C, Ivanyi-Nagy R, Semrad K, Storchak R, Chaloin O, Muller S, Mely Y, Darlix J-L (2008) The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro. Nucleic Acids Res 36(10):3389–3400PubMedCrossRefGoogle Scholar
  272. 272.
    Gautier V, Gu L, O’Donoghue N, Pennington S, Sheehy N, Hall W (2009) In vitro nuclear interactome of the HIV-1 Tat protein. Retrovirology 6(1):47PubMedCrossRefGoogle Scholar
  273. 273.
    Liang C, Wainberg MA (2002) The role of Tat in HIV-1 replication: an activator and/or a suppressor? AIDS Reviews 4(1):41–49PubMedGoogle Scholar
  274. 274.
    Derse D, Carvalho M, Carroll R, Peterlin BM (1991) A minimal lentivirus Tat. J Virol 65(12):7012–7015PubMedGoogle Scholar
  275. 275.
    Vendel AC, Lumb KJ (2003) Molecular recognition of the human coactivator CBP by the HIV-1 transcriptional activator Tat. Biochemistry 42(4):910–916PubMedCrossRefGoogle Scholar
  276. 276.
    Bieniasz PD, Grdina TA, Bogerd HP, Cullen BR (1998) Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J 17(23):7056–7065PubMedCrossRefGoogle Scholar
  277. 277.
    Chen D, Wang M, Zhou S, Zhou Q (2002) HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. EMBO J 21(24):6801–6810PubMedCrossRefGoogle Scholar
  278. 278.
    Weeks KM, Ampe C, Schultz SC, Steitz TA, Crothers DM (1990) Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science 249(4974):1281–1285PubMedCrossRefGoogle Scholar
  279. 279.
    Anand K, Schulte A, Vogel-Bachmayr K, Scheffzek K, Geyer M (2008) Structural insights into the Cyclin T1-Tat-TAR RNA transcription activation complex from EIAV. Nat Struct Mol Biol 15(12):1287–1292PubMedCrossRefGoogle Scholar
  280. 280.
    Gupta B, Levchenko TS, Torchilin VP (2005) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Advan Drug Deliv Rev 57(4):637–651CrossRefGoogle Scholar
  281. 281.
    Campbell GR, Pasquier E, Watkins J, Bourgarel-Rey V, Peyrot V, Esquieu D, Barbier P, de Mareuil J, Braguer D, Kaleebu P, Yirrell DL, Loret EP (2004) The glutamine-rich region of the HIV-1 Tat protein is involved in T cell apoptosis. J Biol Chem 279(46):48197–48204PubMedCrossRefGoogle Scholar
  282. 282.
    Avraham HK, Jiang S, Lee T-H, Prakash O, Avraham S (2004) HIV-1 tat-mediated effects on focal adhesion assembly and permeability in brain microvascular endothelial cells. J Immunol 173(10):6228–6233PubMedGoogle Scholar
  283. 283.
    Weissman JD, Brown JA, Howcroft TK, Hwang J, Chawla A, Roche PA, Schiltz L, Nakatani Y, Singer DS (1998) HIV-1 Tat binds TAFII250 and represses TAFII250-dependent transcription of major histocompatibility class I genes. Proc Natl Acad Sci USA 95(20):11601–11606PubMedCrossRefGoogle Scholar
  284. 284.
    Carroll IR, Wang J, Howcroft TK, Singer DS (1998) HIV Tat represses transcription of the beta2-microglobulin promoter. Mol Immunol 35(18):1171–1178PubMedCrossRefGoogle Scholar
  285. 285.
    Howcroft T, Strebel K, Martin M, Singer D (1993) Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science 260(5112):1320–1322PubMedCrossRefGoogle Scholar
  286. 286.
    Lopez-Huertas MR, Callejas S, Abia D, Mateos E, Dopazo A, Alcami J, Coiras M (2010) Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon. Nucleic Acids Res 38(10):3287–3307PubMedCrossRefGoogle Scholar
  287. 287.
    Goh G, Dunker AK, Uversky V (2008) Protein intrinsic disorder toolbox for comparative analysis of viral proteins. BMC Genomics 9(Suppl 2):S4PubMedCrossRefGoogle Scholar
  288. 288.
    Anand K, Schulte A, Fujinaga K, Scheffzek K, Geyer M (2007) Cyclin box structure of the P-TEFb subunit cyclin T1 derived from a fusion complex with EIAV tat. J Mol Biol 370(5):826–836PubMedCrossRefGoogle Scholar
  289. 289.
    Bayer P, Kraft M, Ejchart A, Westendorp M, Frank R, Rosch P (1995) Structural studies of HIV-1 Tat protein. J Mol Biol 247(4):529–535PubMedGoogle Scholar
  290. 290.
    Uversky VN (2011) Intrinsically disordered proteins may escape unwanted interactions via functional misfolding. Biochim Biophys Acta 1814(5):693–712Google Scholar
  291. 291.
    Shojania S, O’Neil JD (2006) HIV-1 Tat is a natively unfolded protein: the solution conformation and dynamics of reduced HIV-1 Tat-(1–72) by NMR spectroscopy. J Biol Chem 281(13):8347–8356PubMedCrossRefGoogle Scholar
  292. 292.
    Foucault M, Mayol K, Receveur-Bréchot V, Bussat MC, Klinguer-Hamour C, Verrier B, Beck A, Haser R, Gouet P, Guillon C (2010) UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate. Proteins Struct Funct Bioinform 78(6):1441–1456Google Scholar
  293. 293.
    Cullen BR (2003) Nuclear mRNA export: insights from virology. Trends Biochem Sci 28(8):419–424PubMedCrossRefGoogle Scholar
  294. 294.
    Cullen BR (2003) Nuclear RNA export. J Cell Sci 116(Pt 4):587–597PubMedCrossRefGoogle Scholar
  295. 295.
    Pollard VW, Malim MH (1998) The HIV-1 Rev protein. Annu Rev Microbiol 52:491–532PubMedCrossRefGoogle Scholar
  296. 296.
    Ho JH, Kallstrom G, Johnson AW (2000) Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J Cell Biol 151(5):1057–1066PubMedCrossRefGoogle Scholar
  297. 297.
    Gadal O, Strauss D, Kessl J, Trumpower B, Tollervey D, Hurt E (2001) Nuclear export of 60 s ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p. Mol Cell Biol 21(10):3405–3415PubMedCrossRefGoogle Scholar
  298. 298.
    Moy TI, Silver PA (2002) Requirements for the nuclear export of the small ribosomal subunit. J Cell Sci 115(Pt 14):2985–2995PubMedGoogle Scholar
  299. 299.
    Thomas F, Kutay U (2003) Biogenesis and nuclear export of ribosomal subunits in higher eukaryotes depend on the CRM1 export pathway. J Cell Sci 116(Pt 12):2409–2419PubMedCrossRefGoogle Scholar
  300. 300.
    Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90(6):1051–1060PubMedCrossRefGoogle Scholar
  301. 301.
    Kutay U, Bischoff FR, Kostka S, Kraft R, Gorlich D (1997) Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 90(6):1061–1071PubMedCrossRefGoogle Scholar
  302. 302.
    Kutay U, Guttinger S (2005) Leucine-rich nuclear-export signals: born to be weak. Trends Cell Biol 15(3):121–124PubMedCrossRefGoogle Scholar
  303. 303.
    Daugherty MD, D’Orso I, Frankel AD (2008) A solution to limited genomic capacity: using adaptable binding surfaces to assemble the functional HIV Rev oligomer on RNA. Mol Cell 31(6):824–834PubMedCrossRefGoogle Scholar
  304. 304.
    Auer M, Gremlich HU, Seifert JM, Daly TJ, Parslow TG, Casari G, Gstach H (1994) Helix-loop-helix motif in HIV-1 Rev. Biochemistry 33(10):2988–2996PubMedCrossRefGoogle Scholar
  305. 305.
    Thomas SL, Hauber J, Casari G (1997) Probing the structure of the HIV-1 Rev trans-activator protein by functional analysis. Protein Eng 10(2):103–107PubMedCrossRefGoogle Scholar
  306. 306.
    Daugherty MD, Liu B, Frankel AD (2010) Structural basis for cooperative RNA binding and export complex assembly by HIV Rev. Nat Struct Mol Biol 17(11):1337–1342PubMedCrossRefGoogle Scholar
  307. 307.
    Daugherty MD, Booth DS, Jayaraman B, Cheng Y, Frankel AD (2010) HIV Rev response element (RRE) directs assembly of the Rev homooligomer into discrete asymmetric complexes. Proc Natl Acad Sci USA 107(28):12481–12486PubMedCrossRefGoogle Scholar
  308. 308.
    Battiste JL, Mao H, Rao NS, Tan R, Muhandiram DR, Kay LE, Frankel AD, Williamson JR (1996) Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science 273(5281):1547–1551PubMedCrossRefGoogle Scholar
  309. 309.
    Ye X, Gorin A, Ellington AD, Patel DJ (1996) Deep penetration of an alpha-helix into a widened RNA major groove in the HIV-1 rev peptide-RNA aptamer complex. Nat Struct Biol 3(12):1026–1033PubMedCrossRefGoogle Scholar
  310. 310.
    Scanlon MJ, Fairlie DP, Craik DJ, Englebretsen DR, West ML (1995) NMR solution structure of the RNA-binding peptide from human immunodeficiency virus (type 1) Rev. Biochemistry 34(26):8242–8249PubMedCrossRefGoogle Scholar
  311. 311.
    Guttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, Gorlich D (2010) NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat Struct Mol Biol 17(11):1367–1376PubMedCrossRefGoogle Scholar
  312. 312.
    Cook A, Bono F, Jinek M, Conti E (2007) Structural biology of nucleocytoplasmic transport. Annu Rev Biochem 76:647–671PubMedCrossRefGoogle Scholar
  313. 313.
    Anderson JL, Hope TJ (2004) HIV accessory proteins and surviving the host cell. Curr HIV/AIDS Rep 1(1):47–53PubMedCrossRefGoogle Scholar
  314. 314.
    Malim MH, Emerman M (2008) HIV-1 accessory proteins–ensuring viral survival in a hostile environment. Cell Host Microbe 3(6):388–398PubMedCrossRefGoogle Scholar
  315. 315.
    Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford-Menting M, Hooker DJ, McPhee DA, Greenway AL, Ellett A, Chatfield C, Lawson VA, Crowe S, Maerz A, Sonza S, Learmont J, Sullivan JS, Cunningham A, Dwyer D, Dowton D, Mills J (1995) Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270(5238):988–991PubMedCrossRefGoogle Scholar
  316. 316.
    Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC (1995) Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 332(4):228–232PubMedCrossRefGoogle Scholar
  317. 317.
    Benson RE, Sanfridson A, Ottinger JS, Doyle C, Cullen BR (1993) Downregulation of cell-surface CD4 expression by simian immunodeficiency virus Nef prevents viral super infection. J Exp Med 177(6):1561–1566PubMedCrossRefGoogle Scholar
  318. 318.
    Dyer WB, Ogg GS, Demoitie MA, Jin X, Geczy AF, Rowland-Jones SL, McMichael AJ, Nixon DF, Sullivan JS (1999) Strong human immunodeficiency virus (HIV)-specific cytotoxic T lymphocyte activity in Sydney Blood Bank Cohort patients infected with nef-defective HIV type 1. J Virol 73(1):436–443PubMedGoogle Scholar
  319. 319.
    Little SJ, Riggs NL, Chowers MY, Fitch NJ, Richman DD, Spina CA, Guatelli JC (1994) Cell surface CD4 downregulation and resistance to superinfection induced by a defective provirus of HIV-1. Virology 205(2):578–582PubMedCrossRefGoogle Scholar
  320. 320.
    Mangasarian A, Foti M, Aiken C, Chin D, Carpentier JL, Trono D (1997) The HIV-1 Nef protein acts as a connector with sorting pathways in the Golgi and at the plasma membrane. Immunity 6(1):67–77PubMedCrossRefGoogle Scholar
  321. 321.
    Mangasarian A, Trono D (1997) The multifaceted role of HIV Nef. Res Virol 148(1):30–33PubMedCrossRefGoogle Scholar
  322. 322.
    Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391(6665):397–401PubMedCrossRefGoogle Scholar
  323. 323.
    Geyer M, Peterlin BM (2001) Domain assembly, surface accessibility and sequence conservation in full length HIV-1 Nef. FEBS Lett 496(2–3):91–95PubMedCrossRefGoogle Scholar
  324. 324.
    Baugh LL, Garcia JV, Foster JL (2008) Functional characterization of the human immunodeficiency virus type 1 Nef acidic domain. J Virol 82(19):9657–9667PubMedCrossRefGoogle Scholar
  325. 325.
    Gerlach H, Laumann V, Martens S, Becker CF, Goody RS, Geyer M (2010) HIV-1 Nef membrane association depends on charge, curvature, composition and sequence. Nat Chem Biol 6(1):46–53PubMedCrossRefGoogle Scholar
  326. 326.
    Giese SI, Woerz I, Homann S, Tibroni N, Geyer M, Fackler OT (2006) Specific and distinct determinants mediate membrane binding and lipid raft incorporation of HIV-1(SF2) Nef. Virology 355(2):175–191PubMedCrossRefGoogle Scholar
  327. 327.
    Fackler OT, Moris A, Tibroni N, Giese SI, Glass B, Schwartz O, Krausslich HG (2006) Functional characterization of HIV-1 Nef mutants in the context of viral infection. Virology 351(2):322–339PubMedCrossRefGoogle Scholar
  328. 328.
    Bentham M, Mazaleyrat S, Harris M (2006) Role of myristoylation and N-terminal basic residues in membrane association of the human immunodeficiency virus type 1 Nef protein. J Gen Virol 87(Pt 3):563–571PubMedCrossRefGoogle Scholar
  329. 329.
    Swingler S, Mann A, Jacque J, Brichacek B, Sasseville VG, Williams K, Lackner AA, Janoff EN, Wang R, Fisher D, Stevenson M (1999) HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med 5(9):997–1003PubMedCrossRefGoogle Scholar
  330. 330.
    Messmer D, Jacque JM, Santisteban C, Bristow C, Han SY, Villamide-Herrera L, Mehlhop E, Marx PA, Steinman RM, Gettie A, Pope M (2002) Endogenously expressed nef uncouples cytokine and chemokine production from membrane phenotypic maturation in dendritic cells. J Immunol 169(8):4172–4182PubMedGoogle Scholar
  331. 331.
    Dai L, Stevenson M (2010) A novel motif in HIV-1 Nef that regulates MIP-1beta chemokine release in macrophages. J Virol 84(16):8327–8331PubMedCrossRefGoogle Scholar
  332. 332.
    Lee CH, Leung B, Lemmon MA, Zheng J, Cowburn D, Kuriyan J, Saksela K (1995) A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. EMBO J 14(20):5006–5015PubMedGoogle Scholar
  333. 333.
    Renkema GH, Manninen A, Mann DA, Harris M, Saksela K (1999) Identification of the Nef-associated kinase as p21-activated kinase 2. Curr Biol 9(23):1407–1410PubMedCrossRefGoogle Scholar
  334. 334.
    Fackler OT, Luo W, Geyer M, Alberts AS, Peterlin BM (1999) Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol Cell 3(6):729–739PubMedCrossRefGoogle Scholar
  335. 335.
    Greenway A, McPhee D (1997) HIV1 Nef: the Machiavelli of cellular activation. Res Virol 148(1):58–64PubMedCrossRefGoogle Scholar
  336. 336.
    Moarefi I, LaFevre-Bernt M, Sicheri F, Huse M, Lee CH, Kuriyan J, Miller WT (1997) Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385(6617):650–653PubMedCrossRefGoogle Scholar
  337. 337.
    Benichou S, Liu LX, Erdtmann L, Selig L, Benarous R (1997) Use of the two-hybrid system to identify cellular partners of the HIV1 Nef protein. Res Virol 148(1):71–73PubMedCrossRefGoogle Scholar
  338. 338.
    Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J (1996) Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 85(6):931–942PubMedCrossRefGoogle Scholar
  339. 339.
    Sawai ET, Cheng-Mayer C, Luciw PA (1997) Nef and the Nef-associated kinase. Res Virol 148(1):47–52PubMedCrossRefGoogle Scholar
  340. 340.
    Costa LJ, Chen N, Lopes A, Aguiar RS, Tanuri A, Plemenitas A, Peterlin BM (2006) Interactions between Nef and AIP1 proliferate multivesicular bodies and facilitate egress of HIV-1. Retrovirology 3:33PubMedCrossRefGoogle Scholar
  341. 341.
    Poe JA, Smithgall TE (2009) HIV-1 Nef dimerization is required for Nef-mediated receptor downregulation and viral replication. J Mol Biol 394(2):329–342PubMedCrossRefGoogle Scholar
  342. 342.
    Freund J, Kellner R, Houthaeve T, Kalbitzer HR (1994) Stability and proteolytic domains of Nef protein from human immunodeficiency virus (HIV) type 1. Eur J Biochem 221(2):811–819PubMedCrossRefGoogle Scholar
  343. 343.
    Grzesiek S, Bax A, Hu JS, Kaufman J, Palmer I, Stahl SJ, Tjandra N, Wingfield PT (1997) Refined solution structure and backbone dynamics of HIV-1 Nef. Protein Sci 6(6):1248–1263PubMedCrossRefGoogle Scholar
  344. 344.
    Geyer M, Munte CE, Schorr J, Kellner R, Kalbitzer HR (1999) Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein. J Mol Biol 289(1):123–138PubMedCrossRefGoogle Scholar
  345. 345.
    Sodroski J, Goh WC, Rosen C, Tartar A, Portetelle D, Burny A, Haseltine W (1986) Replicative and cytopathic potential of HTLV-III/LAV with sor gene deletions. Science 231(4745):1549–1553PubMedCrossRefGoogle Scholar
  346. 346.
    Strebel K, Daugherty D, Clouse K, Cohen D, Folks T, Martin MA (1987) The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 328(6132):728–730PubMedCrossRefGoogle Scholar
  347. 347.
    Gabuzda DH, Lawrence K, Langhoff E, Terwilliger E, Dorfman T, Haseltine WA, Sodroski J (1992) Role of vif in replication of human immunodeficiency virus type 1 in CD4 + T lymphocytes. J Virol 66(11):6489–6495PubMedGoogle Scholar
  348. 348.
    Borman AM, Quillent C, Charneau P, Dauguet C, Clavel F (1995) Human immunodeficiency virus type 1 Vif- mutant particles from restrictive cells: role of Vif in correct particle assembly and infectivity. J Virol 69(4):2058–2067PubMedGoogle Scholar
  349. 349.
    Courcoul M, Patience C, Rey F, Blanc D, Harmache A, Sire J, Vigne R, Spire B (1995) Peripheral blood mononuclear cells produce normal amounts of defective Vif- human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps. J Virol 69(4):2068–2074PubMedGoogle Scholar
  350. 350.
    Strebel K (2007) HIV accessory genes Vif and Vpu. Adv Pharmacol 55:199–232PubMedCrossRefGoogle Scholar
  351. 351.
    Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898):646–650PubMedCrossRefGoogle Scholar
  352. 352.
    Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, Neuberger MS, Malim MH (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113(6):803–809PubMedCrossRefGoogle Scholar
  353. 353.
    Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424(6944):99–103PubMedCrossRefGoogle Scholar
  354. 354.
    Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424(6944):94–98PubMedCrossRefGoogle Scholar
  355. 355.
    Yang B, Chen K, Zhang C, Huang S, Zhang H (2007) Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent HIV-1 DNA. J Biol Chem 282(16):11667–11675PubMedCrossRefGoogle Scholar
  356. 356.
    Kao S, Khan MA, Miyagi E, Plishka R, Buckler-White A, Strebel K (2003) The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. J Virol 77(21):11398–11407PubMedCrossRefGoogle Scholar
  357. 357.
    Kremer M, Schnierle BS (2005) HIV-1 Vif: HIV’s weapon against the cellular defense factor APOBEC3G. Curr HIV Res 3(4):339–344PubMedCrossRefGoogle Scholar
  358. 358.
    Mehle A, Strack B, Ancuta P, Zhang C, McPike M, Gabuzda D (2004) Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem 279(9):7792–7798PubMedCrossRefGoogle Scholar
  359. 359.
    Wedekind JE, Dance GS, Sowden MP, Smith HC (2003) Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet 19(4):207–216PubMedCrossRefGoogle Scholar
  360. 360.
    Wissing S, Galloway NL, Greene WC (2010) HIV-1 Vif versus the APOBEC3 cytidine deaminases: an intracellular duel between pathogen and host restriction factors. Mol Aspects Med 31:383–397PubMedCrossRefGoogle Scholar
  361. 361.
    Marin M, Rose KM, Kozak SL, Kabat D (2003) HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 9(11):1398–1403PubMedCrossRefGoogle Scholar
  362. 362.
    Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, Yu XF (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302(5647):1056–1060PubMedCrossRefGoogle Scholar
  363. 363.
    Shirakawa K, Takaori-Kondo A, Kobayashi M, Tomonaga M, Izumi T, Fukunaga K, Sasada A, Abudu A, Miyauchi Y, Akari H, Iwai K, Uchiyama T (2005) Ubiquitination of APOBEC3 proteins by the Vif-Cullin5-ElonginB-ElonginC complex. Virology 344(2):263–266PubMedCrossRefGoogle Scholar
  364. 364.
    Miller JH, Presnyak V, Smith HC (2007) The dimerization domain of HIV-1 viral infectivity factor Vif is required to block virion incorporation of APOBEC3G. Retrovirology 4:81PubMedCrossRefGoogle Scholar
  365. 365.
    Yamashita T, Nomaguchi M, Miyake A, Uchiyama T, Adachi A (2010) Status of APOBEC3G/F in cells and progeny virions modulated by Vif determines HIV-1 infectivity. Microbes Infect 12(2):166–171PubMedCrossRefGoogle Scholar
  366. 366.
    Santa-Marta M, da Silva FA, Fonseca AM, Goncalves J (2005) HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation. J Biol Chem 280(10):8765–8775PubMedCrossRefGoogle Scholar
  367. 367.
    Santa-Marta M, Aires da Silva F, Fonseca AM, Rato S, Goncalves J (2007) HIV-1 Vif protein blocks the cytidine deaminase activity of B-cell specific AID in E. coli by a similar mechanism of action. Mol Immunol 44(4):583–590PubMedCrossRefGoogle Scholar
  368. 368.
    Stopak K, de Noronha C, Yonemoto W, Greene WC (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12(3):591–601PubMedCrossRefGoogle Scholar
  369. 369.
    Mercenne G, Bernacchi S, Richer D, Bec G, Henriet S, Paillart JC, Marquet R (2010) HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation. Nucleic Acids Res 38(2):633–646PubMedCrossRefGoogle Scholar
  370. 370.
    Simon JH, Miller DL, Fouchier RA, Malim MH (1998) Virion incorporation of human immunodeficiency virus type-1 Vif is determined by intracellular expression level and may not be necessary for function. Virology 248(2):182–187PubMedCrossRefGoogle Scholar
  371. 371.
    Kao S, Akari H, Khan MA, Dettenhofer M, Yu XF, Strebel K (2003) Human immunodeficiency virus type 1 Vif is efficiently packaged into virions during productive but not chronic infection. J Virol 77(2):1131–1140PubMedCrossRefGoogle Scholar
  372. 372.
    Khan MA, Aberham C, Kao S, Akari H, Gorelick R, Bour S, Strebel K (2001) Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. J Virol 75(16):7252–7265PubMedCrossRefGoogle Scholar
  373. 373.
    Goncalves J, Jallepalli P, Gabuzda DH (1994) Subcellular localization of the Vif protein of human immunodeficiency virus type 1. J Virol 68(2):704–712PubMedGoogle Scholar
  374. 374.
    Goncalves J, Shi B, Yang X, Gabuzda D (1995) Biological activity of human immunodeficiency virus type 1 Vif requires membrane targeting by C-terminal basic domains. J Virol 69(11):7196–7204PubMedGoogle Scholar
  375. 375.
    Simon JH, Fouchier RA, Southerling TE, Guerra CB, Grant CK, Malim MH (1997) The Vif and Gag proteins of human immunodeficiency virus type 1 colocalize in infected human T cells. J Virol 71(7):5259–5267PubMedGoogle Scholar
  376. 376.
    Auclair JR, Green KM, Shandilya S, Evans JE, Somasundaran M, Schiffer CA (2007) Mass spectrometry analysis of HIV-1 Vif reveals an increase in ordered structure upon oligomerization in regions necessary for viral infectivity. Proteins 69(2):270–284PubMedCrossRefGoogle Scholar
  377. 377.
    Yang B, Gao L, Li L, Lu Z, Fan X, Patel CA, Pomerantz RJ, DuBois GC, Zhang H (2003) Potent suppression of viral infectivity by the peptides that inhibit multimerization of human immunodeficiency virus type 1 (HIV-1) Vif proteins. J Biol Chem 278(8):6596–6602PubMedCrossRefGoogle Scholar
  378. 378.
    Yang S, Sun Y, Zhang H (2001) The multimerization of human immunodeficiency virus type I Vif protein: a requirement for Vif function in the viral life cycle. J Biol Chem 276(7):4889–4893PubMedCrossRefGoogle Scholar
  379. 379.
    Yang X, Goncalves J, Gabuzda D (1996) Phosphorylation of Vif and its role in HIV-1 replication. J Biol Chem 271(17):10121–10129PubMedCrossRefGoogle Scholar
  380. 380.
    Mehle A, Goncalves J, Santa-Marta M, McPike M, Gabuzda D (2004) Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes Dev 18(23):2861–2866PubMedCrossRefGoogle Scholar
  381. 381.
    Yang X, Gabuzda D (1998) Mitogen-activated protein kinase phosphorylates and regulates the HIV-1 Vif protein. J Biol Chem 273(45):29879–29887PubMedCrossRefGoogle Scholar
  382. 382.
    Khan MA, Akari H, Kao S, Aberham C, Davis D, Buckler-White A, Strebel K (2002) Intravirion processing of the human immunodeficiency virus type 1 Vif protein by the viral protease may be correlated with Vif function. J Virol 76(18):9112–9123PubMedCrossRefGoogle Scholar
  383. 383.
    Tian C, Yu X, Zhang W, Wang T, Xu R, Yu XF (2006) Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F. J Virol 80(6):3112–3115PubMedCrossRefGoogle Scholar
  384. 384.
    Simon V, Zennou V, Murray D, Huang Y, Ho DD, Bieniasz PD (2005) Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS Pathog 1(1):e6PubMedCrossRefGoogle Scholar
  385. 385.
    Dang Y, Davis RW, York IA, Zheng YH (2010) Identification of 81LGxGxxIxW89 and 171EDRW174 domains from human immunodeficiency virus type 1 Vif that regulate APOBEC3G and APOBEC3F neutralizing activity. J Virol 84(11):5741–5750PubMedCrossRefGoogle Scholar
  386. 386.
    Dang Y, Wang X, Zhou T, York IA, Zheng YH (2009) Identification of a novel WxSLVK motif in the N terminus of human immunodeficiency virus and simian immunodeficiency virus Vif that is critical for APOBEC3G and APOBEC3F neutralization. J Virol 83(17):8544–8552PubMedCrossRefGoogle Scholar
  387. 387.
    Chen G, He Z, Wang T, Xu R, Yu XF (2009) A patch of positively charged amino acids surrounding the human immunodeficiency virus type 1 Vif SLVx4Yx9Y motif influences its interaction with APOBEC3G. J Virol 83(17):8674–8682PubMedCrossRefGoogle Scholar
  388. 388.
    Henriet S, Sinck L, Bec G, Gorelick RJ, Marquet R, Paillart JC (2007) Vif is a RNA chaperone that could temporally regulate RNA dimerization and the early steps of HIV-1 reverse transcription. Nucleic Acids Res 35(15):5141–5153PubMedCrossRefGoogle Scholar
  389. 389.
    Henriet S, Richer D, Bernacchi S, Decroly E, Vigne R, Ehresmann B, Ehresmann C, Paillart JC, Marquet R (2005) Cooperative and specific binding of Vif to the 5′ region of HIV-1 genomic RNA. J Mol Biol 354(1):55–72PubMedCrossRefGoogle Scholar
  390. 390.
    Bernacchi S, Henriet S, Dumas P, Paillart JC, Marquet R (2007) RNA and DNA binding properties of HIV-1 Vif protein: a fluorescence study. J Biol Chem 282(36):26361–26368PubMedCrossRefGoogle Scholar
  391. 391.
    Dettenhofer M, Cen S, Carlson BA, Kleiman L, Yu XF (2000) Association of human immunodeficiency virus type 1 Vif with RNA and its role in reverse transcription. J Virol 74(19):8938–8945PubMedCrossRefGoogle Scholar
  392. 392.
    Zhang H, Pomerantz RJ, Dornadula G, Sun Y (2000) Human immunodeficiency virus type 1 Vif protein is an integral component of an mRNP complex of viral RNA and could be involved in the viral RNA folding and packaging process. J Virol 74(18):8252–8261PubMedCrossRefGoogle Scholar
  393. 393.
    Baraz L, Friedler A, Blumenzweig I, Nussinuv O, Chen N, Steinitz M, Gilon C, Kotler M (1998) Human immunodeficiency virus type 1 Vif-derived peptides inhibit the viral protease and arrest virus production. FEBS Lett 441(3):419–426PubMedCrossRefGoogle Scholar
  394. 394.
    Friedler A, Blumenzweig I, Baraz L, Steinitz M, Kotler M, Gilon C (1999) Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitors. J Mol Biol 287(1):93–101PubMedCrossRefGoogle Scholar
  395. 395.
    Baraz L, Hutoran M, Blumenzweig I, Katzenellenbogen M, Friedler A, Gilon C, Steinitz M, Kotler M (2002) Human immunodeficiency virus type 1 Vif binds the viral protease by interaction with its N-terminal region. J Gen Virol 83(Pt 9):2225–2230PubMedGoogle Scholar
  396. 396.
    Izumi T, Takaori-Kondo A, Shirakawa K, Higashitsuji H, Itoh K, Io K, Matsui M, Iwai K, Kondoh H, Sato T, Tomonaga M, Ikeda S, Akari H, Koyanagi Y, Fujita J, Uchiyama T (2009) MDM2 is a novel E3 ligase for HIV-1 Vif. Retrovirology 6:1PubMedCrossRefGoogle Scholar
  397. 397.
    Luo K, Xiao Z, Ehrlich E, Yu Y, Liu B, Zheng S, Yu XF (2005) Primate lentiviral virion infectivity factors are substrate receptors that assemble with cullin 5–E3 ligase through a HCCH motif to suppress APOBEC3G. Proc Natl Acad Sci USA 102(32):11444–11449PubMedCrossRefGoogle Scholar
  398. 398.
    Mehle A, Thomas ER, Rajendran KS, Gabuzda D (2006) A zinc-binding region in Vif binds Cul5 and determines cullin selection. J Biol Chem 281(25):17259–17265PubMedCrossRefGoogle Scholar
  399. 399.
    Xiao Z, Xiong Y, Zhang W, Tan L, Ehrlich E, Guo D, Yu XF (2007) Characterization of a Novel Cullin5 Binding Domain in HIV-1 Vif. J Mol Biol 373(3):541–550PubMedCrossRefGoogle Scholar
  400. 400.
    Oberste MS, Gonda MA (1992) Conservation of amino-acid sequence motifs in lentivirus Vif proteins. Virus Genes 6(1):95–102PubMedCrossRefGoogle Scholar
  401. 401.
    Yu Y, Xiao Z, Ehrlich ES, Yu X, Yu XF (2004) Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev 18(23):2867–2872PubMedCrossRefGoogle Scholar
  402. 402.
    Schmitt K, Hill MS, Ruiz A, Culley N, Pinson DM, Wong SW, Stephens EB (2009) Mutations in the highly conserved SLQYLA motif of Vif in a simian-human immunodeficiency virus result in a less pathogenic virus and are associated with G-to-A mutations in the viral genome. Virology 383(2):362–372PubMedCrossRefGoogle Scholar
  403. 403.
    Pomerantz RJ (2003) The HIV-1 Vif protein: a paradigm for viral:cell interactions. Cell Mol Life Sci 60(10):2017–2019PubMedCrossRefGoogle Scholar
  404. 404.
    Donahue JP, Vetter ML, Mukhtar NA, D’Aquila RT (2008) The HIV-1 Vif PPLP motif is necessary for human APOBEC3G binding and degradation. Virology 377(1):49–53PubMedCrossRefGoogle Scholar
  405. 405.
    Kataropoulou A, Bovolenta C, Belfiore A, Trabatti S, Garbelli A, Porcellini S, Lupo R, Maga G (2009) Mutational analysis of the HIV-1 auxiliary protein Vif identifies independent domains important for the physical and functional interaction with HIV-1 reverse transcriptase. Nucleic Acids Res 37(11):3660–3669PubMedCrossRefGoogle Scholar
  406. 406.
    Bergeron JR, Huthoff H, Veselkov DA, Beavil RL, Simpson PJ, Matthews SJ, Malim MH, Sanderson MR (2010) The SOCS-box of HIV-1 Vif interacts with ElonginBC by induced-folding to recruit its Cul5-containing ubiquitin ligase complex. PLoS Pathog 6(6):e1000925PubMedCrossRefGoogle Scholar
  407. 407.
    Wolfe LS, Stanley BJ, Liu C, Eliason WK, Xiong Y (2010) Dissection of the HIV Vif interaction with human E3 ubiquitin ligase. J Virol 84(14):7135–7139PubMedCrossRefGoogle Scholar
  408. 408.
    Bouyac M, Courcoul M, Bertoia G, Baudat Y, Gabuzda D, Blanc D, Chazal N, Boulanger P, Sire J, Vigne R, Spire B (1997) Human immunodeficiency virus type 1 Vif protein binds to the Pr55Gag precursor. J Virol 71(12):9358–9365PubMedGoogle Scholar
  409. 409.
    Reingewertz TH, Shalev DE, Friedler A (2010) Structural disorder in the HIV-1 Vif protein and interaction-dependent gain of structure. Protein Pept Lett 17(8):988–998PubMedCrossRefGoogle Scholar
  410. 410.
    Combet C, Blanchet C, Geourjon C, Deleage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25(3):147–150PubMedCrossRefGoogle Scholar
  411. 411.
    Xiao Z, Ehrlich E, Yu Y, Luo K, Wang T, Tian C, Yu XF (2006) Assembly of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-stabilized hydrophobic interface in Vif. Virology 349(2):290–299PubMedCrossRefGoogle Scholar
  412. 412.
    Giri K, Scott RA, Maynard EL (2009) Molecular structure and biochemical properties of the HCCH-Zn2 + site in HIV-1 Vif. Biochemistry 48(33):7969–7978PubMedCrossRefGoogle Scholar
  413. 413.
    Giri K, Maynard EL (2009) Conformational analysis of a peptide approximating the HCCH motif in HIV-1 Vif. Biopolymers 92(5):417–425PubMedCrossRefGoogle Scholar
  414. 414.
    Paul I, Cui J, Maynard EL (2006) Zinc binding to the HCCH motif of HIV-1 virion infectivity factor induces a conformational change that mediates protein–protein interactions. Proc Natl Acad Sci U S A 103(49):18475–18480PubMedCrossRefGoogle Scholar
  415. 415.
    Reingewertz TH, Benyamini H, Lebendiker M, Shalev DE, Friedler A (2009) The C-terminal domain of the HIV-1 Vif protein is natively unfolded in its unbound state. Protein Eng Des Sel 22(5):281–287PubMedCrossRefGoogle Scholar
  416. 416.
    Bernacchi S, Mercenne G, Tournaire C, Marquet R, Paillart JC (2010) Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif. Nucleic Acids ResGoogle Scholar
  417. 417.
    Stanley BJ, Ehrlich ES, Short L, Yu Y, Xiao Z, Yu XF, Xiong Y (2008) Structural insight into the human immunodeficiency virus Vif SOCS box and its role in human E3 ubiquitin ligase assembly. J Virol 82(17):8656–8663PubMedCrossRefGoogle Scholar
  418. 418.
    Stanley BJ, Ehrlich ES, Short L, Yu Y, Xiao Z, Yu XF, Xiong Y (2008) Structural Insight into the HIV Vif SOCS Box and Its Role in Human E3 Ubiquitin Ligase Assembly. J Virol 82(17):8656–8663PubMedCrossRefGoogle Scholar
  419. 419.
    Marcsisin SR, Engen JR (2011) Molecular insight into the conformational dynamics of the elongin bc complex and its interaction with HIV-1 Vif. J Mol Biol 402(5):892–904CrossRefGoogle Scholar
  420. 420.
    Lu YL, Bennett RP, Wills JW, Gorelick R, Ratner L (1995) A leucine triplet repeat sequence (LXX)4 in p6gag is important for Vpr incorporation into human immunodeficiency virus type 1 particles. J Virol 69(11):6873–6879PubMedGoogle Scholar
  421. 421.
    Connor RI, Chen BK, Choe S, Landau NR (1995) Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 206(2):935–944PubMedCrossRefGoogle Scholar
  422. 422.
    Subbramanian RA, Kessous-Elbaz A, Lodge R, Forget J, Yao XJ, Bergeron D, Cohen EA (1998) Human immunodeficiency virus type 1 Vpr is a positive regulator of viral transcription and infectivity in primary human macrophages. J Exp Med 187(7):1103–1111PubMedCrossRefGoogle Scholar
  423. 423.
    Miller MD, Farnet CM, Bushman FD (1997) Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 71(7):5382–5390PubMedGoogle Scholar
  424. 424.
    Cohen EA, Subbramanian RA, Gottlinger HG (1996) Role of auxiliary proteins in retroviral morphogenesis. Curr Top Microbiol Immunol 214:219–235PubMedCrossRefGoogle Scholar
  425. 425.
    Emerman M (1996) HIV-1, Vpr and the cell cycle. Curr Biol 6(9):1096–1103PubMedCrossRefGoogle Scholar
  426. 426.
    Tungaturthi PK, Sawaya BE, Singh SP, Tomkowicz B, Ayyavoo V, Khalili K, Collman RG, Amini S, Srinivasan A (2003) Role of HIV-1 Vpr in AIDS pathogenesis: relevance and implications of intravirion, intracellular and free Vpr. Biomed Pharmacother 57(1):20–24PubMedCrossRefGoogle Scholar
  427. 427.
    Majumder B, Venkatachari NJ, Srinivasan A, Ayyavoo V (2009) HIV-1 mediated immune pathogenesis: spotlight on the role of viral protein R (Vpr). Curr HIV Res 7(2):169–177PubMedCrossRefGoogle Scholar
  428. 428.
    Andersen JL, Planelles V (2005) The role of Vpr in HIV-1 pathogenesis. Curr HIV Res 3(1):43–51PubMedCrossRefGoogle Scholar
  429. 429.
    Sawaya BE, Khalili K, Gordon J, Taube R, Amini S (2000) Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome. J Biol Chem 275(45):35209–35214PubMedCrossRefGoogle Scholar
  430. 430.
    Chang F, Re F, Sebastian S, Sazer S, Luban J (2004) HIV-1 Vpr induces defects in mitosis, cytokinesis, nuclear structure, and centrosomes. Mol Biol Cell 15(4):1793–1801PubMedCrossRefGoogle Scholar
  431. 431.
    Rogel ME, Wu LI, Emerman M (1995) The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. J Virol 69(2):882–888PubMedGoogle Scholar
  432. 432.
    Ramanathan MP, Curley E 3rd, Su M, Chambers JA, Weiner DB (2002) Carboxyl terminus of hVIP/mov34 is critical for HIV-1-Vpr interaction and glucocorticoid-mediated signaling. J Biol Chem 277(49):47854–47860PubMedCrossRefGoogle Scholar
  433. 433.
    Jowett JB, Xie YM, Chen IS (1999) The presence of human immunodeficiency virus type 1 Vpr correlates with a decrease in the frequency of mutations in a plasmid shuttle vector. J Virol 73(9):7132–7137PubMedGoogle Scholar
  434. 434.
    Piller SC, Ewart GD, Jans DA, Gage PW, Cox GB (1999) The amino-terminal region of Vpr from human immunodeficiency virus type 1 forms ion channels and kills neurons. J Virol 73(5):4230–4238PubMedGoogle Scholar
  435. 435.
    Somasundaran M, Sharkey M, Brichacek B, Luzuriaga K, Emerman M, Sullivan JL, Stevenson M (2002) Evidence for a cytopathogenicity determinant in HIV-1 Vpr. Proc Natl Acad Sci U S A 99(14):9503–9508PubMedCrossRefGoogle Scholar
  436. 436.
    Henklein P, Bruns K, Sherman MP, Tessmer U, Licha K, Kopp J, de Noronha CM, Greene WC, Wray V, Schubert U (2000) Functional and structural characterization of synthetic HIV-1 Vpr that transduces cells, localizes to the nucleus, and induces G2 cell cycle arrest. J Biol Chem 275(41):32016–32026PubMedCrossRefGoogle Scholar
  437. 437.
    Morellet N, Bouaziz S, Petitjean P, Roques BP (2003) NMR structure of the HIV-1 regulatory protein VPR. J Mol Biol 327(1):215–227PubMedCrossRefGoogle Scholar
  438. 438.
    Wecker K, Morellet N, Bouaziz S, Roques BP (2002) NMR structure of the HIV-1 regulatory protein Vpr in H2O/trifluoroethanol: Comparison with the Vpr N-terminal (1–51) and C-terminal (52–96) domains. Eur J Biochem 269(15):3779–3788PubMedCrossRefGoogle Scholar
  439. 439.
    Romani B, Engelbrecht S (2009) Human immunodeficiency virus type 1 Vpr: functions and molecular interactions. J Gen Virol 90(Pt 8):1795–1805PubMedCrossRefGoogle Scholar
  440. 440.
    Mahalingam S, Ayyavoo V, Patel M, Kieber-Emmons T, Weiner DB (1997) Nuclear import, virion incorporation, and cell cycle arrest/differentiation are mediated by distinct functional domains of human immunodeficiency virus type 1 Vpr. J Virol 71(9):6339–6347PubMedGoogle Scholar
  441. 441.
    Mahalingam S, Khan SA, Jabbar MA, Monken CE, Collman RG, Srinivasan A (1995) Identification of residues in the N-terminal acidic domain of HIV-1 Vpr essential for virion incorporation. Virology 207(1):297–302PubMedCrossRefGoogle Scholar
  442. 442.
    Mahalingam S, Patel M, Collman RG, Srinivasan A (1995) The carboxy-terminal domain is essential for stability and not for virion incorporation of HIV-1 Vpr into virus particles. Virology 214(2):647–652PubMedCrossRefGoogle Scholar
  443. 443.
    Roumier T, Vieira HL, Castedo M, Ferri KF, Boya P, Andreau K, Druillennec S, Joza N, Penninger JM, Roques B, Kroemer G (2002) The C-terminal moiety of HIV-1 Vpr induces cell death via a caspase-independent mitochondrial pathway. Cell Death Differ 9(11):1212–1219PubMedCrossRefGoogle Scholar
  444. 444.
    Li MS, Garcia-Asua G, Bhattacharyya U, Mascagni P, Austen BM, Roberts MM (1996) The Vpr protein of human immunodeficiency virus type 1 binds to nucleocapsid protein p7 in vitro. Biochem Biophys Res Commun 218(1):352–355PubMedCrossRefGoogle Scholar
  445. 445.
    de Rocquigny H, Petitjean P, Tanchou V, Decimo D, Drouot L, Delaunay T, Darlix JL, Roques BP (1997) The zinc fingers of HIV nucleocapsid protein NCp7 direct interactions with the viral regulatory protein Vpr. J Biol Chem 272(49):30753–30759PubMedCrossRefGoogle Scholar
  446. 446.
    Bourbigot S, Beltz H, Denis J, Morellet N, Roques BP, Mely Y, Bouaziz S (2005) The C-terminal domain of the HIV-1 regulatory protein Vpr adopts an antiparallel dimeric structure in solution via its leucine-zipper-like domain. Biochem J 387(Pt 2):333–341PubMedGoogle Scholar
  447. 447.
    Basanez G, Zimmerberg J (2001) HIV and apoptosis death and the mitochondrion. J Exp Med 193(4):F11–F14PubMedCrossRefGoogle Scholar
  448. 448.
    Patil A, Nakamura H (2006) Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett 580(8):2041–2045PubMedCrossRefGoogle Scholar
  449. 449.
    Ekman D, Light S, Bjorklund AK, Elofsson A (2006) What properties characterize the hub proteins of the protein–protein interaction network of Saccharomyces cerevisiae? Genome Biol 7(6):R45PubMedCrossRefGoogle Scholar
  450. 450.
    Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2(8):e100PubMedCrossRefGoogle Scholar
  451. 451.
    Dosztanyi Z, Chen J, Dunker AK, Simon I, Tompa P (2006) Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res 5(11):2985–2995PubMedCrossRefGoogle Scholar
  452. 452.
    Singh GP, Ganapathi M, Dash D (2007) Role of intrinsic disorder in transient interactions of hub proteins. Proteins 66(4):761–765PubMedCrossRefGoogle Scholar
  453. 453.
    Singh GP, Dash D (2007) Intrinsic disorder in yeast transcriptional regulatory network. Proteins 68(3):602–605PubMedCrossRefGoogle Scholar
  454. 454.
    Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14–3-3 with their partners. BMC Genomics 9(Suppl 1):S1CrossRefGoogle Scholar
  455. 455.
    Cohen EA, Terwilliger EF, Sodroski JG, Haseltine WA (1988) Identification of a protein encoded by the vpu gene of HIV-1. Nature 334(6182):532–534PubMedCrossRefGoogle Scholar
  456. 456.
    Strebel K, Klimkait T, Martin MA (1988) A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 241(4870):1221–1223PubMedCrossRefGoogle Scholar
  457. 457.
    Maldarelli F, Chen MY, Willey RL, Strebel K (1993) Human immunodeficiency virus type 1 Vpu protein is an oligomeric type I integral membrane protein. J Virol 67(8):5056–5061PubMedGoogle Scholar
  458. 458.
    Willey RL, Maldarelli F, Martin MA, Strebel K (1992) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66(12):7193–7200PubMedGoogle Scholar
  459. 459.
    Willey RL, Maldarelli F, Martin MA, Strebel K (1992) Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160-CD4 complexes. J Virol 66(1):226–234PubMedGoogle Scholar
  460. 460.
    Chen MY, Maldarelli F, Karczewski MK, Willey RL, Strebel K (1993) Human immunodeficiency virus type 1 Vpu protein induces degradation of CD4 in vitro: the cytoplasmic domain of CD4 contributes to Vpu sensitivity. J Virol 67(7):3877–3884PubMedGoogle Scholar
  461. 461.
    Schubert U, Clouse KA, Strebel K (1995) Augmentation of virus secretion by the human immunodeficiency virus type 1 Vpu protein is cell type independent and occurs in cultured human primary macrophages and lymphocytes. J Virol 69(12):7699–7711PubMedGoogle Scholar
  462. 462.
    Bour S, Schubert U, Strebel K (1995) The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: implications for the mechanism of degradation. J Virol 69(3):1510–1520PubMedGoogle Scholar
  463. 463.
    Terwilliger EF, Cohen EA, Lu YC, Sodroski JG, Haseltine WA (1989) Functional role of human immunodeficiency virus type 1 vpu. Proc Natl Acad Sci USA 86(13):5163–5167PubMedCrossRefGoogle Scholar
  464. 464.
    Klimkait T, Strebel K, Hoggan MD, Martin MA, Orenstein JM (1990) The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J Virol 64(2):621–629PubMedGoogle Scholar
  465. 465.
    Ewart GD, Sutherland T, Gage PW, Cox GB (1996) The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J Virol 70(10):7108–7115PubMedGoogle Scholar
  466. 466.
    Schubert U, Ferrer-Montiel AV, Oblatt-Montal M, Henklein P, Strebel K, Montal M (1996) Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett 398(1):12–18PubMedCrossRefGoogle Scholar
  467. 467.
    Schubert U, Bour S, Ferrer-Montiel AV, Montal M, Maldarell F, Strebel K (1996) The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J Virol 70(2):809–819PubMedGoogle Scholar
  468. 468.
    Varthakavi V, Smith RM, Bour SP, Strebel K, Spearman P (2003) Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production. Proc Natl Acad Sci USA 100(25):15154–15159PubMedCrossRefGoogle Scholar
  469. 469.
    Hsu K, Seharaseyon J, Dong P, Bour S, Marban E (2004) Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel. Mol Cell 14(2):259–267PubMedCrossRefGoogle Scholar
  470. 470.
    Hsu K, Han J, Shinlapawittayatorn K, Deschenes I, Marban E (2010) Membrane potential depolarization as a triggering mechanism for Vpu-mediated HIV-1 release. Biophys J 99(6):1718–1725PubMedCrossRefGoogle Scholar
  471. 471.
    Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451(7177):425–430PubMedCrossRefGoogle Scholar
  472. 472.
    Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, Stephens EB, Guatelli J (2008) The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3(4):245–252PubMedCrossRefGoogle Scholar
  473. 473.
    Margottin F, Benichou S, Durand H, Richard V, Liu LX, Gomas E, Benarous R (1996) Interaction between the cytoplasmic domains of HIV-1 Vpu and CD4: role of Vpu residues involved in CD4 interaction and in vitro CD4 degradation. Virology 223(2):381–386PubMedCrossRefGoogle Scholar
  474. 474.
    Tiganos E, Yao XJ, Friborg J, Daniel N, Cohen EA (1997) Putative alpha-helical structures in the human immunodeficiency virus type 1 Vpu protein and CD4 are involved in binding and degradation of the CD4 molecule. J Virol 71(6):4452–4460PubMedGoogle Scholar
  475. 475.
    Margottin F, Bour SP, Durand H, Selig L, Benichou S, Richard V, Thomas D, Strebel K, Benarous R (1998) A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1(4):565–574PubMedCrossRefGoogle Scholar
  476. 476.
    Bour S, Strebel K (2003) The HIV-1 Vpu protein: a multifunctional enhancer of viral particle release. Microbes Infect 5(11):1029–1039PubMedCrossRefGoogle Scholar
  477. 477.
    Wray V, Kinder R, Federau T, Henklein P, Bechinger B, Schubert U (1999) Solution structure and orientation of the transmembrane anchor domain of the HIV-1-encoded virus protein U by high-resolution and solid-state NMR spectroscopy. Biochemistry 38(16):5272–5282PubMedCrossRefGoogle Scholar
  478. 478.
    Kukol A, Arkin IT (1999) vpu transmembrane peptide structure obtained by site-specific fourier transform infrared dichroism and global molecular dynamics searching. Biophys J 77(3):1594–1601PubMedCrossRefGoogle Scholar
  479. 479.
    Marassi FM, Ma C, Gratkowski H, Straus SK, Strebel K, Oblatt-Montal M, Montal M, Opella SJ (1999) Correlation of the structural and functional domains in the membrane protein Vpu from HIV-1. Proc Natl Acad Sci USA 96(25):14336–14341PubMedCrossRefGoogle Scholar
  480. 480.
    Ma C, Marassi FM, Jones DH, Straus SK, Bour S, Strebel K, Schubert U, Oblatt-Montal M, Montal M, Opella SJ (2002) Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1. Protein Sci 11(3):546–557PubMedCrossRefGoogle Scholar
  481. 481.
    Park SH, Mrse AA, Nevzorov AA, Mesleh MF, Oblatt-Montal M, Montal M, Opella SJ (2003) Three-dimensional structure of the channel-forming trans-membrane domain of virus protein “u” (Vpu) from HIV-1. J Mol Biol 333(2):409–424PubMedCrossRefGoogle Scholar
  482. 482.
    Kruger J, Fischer WB (2008) Exploring the conformational space of Vpu from HIV-1: a versatile adaptable protein. J Comput Chem 29(14):2416–2424PubMedCrossRefGoogle Scholar
  483. 483.
    Cordes FS, Tustian AD, Sansom MS, Watts A, Fischer WB (2002) Bundles consisting of extended transmembrane segments of Vpu from HIV-1: computer simulations and conductance measurements. Biochemistry 41(23):7359–7365PubMedCrossRefGoogle Scholar
  484. 484.
    Mehnert T, Lam YH, Judge PJ, Routh A, Fischer D, Watts A, Fischer WB (2007) Towards a mechanism of function of the viral ion channel Vpu from HIV-1. J Biomol Struct Dyn 24(6):589–596PubMedGoogle Scholar
  485. 485.
    Becker CF, Oblatt-Montal M, Kochendoerfer GG, Montal M (2004) Chemical synthesis and single channel properties of tetrameric and pentameric TASPs (template-assembled synthetic proteins) derived from the transmembrane domain of HIV virus protein u (Vpu). J Biol Chem 279(17):17483–17489PubMedCrossRefGoogle Scholar
  486. 486.
    Mehnert T, Routh A, Judge PJ, Lam YH, Fischer D, Watts A, Fischer WB (2008) Biophysical characterization of Vpu from HIV-1 suggests a channel-pore dualism. Proteins 70(4):1488–1497PubMedCrossRefGoogle Scholar
  487. 487.
    Lu JX, Sharpe S, Ghirlando R, Yau WM, Tycko R (2010) Oligomerization state and supramolecular structure of the HIV-1 Vpu protein transmembrane segment in phospholipid bilayers. Protein Sci 19(10):1877–1896PubMedCrossRefGoogle Scholar
  488. 488.
    Wray V, Federau T, Henklein P, Klabunde S, Kunert O, Schomburg D, Schubert U (1995) Solution structure of the hydrophilic region of HIV-1 encoded virus protein U (Vpu) by CD and 1H NMR spectroscopy. Int J Pept Protein Res 45(1):35–43PubMedCrossRefGoogle Scholar
  489. 489.
    Federau T, Schubert U, Flossdorf J, Henklein P, Schomburg D, Wray V (1996) Solution structure of the cytoplasmic domain of the human immunodeficiency virus type 1 encoded virus protein U (Vpu). Int J Pept Protein Res 47(4):297–310PubMedCrossRefGoogle Scholar
  490. 490.
    Willbold D, Hoffmann S, Rosch P (1997) Secondary structure and tertiary fold of the human immunodeficiency virus protein U (Vpu) cytoplasmic domain in solution. Eur J Biochem 245(3):581–588PubMedCrossRefGoogle Scholar
  491. 491.
    Coadou G, Evrard-Todeschi N, Gharbi-Benarous J, Benarous R, Girault JP (2002) HIV-1 encoded virus protein U (Vpu) solution structure of the 41–62 hydrophilic region containing the phosphorylated sites Ser52 and Ser56. Int J Biol Macromol 30(1):23–40PubMedCrossRefGoogle Scholar
  492. 492.
    Coadou G, Gharbi-Benarous J, Megy S, Bertho G, Evrard-Todeschi N, Segeral E, Benarous R, Girault JP (2003) NMR studies of the phosphorylation motif of the HIV-1 protein Vpu bound to the F-box protein beta-TrCP. Biochemistry 42(50):14741–14751PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Bin Xue
    • 1
  • Marcin J. Mizianty
    • 2
  • Lukasz Kurgan
    • 2
  • Vladimir N. Uversky
    • 1
    • 3
  1. 1.Department of Molecular MedicineUniversity of South Florida, College of MedicineTampaUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.Institute for Biological Instrumentation, Russian Academy of SciencesPushchinoRussia

Personalised recommendations