Cellular and Molecular Life Sciences

, Volume 69, Issue 7, pp 1105–1124 | Cite as

Allosteric function and dysfunction of the prion protein

  • Rafael LindenEmail author
  • Yraima Cordeiro
  • Luis Mauricio T. R. Lima


Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases associated with progressive oligo- and multimerization of the prion protein (PrPC), its conformational conversion, aggregation and precipitation. We recently proposed that PrPC serves as a cell surface scaffold protein for a variety of signaling modules, the effects of which translate into wide-range functional consequences. Here we review evidence for allosteric functions of PrPC, which constitute a common property of scaffold proteins. The available data suggest that allosteric effects among PrPC and its partners are involved in the assembly of multi-component signaling modules at the cell surface, impose upon both physiological and pathological conformational responses of PrPC, and that allosteric dysfunction of PrPC has the potential to entail progressive signal corruption. These properties may be germane both to physiological roles of PrPC, as well as to the pathogenesis of the TSEs and other degenerative/non-communicable diseases.


Prion Scaffold proteins Signal transduction Neurodegeneration Cell surface Oligomerization Signaling modules 



The authors' work is supported by grants from CNPq, FAPERJ, and the National Institute of Structural Biology and Bioimaging (INBEB-MCT).


  1. 1.
    Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95(23):13363–13383PubMedCrossRefGoogle Scholar
  2. 2.
    Norrby E (2011) Prions and protein-folding diseases. J Intern Med 270(1):1–14PubMedCrossRefGoogle Scholar
  3. 3.
    Aguzzi A, Calella AM (2009) Prions: protein aggregation and infectious diseases. Physiol Rev 89(4):1105–1152PubMedCrossRefGoogle Scholar
  4. 4.
    Brown K, Mastrianni JA (2010) The prion diseases. J Geriatr Psychiatry Neurol 23(4):277–298PubMedCrossRefGoogle Scholar
  5. 5.
    Caughey B, Baron GS, Chesebro B, Jeffrey M (2009) Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu Rev Biochem 78:177–204PubMedCrossRefGoogle Scholar
  6. 6.
    Wadsworth JD, Collinge J (2007) Update on human prion disease. Biochim Biophys Acta 1772(6):598–609PubMedGoogle Scholar
  7. 7.
    Klein WL, Krafft GA, Finch CE (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24(4):219–224PubMedCrossRefGoogle Scholar
  8. 8.
    Lambert MP, Velasco PT, Viola KL, Klein WL (2009) Targeting generation of antibodies specific to conformational epitopes of amyloid beta-derived neurotoxins. CNS Neurol Disord Drug Targets 8(1):65–81PubMedCrossRefGoogle Scholar
  9. 9.
    Simoneau S, Rezaei H, Sales N, Kaiser-Schulz G, Lefebvre-Roque M, Vidal C, Fournier JG, Comte J, Wopfner F, Grosclaude J, Schatzl H, Lasmezas CI (2007) In vitro and in vivo neurotoxicity of prion protein oligomers. PLoS Pathog 3(8):e125PubMedCrossRefGoogle Scholar
  10. 10.
    Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437(7056):257–261PubMedCrossRefGoogle Scholar
  11. 11.
    Zerr I (2009) Therapeutic trials in human transmissible spongiform encephalo-pathies: recent advances and problems to address. Infect Disord Drug Targets 9(1):92–99PubMedGoogle Scholar
  12. 12.
    Stewart LA, Rydzewska LH, Keogh GF, Knight RS (2008) Systematic review of therapeutic interventions in human prion disease. Neurology 70(15):1272–1281PubMedCrossRefGoogle Scholar
  13. 13.
    Brazier MW, Wall VA, Brazier BW, Masters CL, Collins SJ (2009) Therapeutic interventions ameliorating prion disease. Expert Rev Anti Infect Ther 7(1):83–105PubMedCrossRefGoogle Scholar
  14. 14.
    Perry DC, Geschwind MD (2011) Prion disease: thorough work-up and new diagnostic criteria needed for CJD. Nat Rev Neurol 7(9):479–480PubMedCrossRefGoogle Scholar
  15. 15.
    Kovacs GG, Botond G, Budka H (2010) Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol 119(4):389–408PubMedCrossRefGoogle Scholar
  16. 16.
    Dorandeu A, Wingertsmann L, Chretien F, Delisle MB, Vital C, Parchi P, Montagna P, Lugaresi E, Ironside JW, Budka H, Gambetti P, Gray F (1998) Neuronal apoptosis in fatal familial insomnia. Brain Pathol 8(3):531–537PubMedCrossRefGoogle Scholar
  17. 17.
    Gray F, Adle-Biassette H, Chretien F, Ereau T, Delisle MB, Vital C (1999) Neuronal apoptosis in human prion diseases. Bull Acad Natl Med 183(2):305–320 discussion 320-301PubMedGoogle Scholar
  18. 18.
    Gray F, Chretien F, Adle-Biassette H, Dorandeu A, Ereau T, Delisle MB, Kopp N, Ironside JW, Vital C (1999) Neuronal apoptosis in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 58(4):321–328PubMedCrossRefGoogle Scholar
  19. 19.
    Cox DL, Sing RR, Yang S (2006) Prion disease: exponential growth requires membrane binding. Biophys J 90(11):L77–L79PubMedCrossRefGoogle Scholar
  20. 20.
    Eghiaian F, Daubenfeld T, Quenet Y, van Audenhaege M, Bouin AP, van der Rest G, Grosclaude J, Rezaei H (2007) Diversity in prion protein oligomerization pathways results from domain expansion as revealed by hydrogen/deuterium exchange and disulfide linkage. Proc Natl Acad Sci USA 104(18):7414–7419PubMedCrossRefGoogle Scholar
  21. 21.
    Jain S, Udgaonkar JB (2008) Evidence for stepwise formation of amyloid fibrils by the mouse prion protein. J Mol Biol 382(5):1228–1241PubMedCrossRefGoogle Scholar
  22. 22.
    Almstedt K, Nystrom S, Nilsson KP, Hammarstrom P (2009) Amyloid fibrils of human prion protein are spun and woven from morphologically disordered aggregates. Prion 3(4):224–235PubMedCrossRefGoogle Scholar
  23. 23.
    Silva JL, Vieira TC, Gomes MP, Bom AP, Lima LM, Freitas MS, Ishimaru D, Cordeiro Y, Foguel D (2010) Ligand Binding and Hydration in Protein Misfolding: Insights from Studies of Prion and p53 tumor suppressor proteins (dagger). Acc Chem Res 43(2):271–279PubMedCrossRefGoogle Scholar
  24. 24.
    Baskakov IV (2007) Branched chain mechanism of polymerization and ultrastructure of prion protein amyloid fibrils. Febs J 274(15):3756–3765PubMedCrossRefGoogle Scholar
  25. 25.
    Gonzalez-Montalban N, Makarava N, Ostapchenko VG, Savtchenk R, Alexeeva I, Rohwer RG, Baskakov IV (2011) Highly efficient protein misfolding cyclic amplification. PLoS Pathog 7(2):e1001277PubMedCrossRefGoogle Scholar
  26. 26.
    Knowles TP, Waudby CA, Devlin GL, Cohen SI, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson CM (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326(5959):1533–1537PubMedCrossRefGoogle Scholar
  27. 27.
    Boesenberg C, Schulz-Schaeffer WJ, Meissner B, Kallenberg K, Bartl M, Heinemann U, Krasnianski A, Stoeck K, Varges D, Windl O, Kretzschmar HA, Zerr I (2005) Clinical course in young patients with sporadic Creutzfeldt-Jakob disease. Ann Neurol 58(4):533–543PubMedCrossRefGoogle Scholar
  28. 28.
    Nagoshi K, Sadakane A, Nakamura Y, Yamada M, Mizusawa H (2011) Duration of Prion Disease is Longer in Japan Than in Other Countries. J Epidemiol 21(4):255–262Google Scholar
  29. 29.
    Weissmann C (2004) The state of the prion. Nat Rev Microbiol 2(11):861–871PubMedCrossRefGoogle Scholar
  30. 30.
    Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477PubMedCrossRefGoogle Scholar
  31. 31.
    Weissmann C (2009) Thoughts on mammalian prion strains. Folia Neuropathol 47(2):104–113PubMedGoogle Scholar
  32. 32.
    Watts JC, Westaway D (2007) The prion protein family: diversity, rivalry, and dysfunction. Biochim Biophys Acta 1772(6):654–672PubMedGoogle Scholar
  33. 33.
    Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65(2):184–189PubMedCrossRefGoogle Scholar
  34. 34.
    Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88(2):673–728PubMedCrossRefGoogle Scholar
  35. 35.
    Bray D, Duke T (2004) Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu Rev Biophys Biomol Struct 33:53–73PubMedCrossRefGoogle Scholar
  36. 36.
    Whitty A (2008) Cooperativity and biological complexity. Nat Chem Biol 4(8):435–439PubMedCrossRefGoogle Scholar
  37. 37.
    Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332(6030):680–686PubMedCrossRefGoogle Scholar
  38. 38.
    Ilc G, Giachin G, Jaremko M, Jaremko L, Benetti F, Plavec J, Zhukov I, Legname G (2010) NMR structure of the human prion protein with the pathological Q212P mutation reveals unique structural features. PLoS One 5(7):e11715PubMedCrossRefGoogle Scholar
  39. 39.
    Zahn R, Liu A, Luhrs T, Riek R, von Schroetter C, Lopez Garcia F, Billeter M, Calzolai L, Wider G, Wuthrich K (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci USA 97(1):145–150PubMedCrossRefGoogle Scholar
  40. 40.
    Haraguchi T, Fisher S, Olofsson S, Endo T, Groth D, Tarentino A, Borchelt DR, Teplow D, Hood L, Burlingame A et al (1989) Asparagine-linked glycosylation of the scrapie and cellular prion proteins. Arch Biochem Biophys 274(1):1–13PubMedCrossRefGoogle Scholar
  41. 41.
    Beringue V, Mallinson G, Kaisar M, Tayebi M, Sattar Z, Jackson G, Anstee D, Collinge J, Hawke S (2003) Regional heterogeneity of cellular prion protein isoforms in the mouse brain. Brain 126(Pt 9):2065–2073PubMedCrossRefGoogle Scholar
  42. 42.
    Li R, Liu D, Zanusso G, Liu T, Fayen JD, Huang JH, Petersen RB, Gambetti P, Sy MS (2001) The expression and potential function of cellular prion protein in human lymphocytes. Cell Immunol 207(1):49–58PubMedCrossRefGoogle Scholar
  43. 43.
    Monnet C, Gavard J, Mege RM, Sobel A (2004) Clustering of cellular prion protein induces ERK1/2 and stathmin phosphorylation in GT1-7 neuronal cells. FEBS Lett 576(1–2):114–118PubMedCrossRefGoogle Scholar
  44. 44.
    Wiseman F, Cancellotti E, Manson J (2005) Glycosylation and misfolding of PrP. Biochem Soc Trans 33(Pt 5):1094–1095PubMedGoogle Scholar
  45. 45.
    Cancellotti E, Barron RM, Bishop MT, Hart P, Wiseman F, Manson JC (2007) The role of host PrP in Transmissible Spongiform Encephalopathies. Biochim Biophys Acta 1772(6):673–680PubMedGoogle Scholar
  46. 46.
    Cancellotti E, Wiseman F, Tuzi NL, Baybutt H, Monaghan P, Aitchison L, Simpson J, Manson JC (2005) Altered glycosylated PrP proteins can have different neuronal trafficking in brain but do not acquire scrapie-like properties. J Biol Chem 280(52):42909–42918PubMedCrossRefGoogle Scholar
  47. 47.
    Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51(2):229–240PubMedCrossRefGoogle Scholar
  48. 48.
    Naslavsky N, Stein R, Yanai A, Friedlander G, Taraboulos A (1997) Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem 272(10):6324–6331PubMedCrossRefGoogle Scholar
  49. 49.
    Taylor DR, Hooper NM (2006) The prion protein and lipid rafts. Mol Membr Biol 23(1):89–99PubMedCrossRefGoogle Scholar
  50. 50.
    Madore N, Smith KL, Graham CH, Jen A, Brady K, Hall S, Morris R (1999) Functionally different GPI proteins are organized in different domains on the neuronal surface. Embo J 18(24):6917–6926PubMedCrossRefGoogle Scholar
  51. 51.
    Morris RJ, Parkyn CJ, Jen A (2006) Traffic of prion protein between different compartments on the neuronal surface, and the propagation of prion disease. FEBS Lett 580(23):5565–5571PubMedCrossRefGoogle Scholar
  52. 52.
    Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378(Pt 2):281–292PubMedCrossRefGoogle Scholar
  53. 53.
    Brugger B, Graham C, Leibrecht I, Mombelli E, Jen A, Wieland F, Morris R (2004) The membrane domains occupied by glycosylphosphatidylinositol-anchored prion protein and Thy-1 differ in lipid composition. J Biol Chem 279(9):7530–7536PubMedCrossRefGoogle Scholar
  54. 54.
    Botto L, Masserini M, Cassetti A, Palestini P (2004) Immunoseparation of Prion protein-enriched domains from other detergent-resistant membrane fractions, isolated from neuronal cells. FEBS Lett 557(1–3):143–147PubMedCrossRefGoogle Scholar
  55. 55.
    Loberto N, Prioni S, Bettiga A, Chigorno V, Prinetti A, Sonnino S (2005) The membrane environment of endogenous cellular prion protein in primary rat cerebellar neurons. J Neurochem 95(3):771–783PubMedCrossRefGoogle Scholar
  56. 56.
    DeMarco ML, Daggett V (2005) Local environmental effects on the structure of the prion protein. C R Biol 328(10–11):847–862PubMedCrossRefGoogle Scholar
  57. 57.
    Eberl H, Tittmann P, Glockshuber R (2004) Characterization of recombinant, membrane-attached full-length prion protein. J Biol Chem 279(24):25058–25065PubMedCrossRefGoogle Scholar
  58. 58.
    Hicks MR, Gill AC, Bath IK, Rullay AK, Sylvester ID, Crout DH, Pinheiro TJ (2006) Synthesis and structural characterization of a mimetic membrane-anchored prion protein. Febs J 273(6):1285–1299PubMedCrossRefGoogle Scholar
  59. 59.
    Morillas M, Swietnicki W, Gambetti P, Surewicz WK (1999) Membrane environment alters the conformational structure of the recombinant human prion protein. J Biol Chem 274(52):36859–36865PubMedCrossRefGoogle Scholar
  60. 60.
    Prado MA, Alves-Silva J, Magalhaes AC, Prado VF, Linden R, Martins VR, Brentani RR (2004) PrPc on the road: trafficking of the cellular prion protein. J Neurochem 88(4):769–781PubMedCrossRefGoogle Scholar
  61. 61.
    Sunyach C, Jen A, Deng J, Fitzgerald KT, Frobert Y, Grassi J, McCaffrey MW, Morris R (2003) The mechanism of internalization of glycosylphosphatidylinositol-anchored prion protein. Embo J 22(14):3591–3601PubMedCrossRefGoogle Scholar
  62. 62.
    Hugel B, Martinez MC, Kunzelmann C, Blattler T, Aguzzi A, Freyssinet JM (2004) Modulation of signal transduction through the cellular prion protein is linked to its incorporation in lipid rafts. Cell Mol Life Sci 61(23):2998–3007PubMedCrossRefGoogle Scholar
  63. 63.
    Porto-Carreiro I, Fevrier B, Paquet S, Vilette D, Raposo G (2005) Prions and exosomes: from PrPc trafficking to PrPsc propagation. Blood Cells Mol Dis 35(2):143–148PubMedCrossRefGoogle Scholar
  64. 64.
    Robertson C, Booth SA, Beniac DR, Coulthart MB, Booth TF, McNicol A (2006) Cellular prion protein is released on exosomes from activated platelets. Blood 107(10):3907–3911PubMedCrossRefGoogle Scholar
  65. 65.
    Parkyn CJ, Vermeulen EG, Mootoosamy RC, Sunyach C, Jacobsen C, Oxvig C, Moestrup S, Liu Q, Bu G, Jen A, Morris RJ (2008) LRP1 controls biosynthetic and endocytic trafficking of neuronal prion protein. J Cell Sci 121(Pt 6):773–783PubMedCrossRefGoogle Scholar
  66. 66.
    Gauczynski S, Peyrin JM, Haik S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys JP, Dormont D, Lasmezas CI, Weiss S (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. Embo J 20(21):5863–5875PubMedCrossRefGoogle Scholar
  67. 67.
    Pauly PC, Harris DA (1998) Copper stimulates endocytosis of the prion protein. J Biol Chem 273(50):33107–33110PubMedCrossRefGoogle Scholar
  68. 68.
    Perera WS, Hooper NM (2001) Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr Biol 11(7):519–523PubMedCrossRefGoogle Scholar
  69. 69.
    Caetano FA, Lopes MH, Hajj GN, Machado CF, Pinto Arantes C, Magalhaes AC, Vieira Mde P, Americo TA, Massensini AR, Priola SA, Vorberg I, Gomez MV, Linden R, Prado VF, Martins VR, Prado MA (2008) Endocytosis of prion protein is required for ERK1/2 signaling induced by stress-inducible protein 1. J Neurosci 28(26):6691–6702PubMedCrossRefGoogle Scholar
  70. 70.
    Shyng SL, Lehmann S, Moulder KL, Harris DA (1995) Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J Biol Chem 270(50):30221–30229PubMedCrossRefGoogle Scholar
  71. 71.
    Kiachopoulos S, Heske J, Tatzelt J, Winklhofer KF (2004) Misfolding of the prion protein at the plasma membrane induces endocytosis, intracellular retention and degradation. Traffic 5(6):426–436PubMedCrossRefGoogle Scholar
  72. 72.
    Stuermer CA, Langhorst MF, Wiechers MF, Legler DF, Von Hanwehr SH, Guse AH, Plattner H (2004) PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction. Faseb J 18(14):1731–1733PubMedGoogle Scholar
  73. 73.
    Calzolai L, Zahn R (2003) Influence of pH on NMR structure and stability of the human prion protein globular domain. J Biol Chem 278(37):35592–35596PubMedCrossRefGoogle Scholar
  74. 74.
    Swietnicki W, Petersen R, Gambetti P, Surewicz WK (1997) pH-dependent stability and conformation of the recombinant human prion protein PrP(90–231). J Biol Chem 272(44):27517–27520PubMedCrossRefGoogle Scholar
  75. 75.
    Marques AF, Cordeiro Y, Silva JL, Lima LM (2009) Enhanced prion protein stability coupled to DNA recognition and milieu acidification. Biophys Chem 141(2–3):135–139PubMedCrossRefGoogle Scholar
  76. 76.
    Hornemann S, Glockshuber R (1998) A scrapie-like unfolding intermediate of the prion protein domain PrP(121–231) induced by acidic pH. Proc Natl Acad Sci USA 95(11):6010–6014PubMedCrossRefGoogle Scholar
  77. 77.
    Alonso DO, DeArmond SJ, Cohen FE, Daggett V (2001) Mapping the early steps in the pH-induced conformational conversion of the prion protein. Proc Natl Acad Sci USA 98(6):2985–2989PubMedCrossRefGoogle Scholar
  78. 78.
    Matsunaga Y, Peretz D, Williamson A, Burton D, Mehlhorn I, Groth D, Cohen FE, Prusiner SB, Baldwin MA (2001) Cryptic epitopes in N-terminally truncated prion protein are exposed in the full-length molecule: dependence of conformation on pH. Proteins 44(2):110–118PubMedCrossRefGoogle Scholar
  79. 79.
    Harris DA, Huber MT, van Dijken P, Shyng SL, Chait BT, Wang R (1993) Processing of a cellular prion protein: identification of N- and C-terminal cleavage sites. Biochemistry 32(4):1009–1016PubMedCrossRefGoogle Scholar
  80. 80.
    Starke R, Harrison P, Drummond O, Macgregor I, Mackie I, Machin S (2003) The majority of cellular prion protein released from endothelial cells is soluble. Transfusion 43 (5):677–678; author reply 678Google Scholar
  81. 81.
    Roberts TK, Eugenin EA, Morgello S, Clements JE, Zink MC, Berman JW (2010) PrPC, the cellular isoform of the human prion protein, is a novel biomarker of HIV-associated neurocognitive impairment and mediates neuroinflammation. Am J Pathol 177(4):1848–1860PubMedCrossRefGoogle Scholar
  82. 82.
    Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, Caughey B, Masliah E, Oldstone M (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308(5727):1435–1439PubMedCrossRefGoogle Scholar
  83. 83.
    Klingeborn M, Race B, Meade-White KD, Rosenke R, Striebel JF, Chesebro B (2011) Crucial role for prion protein membrane anchoring in the neuroinvasion and neural spread of prion infection. J Virol 85(4):1484–1494PubMedCrossRefGoogle Scholar
  84. 84.
    Campana V, Caputo A, Sarnataro D, Paladino S, Tivodar S, Zurzolo C (2007) Characterization of the properties and trafficking of an anchorless form of the prion protein. J Biol Chem 282(31):22747–22756PubMedCrossRefGoogle Scholar
  85. 85.
    Weissmann C, Bueler H, Fischer M, Sauer A, Aguet M (1994) Susceptibility to scrapie in mice is dependent on PrPC. Philos Trans R Soc Lond B Biol Sci 343(1306):431–433PubMedCrossRefGoogle Scholar
  86. 86.
    Samaia HB, Brentani RR (1998) Can loss-of-function prion-related diseases exist? Mol Psychiatry 3(3):196–197PubMedCrossRefGoogle Scholar
  87. 87.
    Weissmann C, Flechsig E (2003) PrP knock-out and PrP transgenic mice in prion research. Br Med Bull 66:43–60PubMedCrossRefGoogle Scholar
  88. 88.
    Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, Kellermann O (2000) Signal transduction through prion protein. Science 289(5486):1925–1928PubMedCrossRefGoogle Scholar
  89. 89.
    Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R (2002) Cellular prion protein transduces neuroprotective signals. Embo J 21(13):3317–3326PubMedCrossRefGoogle Scholar
  90. 90.
    Zanata SM, Lopes MH, Mercadante AF, Hajj GN, Chiarini LB, Nomizo R, Freitas AR, Cabral AL, Lee KS, Juliano MA, de Oliveira E, Jachieri SG, Burlingame A, Huang L, Linden R, Brentani RR, Martins VR (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. Embo J 21(13):3307–3316PubMedCrossRefGoogle Scholar
  91. 91.
    Lopes MH, Hajj GN, Muras AG, Mancini GL, Castro RM, Ribeiro KC, Brentani RR, Linden R, Martins VR (2005) Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci 25(49):11330–11339PubMedCrossRefGoogle Scholar
  92. 92.
    Americo TA, Chiarini LB, Linden R (2007) Signaling induced by hop/STI-1 depends on endocytosis. Biochem Biophys Res Commun 358(2):620–625PubMedCrossRefGoogle Scholar
  93. 93.
    Siegel GJ (2006) Basic neurochemistry: molecular, cellular, and medical aspects, 7th edn. Elsevier, AmsterdamGoogle Scholar
  94. 94.
    Feng XH, Derynck R (2005) Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693PubMedCrossRefGoogle Scholar
  95. 95.
    Martins VR, Beraldo FH, Hajj GN, Lopes MH, Lee KS, Prado MM, Linden R (2010) Prion protein: orchestrating neurotrophic activities. Curr Issues Mol Biol 12(2):63–86PubMedGoogle Scholar
  96. 96.
    Graner E, Mercadante AF, Zanata SM, Forlenza OV, Cabral AL, Veiga SS, Juliano MA, Roesler R, Walz R, Minetti A, Izquierdo I, Martins VR, Brentani RR (2000) Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res 76(1):85–92PubMedCrossRefGoogle Scholar
  97. 97.
    Hajj GN, Lopes MH, Mercadante AF, Veiga SS, da Silveira RB, Santos TG, Ribeiro KC, Juliano MA, Jacchieri SG, Zanata SM, Martins VR (2007) Cellular prion protein interaction with vitronectin supports axonal growth and is compensated by integrins. J Cell Sci 120(Pt 11):1915–1926PubMedCrossRefGoogle Scholar
  98. 98.
    Watts JC, Huo H, Bai Y, Ehsani S, Jeon AH, Shi T, Daude N, Lau A, Young R, Xu L, Carlson GA, Williams D, Westaway D, Schmitt-Ulms G (2009) Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones. PLoS Pathog 5(10):e1000608PubMedCrossRefGoogle Scholar
  99. 99.
    Rutishauser D, Mertz KD, Moos R, Brunner E, Rulicke T, Calella AM, Aguzzi A (2009) The comprehensive native interactome of a fully functional tagged prion protein. PLoS One 4(2):e4446PubMedCrossRefGoogle Scholar
  100. 100.
    Sorgato MC, Peggion C, Bertoli A (2009) Is, indeed, the prion protein a Harlequin servant of “many” masters? Prion 3(4):202–205PubMedCrossRefGoogle Scholar
  101. 101.
    Schmitt-Ulms G, Legname G, Baldwin MA, Ball HL, Bradon N, Bosque PJ, Crossin KL, Edelman GM, DeArmond SJ, Cohen FE, Prusiner SB (2001) Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 314(5):1209–1225PubMedCrossRefGoogle Scholar
  102. 102.
    Beraldo FH, Arantes CP, Santos TG, Machado CF, Roffe M, Hajj GN, Lee KS, Magalhaes AC, Caetano FA, Mancini GL, Lopes MH, Americo TA, Magdesian MH, Ferguson SS, Linden R, Prado MA, Martins VR (2011) Metabotropic glutamate receptors transduce signals for neurite outgrowth after binding of the prion protein to laminin gamma1 chain. Faseb J 25(1):265–279PubMedCrossRefGoogle Scholar
  103. 103.
    Beraldo FH, Arantes CP, Santos TG, Queiroz NG, Young K, Rylett RJ, Markus RP, Prado MA, Martins VR (2010) Role of alpha7 nicotinic acetylcholine receptor in calcium signaling induced by prion protein interaction with stress-inducible protein 1. J Biol Chem 285(47):36542–36550PubMedCrossRefGoogle Scholar
  104. 104.
    Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237–248PubMedCrossRefGoogle Scholar
  105. 105.
    Cobb NJ, Surewicz WK (2009) Prion diseases and their biochemical mechanisms. Biochemistry 48(12):2574–2585PubMedCrossRefGoogle Scholar
  106. 106.
    Baskakov IV, Legname G, Gryczynski Z, Prusiner SB (2004) The peculiar nature of unfolding of the human prion protein. Protein Sci 13(3):586–595PubMedCrossRefGoogle Scholar
  107. 107.
    Baskakov IV, Legname G, Prusiner SB, Cohen FE (2001) Folding of prion protein to its native alpha-helical conformation is under kinetic control. J Biol Chem 276(23):19687–19690PubMedCrossRefGoogle Scholar
  108. 108.
    Hart T, Hosszu LL, Trevitt CR, Jackson GS, Waltho JP, Collinge J, Clarke AR (2009) Folding kinetics of the human prion protein probed by temperature jump. Proc Natl Acad Sci USA 106(14):5651–5656PubMedCrossRefGoogle Scholar
  109. 109.
    Apetri AC, Surewicz K, Surewicz WK (2004) The effect of disease-associated mutations on the folding pathway of human prion protein. J Biol Chem 279(17):18008–18014PubMedCrossRefGoogle Scholar
  110. 110.
    Apetri AC, Maki K, Roder H, Surewicz WK (2006) Early intermediate in human prion protein folding as evidenced by ultrarapid mixing experiments. J Am Chem Soc 128(35):11673–11678PubMedCrossRefGoogle Scholar
  111. 111.
    Apetri AC, Surewicz WK (2002) Kinetic intermediate in the folding of human prion protein. J Biol Chem 277(47):44589–44592PubMedCrossRefGoogle Scholar
  112. 112.
    Jackson GS, Hosszu LL, Power A, Hill AF, Kenney J, Saibil H, Craven CJ, Waltho JP, Clarke AR, Collinge J (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283(5409):1935–1937PubMedCrossRefGoogle Scholar
  113. 113.
    Perez DR, Damberger FF, Wuthrich K (2010) Horse prion protein NMR structure and comparisons with related variants of the mouse prion protein. J Mol Biol 400(2):121–128PubMedCrossRefGoogle Scholar
  114. 114.
    Perez DR, Damberger FF, Wuthrich K (2010) Erratum to “Horse Prion Protein NMR Structure and Comparisons with Related Variants of the Mouse Prion Protein” [J Mol Biol 400/2 (2010) 121–128]. J Mol BiolGoogle Scholar
  115. 115.
    Wen Y, Li J, Yao W, Xiong M, Hong J, Peng Y, Xiao G, Lin D (2010) Unique structural characteristics of the rabbit prion protein. J Biol Chem 285(41):31682–31693PubMedCrossRefGoogle Scholar
  116. 116.
    Gossert AD, Bonjour S, Lysek DA, Fiorito F, Wuthrich K (2005) Prion protein NMR structures of elk and of mouse/elk hybrids. Proc Natl Acad Sci USA 102(3):646–650PubMedCrossRefGoogle Scholar
  117. 117.
    Calzolai L, Lysek DA, Perez DR, Guntert P, Wuthrich K (2005) Prion protein NMR structures of chickens, turtles, and frogs. Proc Natl Acad Sci USA 102(3):651–655PubMedCrossRefGoogle Scholar
  118. 118.
    Lysek DA, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, von Schroetter C, Fiorito F, Herrmann T, Guntert P, Wuthrich K (2005) Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci USA 102(3):640–645PubMedCrossRefGoogle Scholar
  119. 119.
    Hornemann S, Schorn C, Wuthrich K (2004) NMR structure of the bovine prion protein isolated from healthy calf brains. EMBO Rep 5(12):1159–1164PubMedCrossRefGoogle Scholar
  120. 120.
    Grasberger B, Minton AP, DeLisi C, Metzger H (1986) Interaction between proteins localized in membranes. Proc Natl Acad Sci USA 83(17):6258–6262PubMedCrossRefGoogle Scholar
  121. 121.
    Fan QR, Hendrickson WA (2005) Structure of human follicle-stimulating hormone in complex with its receptor. Nature 433(7023):269–277PubMedCrossRefGoogle Scholar
  122. 122.
    Meyer RK, Lustig A, Oesch B, Fatzer R, Zurbriggen A, Vandevelde M (2000) A monomer-dimer equilibrium of a cellular prion protein (PrPC) not observed with recombinant PrP. J Biol Chem 275(48):38081–38087PubMedCrossRefGoogle Scholar
  123. 123.
    Schmitt-Ulms G, Hansen K, Liu J, Cowdrey C, Yang J, DeArmond SJ, Cohen FE, Prusiner SB, Baldwin MA (2004) Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues. Nat Biotechnol 22(6):724–731PubMedCrossRefGoogle Scholar
  124. 124.
    Malaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, Stuermer CA (2009) Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 7(3):e55PubMedCrossRefGoogle Scholar
  125. 125.
    Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 390(6661):684–687PubMedCrossRefGoogle Scholar
  126. 126.
    Hornshaw MP, McDermott JR, Candy JM (1995) Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun 207(2):621–629PubMedCrossRefGoogle Scholar
  127. 127.
    Millhauser GL (2007) Copper and the prion protein: methods, structures, function, and disease. Annu Rev Phys Chem 58:299–320PubMedCrossRefGoogle Scholar
  128. 128.
    Davies P, Brown DR (2008) The chemistry of copper binding to PrP: is there sufficient evidence to elucidate a role for copper in protein function? Biochem J 410(2):237–244PubMedCrossRefGoogle Scholar
  129. 129.
    Haigh CL, Marom SY, Collins SJ (2010) Copper, endoproteolytic processing of the prion protein and cell signalling. Front Biosci 15:1086–1104PubMedCrossRefGoogle Scholar
  130. 130.
    Walter ED, Stevens DJ, Spevacek AR, Visconte MP, Dei Rossi A, Millhauser GL (2009) Copper binding extrinsic to the octarepeat region in the prion protein. Curr Protein Pept Sci 10(5):529–535PubMedCrossRefGoogle Scholar
  131. 131.
    Viles JH, Klewpatinond M, Nadal RC (2008) Copper and the structural biology of the prion protein. Biochem Soc Trans 36(Pt 6):1288–1292PubMedCrossRefGoogle Scholar
  132. 132.
    Younan ND, Klewpatinond M, Davies P, Ruban AV, Brown DR, Viles JH (2011) Copper(II)-induced secondary structure changes and reduced folding stability of the prion protein. J Mol Biol 410(3):369–382Google Scholar
  133. 133.
    Riihimaki ES, Martinez JM, Kloo L (2008) Structural effects of Cu(II)-coordination in the octapeptide region of the human prion protein. Phys Chem Chem Phys 10(18):2488–2495PubMedCrossRefGoogle Scholar
  134. 134.
    Valensin G, Molteni E, Valensin D, Taraszkiewicz M, Kozlowski H (2009) Molecular dynamics study of the Cu2 + binding-induced “structuring” of the N-terminal domain of human prion protein. J Phys Chem B 113(11):3277–3279PubMedCrossRefGoogle Scholar
  135. 135.
    Zahn R (2003) The octapeptide repeats in mammalian prion protein constitute a pH-dependent folding and aggregation site. J Mol Biol 334(3):477–488PubMedCrossRefGoogle Scholar
  136. 136.
    Millhauser GL (2004) Copper binding in the prion protein. Acc Chem Res 37(2):79–85PubMedCrossRefGoogle Scholar
  137. 137.
    Thakur AK, Srivastava AK, Srinivas V, Chary KV, Rao CM (2011) Copper alters aggregation behavior of prion protein and induces novel interactions between its N- and C-terminal regions. J Biol Chem. doi: 10.1074/jbc.M111.265645
  138. 138.
    Taylor DR, Watt NT, Perera WS, Hooper NM (2005) Assigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated, clathrin-dependent endocytosis. J Cell Sci 118(Pt 21):5141–5153PubMedCrossRefGoogle Scholar
  139. 139.
    Mani K, Cheng F, Havsmark B, Jonsson M, Belting M, Fransson LA (2003) Prion, amyloid beta-derived Cu(II) ions, or free Zn(II) ions support S-nitroso-dependent autocleavage of glypican-1 heparan sulfate. J Biol Chem 278(40):38956–38965PubMedCrossRefGoogle Scholar
  140. 140.
    Cheng F, Lindqvist J, Haigh CL, Brown DR, Mani K (2006) Copper-dependent co-internalization of the prion protein and glypican-1. J Neurochem 98(5):1445–1457PubMedCrossRefGoogle Scholar
  141. 141.
    Moudjou M, Bernard J, Sabuncu E, Langevin C, Laude H (2007) Glycan chains modulate prion protein binding to immobilized metal ions. Neurochem Int 50(5):689–695PubMedCrossRefGoogle Scholar
  142. 142.
    Rudd PM, Wormald MR, Wing DR, Prusiner SB, Dwek RA (2001) Prion glycoprotein: structure, dynamics, and roles for the sugars. Biochemistry 40(13):3759–3766PubMedCrossRefGoogle Scholar
  143. 143.
    Wilkins S, Choglay AA, Chapple JP, van der Spuy J, Rhie A, Birkett CR, Cheetham ME (2010) The binding of the molecular chaperone Hsc70 to the prion protein PrP is modulated by pH and copper. Int J Biochem Cell Biol 42(7):1226–1232PubMedCrossRefGoogle Scholar
  144. 144.
    Ma J, Lindquist S (2001) Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci U S A 98(26):14955–14960PubMedCrossRefGoogle Scholar
  145. 145.
    Nandi PK, Leclerc E (1999) Polymerization of murine recombinant prion protein in nucleic acid solution. Arch Virol 144(9):1751–1763PubMedCrossRefGoogle Scholar
  146. 146.
    Nandi PK (1997) Interaction of prion peptide HuPrP106–126 with nucleic acid. Arch Virol 142(12):2537–2545PubMedCrossRefGoogle Scholar
  147. 147.
    Cordeiro Y, Machado F, Juliano L, Juliano MA, Brentani RR, Foguel D, Silva JL (2001) DNA converts cellular prion protein into the beta-sheet conformation and inhibits prion peptide aggregation. J Biol Chem 276(52):49400–49409PubMedCrossRefGoogle Scholar
  148. 148.
    Vieira TC, Reynaldo DP, Gomes MP, Almeida MS, Cordeiro Y, Silva JL (2011) Heparin binding by murine recombinant prion protein leads to transient aggregation and formation of rna-resistant species. J Am Chem Soc 133(2):334–344Google Scholar
  149. 149.
    Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425(6959):717–720PubMedCrossRefGoogle Scholar
  150. 150.
    Record MT Jr, Lohman ML, De Haseth P (1976) Ion effects on ligand-nucleic acid interactions. J Mol Biol 107(2):145–158PubMedCrossRefGoogle Scholar
  151. 151.
    Gomes MP, Millen TA, Ferreira PS, e Silva NL, Vieira TC, Almeida MS, Silva JL, Cordeiro Y (2008) Prion protein complexed to N2a cellular RNAs through its N-terminal domain forms aggregates and is toxic to murine neuroblastoma cells. J Biol Chem 283(28):19616–19625PubMedCrossRefGoogle Scholar
  152. 152.
    Lima LM, Cordeiro Y, Tinoco LW, Marques AF, Oliveira CL, Sampath S, Kodali R, Choi G, Foguel D, Torriani I, Caughey B, Silva JL (2006) Structural insights into the interaction between prion protein and nucleic acid. Biochemistry 45(30):9180–9187PubMedCrossRefGoogle Scholar
  153. 153.
    Bera A, Roche AC, Nandi PK (2007) Bending and unwinding of nucleic acid by prion protein. Biochemistry 46(5):1320–1328PubMedCrossRefGoogle Scholar
  154. 154.
    Ahmad S, Sarai A (2005) PSSM-based prediction of DNA binding sites in proteins. BMC Bioinformatics 6:33PubMedCrossRefGoogle Scholar
  155. 155.
    Silva JL, Lima LM, Foguel D, Cordeiro Y (2008) Intriguing nucleic-acid-binding features of mammalian prion protein. Trends Biochem Sci 33(3):132–140PubMedCrossRefGoogle Scholar
  156. 156.
    King DJ, Safar JG, Legname G, Prusiner SB (2007) Thioaptamer interactions with prion proteins: sequence-specific and non-specific binding sites. J Mol Biol 369(4):1001–1014PubMedCrossRefGoogle Scholar
  157. 157.
    Safar JG, Kellings K, Serban A, Groth D, Cleaver JE, Prusiner SB, Riesner D (2005) Search for a prion-specific nucleic acid. J Virol 79(16):10796–10806PubMedCrossRefGoogle Scholar
  158. 158.
    Takemura K, Wang P, Vorberg I, Surewicz W, Priola SA, Kanthasamy A, Pottathil R, Chen SG, Sreevatsan S (2006) DNA aptamers that bind to PrP(C) and not PrP(Sc) show sequence and structure specificity. Exp Biol Med (Maywood) 231(2):204–214Google Scholar
  159. 159.
    Snow AD, Wight TN, Nochlin D, Koike Y, Kimata K, DeArmond SJ, Prusiner SB (1990) Immunolocalization of heparan sulfate proteoglycans to the prion protein amyloid plaques of Gerstmann-Straussler syndrome, Creutzfeldt-Jakob disease and scrapie. Lab Invest 63(5):601–611PubMedGoogle Scholar
  160. 160.
    Ladogana A, Casaccia P, Ingrosso L, Cibati M, Salvatore M, Xi YG, Masullo C, Pocchiari M (1992) Sulphate polyanions prolong the incubation period of scrapie-infected hamsters. J Gen Virol 73(Pt 3):661–665PubMedCrossRefGoogle Scholar
  161. 161.
    Wong C, Xiong LW, Horiuchi M, Raymond L, Wehrly K, Chesebro B, Caughey B (2001) Sulfated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein. Embo J 20(3):377–386PubMedCrossRefGoogle Scholar
  162. 162.
    Ben-Zaken O, Tzaban S, Tal Y, Horonchik L, Esko JD, Vlodavsky I, Taraboulos A (2003) Cellular heparan sulfate participates in the metabolism of prions. J Biol Chem 278(41):40041–40049PubMedCrossRefGoogle Scholar
  163. 163.
    Deleault NR, Geoghegan JC, Nishina K, Kascsak R, Williamson RA, Supattapone S (2005) Protease-resistant prion protein amplification reconstituted with partially purified substrates and synthetic polyanions. J Biol Chem 280(29):26873–26879PubMedCrossRefGoogle Scholar
  164. 164.
    Silva JL, Gomes MP, Vieira TC, Cordeiro Y (2010) PrP interactions with nucleic acids and glycosaminoglycans in function and disease. Front Biosci 15:132–150PubMedCrossRefGoogle Scholar
  165. 165.
    Caughey B, Race RE (1994) Scrapie-associated PrP accumulation and its inhibition: revisiting the amyloid-glycosaminoglycan connection. Ann N Y Acad Sci 724:290–295PubMedCrossRefGoogle Scholar
  166. 166.
    Warner RG, Hundt C, Weiss S, Turnbull JE (2002) Identification of the heparan sulfate binding sites in the cellular prion protein. J Biol Chem 277(21):18421–18430PubMedCrossRefGoogle Scholar
  167. 167.
    Pan T, Wong BS, Liu T, Li R, Petersen RB, Sy MS (2002) Cell-surface prion protein interacts with glycosaminoglycans. Biochem J 368(Pt 1):81–90PubMedCrossRefGoogle Scholar
  168. 168.
    Taubner LM, Bienkiewicz EA, Copie V, Caughey B (2010) Structure of the flexible amino-terminal domain of prion protein bound to a sulfated glycan. J Mol Biol 395(3):475–490PubMedCrossRefGoogle Scholar
  169. 169.
    Caughey B, Raymond GJ (1993) Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 67(2):643–650PubMedGoogle Scholar
  170. 170.
    Gabizon R, Meiner Z, Halimi M, Ben-Sasson SA (1993) Heparin-like molecules bind differentially to prion-proteins and change their intracellular metabolic fate. J Cell Physiol 157(2):319–325PubMedCrossRefGoogle Scholar
  171. 171.
    Brenot F, Aubry L, Martin JB, Satre M, Klein G (1992) Kinetics of endosomal acidification in Dictyostelium discoideum amoebae. 31P-NMR evidence for a very acidic early endosomal compartment. Biochimie 74(9–10):883–895PubMedCrossRefGoogle Scholar
  172. 172.
    Weisz OA (2003) Acidification and protein traffic. Int Rev Cytol 226:259–319PubMedCrossRefGoogle Scholar
  173. 173.
    Freire E, Coelho-Sampaio T (2000) Self-assembly of laminin induced by acidic pH. J Biol Chem 275(2):817–822PubMedCrossRefGoogle Scholar
  174. 174.
    Mitra RC, Zhang Z, Alexov E (2011) In silico modeling of pH-optimum of protein-protein binding. Proteins 79(3):925–936PubMedCrossRefGoogle Scholar
  175. 175.
    Romano SA, Cordeiro Y, Lima LM, Lopes MH, Silva JL, Foguel D, Linden R (2009) Reciprocal remodeling upon binding of the prion protein to its signaling partner hop/STI1. Faseb J 23(12):4308–4316PubMedCrossRefGoogle Scholar
  176. 176.
    Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169(2):341–354PubMedCrossRefGoogle Scholar
  177. 177.
    Roffe M, Beraldo FH, Bester R, Nunziante M, Bach C, Mancini G, Gilch S, Vorberg I, Castilho BA, Martins VR, Hajj GN (2010) Prion protein interaction with stress-inducible protein 1 enhances neuronal protein synthesis via mTOR. Proc Natl Acad Sci USA 107(29):13147–13152PubMedCrossRefGoogle Scholar
  178. 178.
    Erlich RB, Kahn SA, Lima FR, Muras AG, Martins RA, Linden R, Chiarini LB, Martins VR, Moura Neto V (2007) STI1 promotes glioma proliferation through MAPK and PI3 K pathways. Glia 55(16):1690–1698PubMedCrossRefGoogle Scholar
  179. 179.
    Santos TG, Silva IR, Costa-Silva B, Lepique AP, Martins VR, Lopes MH (2011) Enhanced Neural Progenitor/Stem Cells Self-Renewal via the Interaction of Stress Inducible Protein 1 with the Prion Protein. Stem Cells 29(7):1126–1136Google Scholar
  180. 180.
    Arruda-Carvalho M, Njaine B, Silveira MS, Linden R, Chiarini LB (2007) Hop/STI1 modulates retinal proliferation and cell death independent of PrPC. Biochem Biophys Res Commun 361(2):474–480PubMedCrossRefGoogle Scholar
  181. 181.
    Arantes C, Nomizo R, Lopes MH, Hajj GN, Lima FR, Martins VR (2009) Prion protein and its ligand stress inducible protein 1 regulate astrocyte development. Glia 57(13):1439–1449PubMedCrossRefGoogle Scholar
  182. 182.
    Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, Jefferys JG (1994) Prion protein is necessary for normal synaptic function. Nature 370(6487):295–297PubMedCrossRefGoogle Scholar
  183. 183.
    Borchelt DR, Sisodia SS (1996) Loss of functional prion protein: a role in prion disorders? Chem Biol 3(8):619–621PubMedCrossRefGoogle Scholar
  184. 184.
    Parchi P, Strammiello R, Giese A, Kretzschmar H (2011) Phenotypic variability of sporadic human prion disease and its molecular basis: past, present, and future. Acta Neuropathol 121(1):91–112PubMedCrossRefGoogle Scholar
  185. 185.
    Wadsworth JD, Collinge J (2011) Molecular pathology of human prion disease. Acta Neuropathol 121(1):69–77PubMedCrossRefGoogle Scholar
  186. 186.
    Chiesa R, Piccardo P, Biasini E, Ghetti B, Harris DA (2008) Aggregated, wild-type prion protein causes neurological dysfunction and synaptic abnormalities. J Neurosci 28(49):13258–13267PubMedCrossRefGoogle Scholar
  187. 187.
    Solforosi L, Criado JR, McGavern DB, Wirz S, Sanchez-Alavez M, Sugama S, DeGiorgio LA, Volpe BT, Wiseman E, Abalos G, Masliah E, Gilden D, Oldstone MB, Conti B, Williamson RA (2004) Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303(5663):1514–1516PubMedCrossRefGoogle Scholar
  188. 188.
    Jan A, Adolfsson O, Allaman I, Buccarello AL, Magistretti PJ, Pfeifer A, Muhs A, Lashuel HA (2011) Abeta42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Abeta42 species. J Biol Chem 286(10):8585–8596PubMedCrossRefGoogle Scholar
  189. 189.
    Siskova Z, Page A, O’Connor V, Perry VH (2009) Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping. Am J Pathol 175(4):1610–1621PubMedCrossRefGoogle Scholar
  190. 190.
    Gray BC, Siskova Z, Perry VH, O’Connor V (2009) Selective presynaptic degeneration in the synaptopathy associated with ME7-induced hippocampal pathology. Neurobiol Dis 35(1):63–74PubMedCrossRefGoogle Scholar
  191. 191.
    Cunningham C, Deacon R, Wells H, Boche D, Waters S, Diniz CP, Scott H, Rawlins JN, Perry VH (2003) Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci 17(10):2147–2155PubMedCrossRefGoogle Scholar
  192. 192.
    Caughey B, Baron GS (2006) Prions and their partners in crime. Nature 443(7113):803–810PubMedCrossRefGoogle Scholar
  193. 193.
    Martins VR, Linden R, Prado MA, Walz R, Sakamoto AC, Izquierdo I, Brentani RR (2002) Cellular prion protein: on the road for functions. FEBS Lett 512(1–3):25–28PubMedCrossRefGoogle Scholar
  194. 194.
    Ehrlich M, Horbelt D, Marom B, Knaus P, Henis YI (2011) Homomeric and heteromeric complexes among TGF-beta and BMP receptors and their roles in signaling. Cell Signal 23(9):1424–1432PubMedCrossRefGoogle Scholar
  195. 195.
    Ciruela F, Gomez-Soler M, Guidolin D, Borroto-Escuela DO, Agnati LF, Fuxe K, Fernandez-Duenas V (2011) Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain. Biochim Biophys Acta 1808(5):1245–1255PubMedCrossRefGoogle Scholar
  196. 196.
    Pin JP, Comps-Agrar L, Maurel D, Monnier C, Rives ML, Trinquet E, Kniazeff J, Rondard P, Prezeau L (2009) G-protein-coupled receptor oligomers: two or more for what? Lessons from mGlu and GABAB receptors. J Physiol 587(Pt 22):5337–5344PubMedCrossRefGoogle Scholar
  197. 197.
    Kramp BK, Sarabi A, Koenen RR, Weber C (2011) Heterophilic chemokine receptor interactions in chemokine signaling and biology. Exp Cell Res 317(5):655–663PubMedCrossRefGoogle Scholar
  198. 198.
    Nakata H, Yoshioka K, Kamiya T (2004) Purinergic-receptor oligomerization: implications for neural functions in the central nervous system. Neurotox Res 6(4):291–297PubMedCrossRefGoogle Scholar
  199. 199.
    Schmidt U, Weiss M (2011) Anomalous diffusion of oligomerized transmembrane proteins. J Chem Phys 134(16):165101PubMedCrossRefGoogle Scholar
  200. 200.
    Guigas G, Weiss M (2006) Size-dependent diffusion of membrane inclusions. Biophys J 91(7):2393–2398PubMedCrossRefGoogle Scholar
  201. 201.
    Xu W, Kimelman D (2007) Mechanistic insights from structural studies of beta-catenin and its binding partners. J Cell Sci 120(Pt 19):3337–3344PubMedCrossRefGoogle Scholar
  202. 202.
    Enghild JJ, Salvesen G, Thogersen IB, Pizzo SV (1989) Proteinase binding and inhibition by the monomeric alpha-macroglobulin rat alpha 1-inhibitor-3. J Biol Chem 264(19):11428–11435PubMedGoogle Scholar
  203. 203.
    Rebowski G, Namgoong S, Boczkowska M, Leavis PC, Navaza J, Dominguez R (2010) Structure of a longitudinal actin dimer assembled by tandem w domains: implications for actin filament nucleation. J Mol Biol 403(1):11–23PubMedCrossRefGoogle Scholar
  204. 204.
    Kiermayr S, Stiasny K, Heinz FX (2009) Impact of quaternary organization on the antigenic structure of the tick-borne encephalitis virus envelope glycoprotein E. J Virol 83(17):8482–8491PubMedCrossRefGoogle Scholar
  205. 205.
    Tanaka M, Kim YM, Lee G, Junn E, Iwatsubo T, Mouradian MM (2004) Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem 279(6):4625–4631PubMedCrossRefGoogle Scholar
  206. 206.
    Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95(1):55–66PubMedCrossRefGoogle Scholar
  207. 207.
    Kim M, Lee HS, LaForet G, McIntyre C, Martin EJ, Chang P, Kim TW, Williams M, Reddy PH, Tagle D, Boyce FM, Won L, Heller A, Aronin N, DiFiglia M (1999) Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J Neurosci 19(3):964–973PubMedGoogle Scholar
  208. 208.
    Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi HY, Orr HT (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95(1):41–53PubMedCrossRefGoogle Scholar
  209. 209.
    Taylor JP, Tanaka F, Robitschek J, Sandoval CM, Taye A, Markovic-Plese S, Fischbeck KH (2003) Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet 12(7):749–757PubMedCrossRefGoogle Scholar
  210. 210.
    Marx FP, Holzmann C, Strauss KM, Li L, Eberhardt O, Gerhardt E, Cookson MR, Hernandez D, Farrer MJ, Kachergus J, Engelender S, Ross CA, Berger K, Schols L, Schulz JB, Riess O, Kruger R (2003) Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson’s disease. Hum Mol Genet 12(11):1223–1231PubMedCrossRefGoogle Scholar
  211. 211.
    Sanghera N, Swann MJ, Ronan G, Pinheiro TJ (2009) Insight into early events in the aggregation of the prion protein on lipid membranes. Biochim Biophys Acta 1788(10):2245–2251PubMedCrossRefGoogle Scholar
  212. 212.
    Baskakov IV, Breydo L (2007) Converting the prion protein: what makes the protein infectious. Biochim Biophys Acta 1772(6):692–703PubMedGoogle Scholar
  213. 213.
    Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132PubMedCrossRefGoogle Scholar
  214. 214.
    Cisse M, Sanchez PE, Kim DH, Ho K, Yu GQ, Mucke L (2011) Ablation of cellular prion protein does not ameliorate abnormal neural network activity or cognitive dysfunction in the J20 line of human amyloid precursor protein transgenic mice. J Neurosci 31(29):10427–10431PubMedCrossRefGoogle Scholar
  215. 215.
    Freir DB, Nicoll AJ, Klyubin I, Panico S, Mc Donald JM, Risse E, Asante EA, Farrow MA, Sessions RB, Saibil HR, Clarke AR, Rowan MJ, Walsh DM, Collinge J (2011) Interaction between prion protein and toxic amyloid beta assemblies can be therapeutically targeted at multiple sites. Nat Commun 2:336PubMedCrossRefGoogle Scholar
  216. 216.
    Saijo E, Scheff SW, Telling GC (2011) Unaltered prion protein expression in Alzheimer disease patients. Prion 5(2):109–116PubMedCrossRefGoogle Scholar
  217. 217.
    Barry AE, Klyubin I, Mc Donald JM, Mably AJ, Farrell MA, Scott M, Walsh DM, Rowan MJ (2011) Alzheimer’s disease brain-derived amyloid-beta-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J Neurosci 31(20):7259–7263PubMedCrossRefGoogle Scholar
  218. 218.
    Zou WQ, Xiao X, Yuan J, Puoti G, Fujioka H, Wang X, Richardson S, Zhou X, Zou R, Li S, Zhu X, McGeer PL, McGeehan J, Kneale G, Rincon-Limas DE, Fernandez-Funez P, Lee HG, Smith MA, Petersen RB, Guo JP (2011) Amyloid-beta42 interacts mainly with insoluble prion protein in the Alzheimer brain. J Biol Chem 286(17):15095–15105PubMedCrossRefGoogle Scholar
  219. 219.
    Forloni G, Balducci C (2011) beta-amyloid oligomers and prion protein: Fatal attraction? Prion 5(1):10–15PubMedCrossRefGoogle Scholar
  220. 220.
    Kessels HW, Nguyen LN, Nabavi S, Malinow R (2010) The prion protein as a receptor for amyloid-beta. Nature 466(7308):E3–E4 discussion E4-5PubMedCrossRefGoogle Scholar
  221. 221.
    Benilova I, De Strooper B (2010) Prion protein in Alzheimer’s pathogenesis: a hot and controversial issue. EMBO Mol Med 2(8):289–290PubMedCrossRefGoogle Scholar
  222. 222.
    Calella AM, Farinelli M, Nuvolone M, Mirante O, Moos R, Falsig J, Mansuy IM, Aguzzi A (2010) Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol Med 2(8):306–314PubMedCrossRefGoogle Scholar
  223. 223.
    Chen S, Yadav SP, Surewicz WK (2010) Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role OF N-terminal residues. J Biol Chem 285(34):26377–26383PubMedCrossRefGoogle Scholar
  224. 224.
    Caetano FA, Beraldo FH, Hajj GN, Guimaraes AL, Jurgensen S, Wasilewska-Sampaio AP, Hirata PH, Souza I, Machado CF, Wong DY, De Felice FG, Ferreira ST, Prado VF, Rylett RJ, Martins VR, Prado MA (2011) Amyloid-beta oligomers increase the localization of prion protein at the cell surface. J Neurochem 117(3):538–553PubMedCrossRefGoogle Scholar
  225. 225.
    Bate C, Williams A (2011) Amyloid-{beta}-induced synapse damage is mediated via cross-linkage of the cellular prion protein. J Biol Chem. doi: 10.1074/jbc.M111.248724
  226. 226.
    Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ (2011) Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 31(18):6627–6638PubMedCrossRefGoogle Scholar
  227. 227.
    Wang D, Govindaiah G, Liu R, De Arcangelis V, Cox CL, Xiang YK (2010) Binding of amyloid beta peptide to beta2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity. Faseb J 24(9):3511–3521PubMedCrossRefGoogle Scholar
  228. 228.
    Uhasz GJ, Barkoczi B, Vass G, Datki Z, Hunya A, Fulop L, Budai D, Penke B, Szegedi V (2010) Fibrillar Abeta (1–42) enhances NMDA receptor sensitivity via the integrin signaling pathway. J Alzheimers Dis 19(3):1055–1067PubMedGoogle Scholar
  229. 229.
    Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. Faseb J 22(1):246–260PubMedCrossRefGoogle Scholar
  230. 230.
    Abbott JJ, Howlett DR, Francis PT, Williams RJ (2008) Abeta(1–42) modulation of Akt phosphorylation via alpha7 nAChR and NMDA receptors. Neurobiol Aging 29(7):992–1001PubMedCrossRefGoogle Scholar
  231. 231.
    Parameshwaran K, Sims C, Kanju P, Vaithianathan T, Shonesy BC, Dhanasekaran M, Bahr BA, Suppiramaniam V (2007) Amyloid beta-peptide Abeta(1–42) but not Abeta(1–40) attenuates synaptic AMPA receptor function. Synapse 61(6):367–374PubMedCrossRefGoogle Scholar
  232. 232.
    Decker H, Lo KY, Unger SM, Ferreira ST, Silverman MA (2010) Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. J Neurosci 30(27):9166–9171PubMedGoogle Scholar
  233. 233.
    Li X, Rowland LP, Mitsumoto H, Przedborski S, Bird TD, Schellenberg GD, Peskind E, Johnson N, Siddique T, Mesulam MM, Weintraub S, Mastrianni JA (2005) Prion protein codon 129 genotype prevalence is altered in primary progressive aphasia. Ann Neurol 58(6):858–864PubMedCrossRefGoogle Scholar
  234. 234.
    Dupuis L, Mbebi C, Gonzalez de Aguilar JL, Rene F, Muller A, de Tapia M, Loeffler JP (2002) Loss of prion protein in a transgenic model of amyotrophic lateral sclerosis. Mol Cell Neurosci 19(2):216–224PubMedCrossRefGoogle Scholar
  235. 235.
    Steinacker P, Hawlik A, Lehnert S, Jahn O, Meier S, Gorz E, Braunstein KE, Krzovska M, Schwalenstocker B, Jesse S, Propper C, Bockers T, Ludolph A, Otto M (2010) Neuroprotective Function of Cellular Prion Protein in a Mouse Model of Amyotrophic Lateral Sclerosis. Am J Pathol 176(3):1409–1420Google Scholar
  236. 236.
    Lee S, Antony L, Hartmann R, Knaus KJ, Surewicz K, Surewicz WK, Yee VC (2010) Conformational diversity in prion protein variants influences intermolecular beta-sheet formation. Embo J 29(1):251–262PubMedCrossRefGoogle Scholar
  237. 237.
    Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol 8(9):770–774PubMedCrossRefGoogle Scholar
  238. 238.
    Khan MQ, Sweeting B, Mulligan VK, Arslan PE, Cashman NR, Pai EF, Chakrabartty A (2010) Prion disease susceptibility is affected by beta-structure folding propensity and local side-chain interactions in PrP. Proc Natl Acad Sci USA 107(46):19808–19813PubMedCrossRefGoogle Scholar
  239. 239.
    Linden R, Martins VR, Prado MA (2012) Prion protein. In: Choi S (ed) Encyclopedia of signaling molecules. Springer, p in pressGoogle Scholar
  240. 240.
    Romano SA, Cordeiro Y, Lima LM, Lopes MH, Silva JL, Foguel D, Linden R (2009) Uncovering molecular structural mechanisms of signaling mediated by the prion protein. LNLS activity report-science highlights:30–36Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Rafael Linden
    • 1
    Email author
  • Yraima Cordeiro
    • 2
  • Luis Mauricio T. R. Lima
    • 2
  1. 1.Instituto de Biofísica Carlos Chagas FilhoUFRJ, CCS, bloco G, Cidade UniversitáriaRio de JaneiroBrazil
  2. 2.Faculdade de FarmáciaUFRJRio de JaneiroBrazil

Personalised recommendations