Advertisement

Cellular and Molecular Life Sciences

, Volume 69, Issue 6, pp 857–896 | Cite as

The dynorphin/κ-opioid receptor system and its role in psychiatric disorders

  • H. A. Tejeda
  • T. S. ShippenbergEmail author
  • R. Henriksson
Review

Abstract

The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.

Keywords

Dynorphin κ-Opioid receptor Psychiatric disorder Pharmacology Neuroanatomy 

Notes

Acknowledgments

This review was supported by the: (1) Intramural Research Program, National Institute on Drug Abuse; (2) National Institute of Mental Health (R01MH083928); (3) National Science Foundation Graduate Research Fellowship (HAT); (4) Ford Foundation Predoctoral Fellowship (HAT); (5) Meyerhoff Fellowship (HAT); and (6) Department of Clinical Neuroscience, Karolinska Institutet(RH). Special thanks to Dr. Vladimir Chefer for his thoughtful comments on the manuscript.

Conflict of interest

The authors state that they have no conflicts of interest.

References

  1. 1.
    WHO (2001) Mental health: new understanding, new hope. The world health report 2001Google Scholar
  2. 2.
    Dani JA, Harris RA (2005) Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nat Neurosci 8:1465–1470. doi: 10.1038/nn1580 PubMedCrossRefGoogle Scholar
  3. 3.
    Henriksen G, Willoch F (2008) Imaging of opioid receptors in the central nervous system. Brain 131:1171–1196. doi: 10.1093/brain/awm255 PubMedCrossRefGoogle Scholar
  4. 4.
    Chavkin C, James IF, Goldstein A (1982) Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science 215:413–415PubMedCrossRefGoogle Scholar
  5. 5.
    Shippenberg TS (2009) The dynorphin/kappa opioid receptor system: a new target for the treatment of addiction and affective disorders? Neuropsychopharmacology 34:247. doi: 10.1038/npp.2008.165 PubMedCrossRefGoogle Scholar
  6. 6.
    Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine beta-neo-endorphin/dynorphin precursor. Nature 298:245–249PubMedCrossRefGoogle Scholar
  7. 7.
    Goldstein A, Fischli W, Lowney LI, Hunkapiller M, Hood L (1981) Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci USA 78:7219–7223PubMedCrossRefGoogle Scholar
  8. 8.
    Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L (1979) Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA 76:6666–6670PubMedCrossRefGoogle Scholar
  9. 9.
    Minamino N, Kangawa K, Fukuda A, Matsuo H, Iagarashi M (1980) A new opioid octapeptide related to dynorphin from porcine hypothalamus. Biochem Biophys Res Commun 95:1475–1481. pii: S0006-291X(80)80063-5PubMedCrossRefGoogle Scholar
  10. 10.
    Kangawa K, Matsuo H (1979) Alpha-Neo-endorphin: a “big” Leu-enkephalin with potent opiate activity from porcine hypothalami. Biochem Biophys Res Commun 86:153–160PubMedCrossRefGoogle Scholar
  11. 11.
    Minamino N, Kangawa K, Chino N, Sakakibara S, Matsuo H (1981) Beta-neo-endorphin, a new hypothalamic “big” Leu-enkephalin of porcine origin: its purification and the complete amino acid sequence. Biochem Biophys Res Commun 99:864–870. pii: 0006-291X(81)91243-2PubMedCrossRefGoogle Scholar
  12. 12.
    Fischli W, Goldstein A, Hunkapiller MW, Hood LE (1982) Isolation and amino acid sequence analysis of a 4, 000-dalton dynorphin from porcine pituitary. Proc Natl Acad Sci USA 79:5435–5437PubMedCrossRefGoogle Scholar
  13. 13.
    Kilpatrick DL, Wahlstrom A, Lahm HW, Blacher R, Udenfriend S (1982) Rimorphin, a unique, naturally occurring [Leu]enkephalin-containing peptide found in association with dynorphin and alpha-neo-endorphin. Proc Natl Acad Sci USA 79:6480–6483PubMedCrossRefGoogle Scholar
  14. 14.
    Nakao K, Suda M, Sakamoto M, Yoshimasa T, Morii N, Ikeda Y, Yanaihara C, Yanaihara N, Numa S, Imura H (1983) Leumorphin is a novel endogenous opioid peptide derived from preproenkephalin B. Biochem Biophys Res Commun 117:695–701. pii: 0006-291X(83)91653-4PubMedCrossRefGoogle Scholar
  15. 15.
    Naqvi T, Haq W, Mathur KB (1998) Structure-activity relationship studies of dynorphin A and related peptides. Peptides 19:1277–1292. pii: S0196-9781(98)00042-4PubMedCrossRefGoogle Scholar
  16. 16.
    Chen Y, Chen C, Liu-Chen LY (2007) Dynorphin peptides differentially regulate the human kappa opioid receptor. Life Sci 80:1439–1448. doi: 10.1016/j.lfs.2007.01.018 PubMedCrossRefGoogle Scholar
  17. 17.
    Shukla VK, Lemaire S (1994) Non-opioid effects of dynorphins: possible role of the NMDA receptor. Trends Pharmacol Sci 15:420–424PubMedCrossRefGoogle Scholar
  18. 18.
    Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED, Knapp PE, Scheff SW, Singh IN, Vissel B, Woods AS, Yakovleva T, Shippenberg TS (2005) Pathobiology of dynorphins in trauma and disease. Front Biosci 10:216–235. pii: 1522PubMedCrossRefGoogle Scholar
  19. 19.
    Sherwood TW, Askwith CC (2009) Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J Neurosci 29:14371–14380. doi: 10.1523/JNEUROSCI.2186-09.2009 PubMedCrossRefGoogle Scholar
  20. 20.
    Weber E, Evans CJ, Barchas JD (1982) Predominance of the amino-terminal octapeptide fragment of dynorphin in rat brain regions. Nature 299:77–79PubMedCrossRefGoogle Scholar
  21. 21.
    Ramsdell CD, Meador-Woodruff JH (1993) Expression of prodynorphin-derived peptides and mRNA in guinea-pig cortex. Neuropeptides 25:131–138. pii: 0143-4179(93)90093-PPubMedCrossRefGoogle Scholar
  22. 22.
    Healy DJ, Meador-Woodruff JH (1994) Prodynorphin-derived peptide expression in primate cortex and striatum. Neuropeptides 27:277–284PubMedCrossRefGoogle Scholar
  23. 23.
    Berman Y, Mzhavia N, Polonskaia A, Furuta M, Steiner DF, Pintar JE, Devi LA (2000) Defective prodynorphin processing in mice lacking prohormone convertase PC2. J Neurochem 75:1763–1770PubMedCrossRefGoogle Scholar
  24. 24.
    Boudarine M, Yegorov O, Sterling-Dubrovsky A, Devi LA, Berman Y (2002) Developmental changes in opioid peptides and their receptors in Cpe(fat)/Cpe(fat) mice lacking peptide processing enzyme carboxypeptidase E. J Pharmacol Exp Ther 303:1317–1324. doi: 10.1124/jpet.102.037663 PubMedCrossRefGoogle Scholar
  25. 25.
    Minokadeh A, Funkelstein L, Toneff T, Hwang SR, Beinfeld M, Reinheckel T, Peters C, Zadina J, Hook V (2010) Cathepsin L participates in dynorphin production in brain cortex, illustrated by protease gene knockout and expression. Mol Cell Neurosci 43:98–107. doi: 10.1016/j.mcn.2009.10.001 PubMedCrossRefGoogle Scholar
  26. 26.
    Day R, Lazure C, Basak A, Boudreault A, Limperis P, Dong W, Lindberg I (1998) Prodynorphin processing by proprotein convertase 2. Cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. J Biol Chem 273:829–836PubMedCrossRefGoogle Scholar
  27. 27.
    Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR (2008) Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 48:393–423. doi: 10.1146/annurev.pharmtox.48.113006.094812 PubMedCrossRefGoogle Scholar
  28. 28.
    Yakovleva T, Bazov I, Cebers G, Marinova Z, Hara Y, Ahmed A, Vlaskovska M, Johansson B, Hochgeschwender U, Singh IN, Bruce-Keller AJ, Hurd YL, Kaneko T, Terenius L, Ekstrom TJ, Hauser KF, Pickel VM, Bakalkin G (2006) Prodynorphin storage and processing in axon terminals and dendrites. FASEB J 20:2124–2126. doi: 10.1096/fj.06-6174fje PubMedCrossRefGoogle Scholar
  29. 29.
    Reed B, Zhang Y, Chait BT, Kreek MJ (2003) Dynorphin A(1–17) biotransformation in striatum of freely moving rats using microdialysis and matrix-assisted laser desorption/ionization mass spectrometry. J Neurochem 86:815–823. pii: 1859PubMedCrossRefGoogle Scholar
  30. 30.
    Sandin J, Tan-No K, Kasakov L, Nylander I, Winter A, Silberring J, Terenius L (1997) Differential metabolism of dynorphins in substantia nigra, striatum, and hippocampus. Peptides 18:949–956. pii: S0196-9781(97)00025-9PubMedCrossRefGoogle Scholar
  31. 31.
    Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014PubMedCrossRefGoogle Scholar
  32. 32.
    Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proc Natl Acad Sci USA 70:1947–1949PubMedCrossRefGoogle Scholar
  33. 33.
    Terenius L (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol (Copenh) 32:317–320CrossRefGoogle Scholar
  34. 34.
    Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M (1996) International Union of Pharmacology, XII. Classification of opioid receptors. Pharmacol Rev 48:567–592PubMedGoogle Scholar
  35. 35.
    Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990. doi: 10.1146/annurev.biochem.73.011303.073940 PubMedCrossRefGoogle Scholar
  36. 36.
    Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430. doi: 10.1146/annurev.pharmtox.40.1.389 PubMedCrossRefGoogle Scholar
  37. 37.
    Grudt TJ, Williams JT (1993) Kappa-opioid receptors also increase potassium conductance. Proc Natl Acad Sci USA 90:11429–11432PubMedCrossRefGoogle Scholar
  38. 38.
    Gross RA, Moises HC, Uhler MD, Macdonald RL (1990) Dynorphin A and cAMP-dependent protein kinase independently regulate neuronal calcium currents. Proc Natl Acad Sci USA 87:7025–7029PubMedCrossRefGoogle Scholar
  39. 39.
    Iremonger KJ, Bains JS (2009) Retrograde opioid signaling regulates glutamatergic transmission in the hypothalamus. J Neurosci 29:7349–7358. doi: 10.1523/JNEUROSCI.0381-09.2009 PubMedCrossRefGoogle Scholar
  40. 40.
    Crain SM, Shen KF (1996) Modulatory effects of Gs-coupled excitatory opioid receptor functions on opioid analgesia, tolerance, and dependence. Neurochem Res 21:1347–1351PubMedCrossRefGoogle Scholar
  41. 41.
    Kam AY, Chan AS, Wong YH (2004) Kappa-opioid receptor signals through Src and focal adhesion kinase to stimulate c-Jun N-terminal kinases in transfected COS-7 cells and human monocytic THP-1 cells. J Pharmacol Exp Ther 310:301–310. doi: 10.1124/jpet.104.065078jpet PubMedCrossRefGoogle Scholar
  42. 42.
    Bruchas MR, Macey TA, Lowe JD, Chavkin C (2006) Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem 281:18081–18089. doi: 10.1074/jbc.M513640200 PubMedCrossRefGoogle Scholar
  43. 43.
    Liu-Chen LY (2004) Agonist-induced regulation and trafficking of kappa opioid receptors. Life Sci 75:511–536. doi: 10.1016/j.lfs.2003.10.041 PubMedCrossRefGoogle Scholar
  44. 44.
    Blake AD, Bot G, Li S, Freeman JC, Reisine T (1997) Differential agonist regulation of the human kappa-opioid receptor. J Neurochem 68:1846–1852PubMedCrossRefGoogle Scholar
  45. 45.
    Wang Y, Tang K, Inan S, Siebert D, Holzgrabe U, Lee DY, Huang P, Li JG, Cowan A, Liu-Chen LY (2005) Comparison of pharmacological activities of three distinct kappa ligands (Salvinorin A, TRK-820 and 3FLB) on kappa opioid receptors in vitro and their antipruritic and antinociceptive activities in vivo. J Pharmacol Exp Ther 312:220–230. doi: 10.1124/jpet.104.073668jpet PubMedCrossRefGoogle Scholar
  46. 46.
    Chen Y, Chen C, Wang Y, Liu-Chen LY (2006) Ligands regulate cell surface level of the human kappa opioid receptor by activation-induced down-regulation and pharmacological chaperone-mediated enhancement: differential effects of nonpeptide and peptide agonists. J Pharmacol Exp Ther 319:765–775. doi: 10.1124/jpet.106.107987 PubMedCrossRefGoogle Scholar
  47. 47.
    Chen Y, Liu-Chen LY (2009) Chaperone-like effects of cell-permeant ligands on opioid receptors. Front Biosci 14:634–643. pii: 3269PubMedCrossRefGoogle Scholar
  48. 48.
    Li JG, Chen C, Liu-Chen LY (2007) N-Glycosylation of the human kappa opioid receptor enhances its stability but slows its trafficking along the biosynthesis pathway. Biochemistry 46:10960–10970. doi: 10.1021/bi700443j PubMedCrossRefGoogle Scholar
  49. 49.
    Bruchas MR, Chavkin C (2010) Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology (Berl) 210:137–147. doi: 10.1007/s00213-010-1806-y CrossRefGoogle Scholar
  50. 50.
    Wain HM, Bruford EA, Lovering RC, Lush MJ, Wright MW, Povey S (2002) Guidelines for human gene nomenclature. Genomics 79:464–470PubMedCrossRefGoogle Scholar
  51. 51.
    Douglass J, McMurray CT, Garrett JE, Adelman JP, Calavetta L (1989) Characterization of the rat prodynorphin gene. Mol Endocrinol 3:2070–2078PubMedCrossRefGoogle Scholar
  52. 52.
    Horikawa S, Takai T, Toyosato M, Takahashi H, Noda M, Kakidani H, Kubo T, Hirose T, Inayama S, Hayashida H et al (1983) Isolation and structural organization of the human preproenkephalin B gene. Nature 306:611–614PubMedCrossRefGoogle Scholar
  53. 53.
    Sharifi N, Ament M, Brennan MB, Hochgeschwender U (1999) Isolation and characterization of the mouse homolog of the preprodynorphin (Pdyn) gene. Neuropeptides 33:236–238. doi: 10.1054/npep.1999.0023 PubMedCrossRefGoogle Scholar
  54. 54.
    Nikoshkov A, Hurd YL, Yakovleva T, Bazov I, Marinova Z, Cebers G, Pasikova N, Gharibyan A, Terenius L, Bakalkin G (2005) Prodynorphin transcripts and proteins differentially expressed and regulated in the adult human brain. FASEB J 19:1543–1545. doi: 10.1096/fj.05-3743fje PubMedGoogle Scholar
  55. 55.
    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S (2006) Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res 16:55–65. doi: 10.1101/gr.4039406 PubMedCrossRefGoogle Scholar
  56. 56.
    Geijer T, Telkov M, Terenius L (1995) Characterization of human prodynorphin gene transcripts. Biochem Biophys Res Commun 215:881–888. doi: 10.1006/bbrc.1995.2546 PubMedCrossRefGoogle Scholar
  57. 57.
    Telkov M, Geijer T, Terenius L (1998) Human prodynorphin gene generates several tissue-specific transcripts. Brain Res 804:284–295. pii: S0006-8993(98)00706-9PubMedCrossRefGoogle Scholar
  58. 58.
    Liu HC, Lu S, Augustin LB, Felsheim RF, Chen HC, Loh HH, Wei LN (1995) Cloning and promoter mapping of mouse kappa opioid receptor gene. Biochem Biophys Res Commun 209:639–647. pii: S0006291X85715471PubMedCrossRefGoogle Scholar
  59. 59.
    Yakovlev AG, Krueger KE, Faden AI (1995) Structure and expression of a rat kappa opioid receptor gene. J Biol Chem 270:6421–6424PubMedCrossRefGoogle Scholar
  60. 60.
    Yuferov V, Fussell D, LaForge KS, Nielsen DA, Gordon D, Ho A, Leal SM, Ott J, Kreek MJ (2004) Redefinition of the human kappa opioid receptor gene (OPRK1) structure and association of haplotypes with opiate addiction. Pharmacogenetics 14:793–804. pii: 00008571-200412000-00002PubMedCrossRefGoogle Scholar
  61. 61.
    Lu S, Loh HH, Wei LN (1997) Studies of dual promoters of mouse kappa-opioid receptor gene. Mol Pharmacol 52:415–420PubMedGoogle Scholar
  62. 62.
    Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 8:424–436. doi: 10.1038/nrg2026 PubMedCrossRefGoogle Scholar
  63. 63.
    Zimprich A, Kraus J, Woltje M, Mayer P, Rauch E, Hollt V (2000) An allelic variation in the human prodynorphin gene promoter alters stimulus-induced expression. J Neurochem 74:472–477PubMedCrossRefGoogle Scholar
  64. 64.
    Babbitt CC, Silverman JS, Haygood R, Reininga JM, Rockman MV, Wray GA (2010) Multiple functional variants in cis modulate PDYN expression. Mol Biol Evol 27:465–479. doi: 10.1093/molbev/msp276 PubMedCrossRefGoogle Scholar
  65. 65.
    Rouault M, Nielsen DA, Ho A, Kreek MJ, Yuferov V (2010) Cell-specific effects of variants of the 68-base pair tandem repeat on prodynorphin gene promoter activity. Addict Biol. doi: 10.1111/j.1369-1600.2010.00248.x
  66. 66.
    Geijer T, Jonsson E, Neiman J, Gyllander A, Sedvall G, Rydberg U, Terenius L (1997) Prodynorphin allelic distribution in Scandinavian chronic alcoholics. Alcohol Clin Exp Res 21:1333–1336. pii: 00000374-199710000-00025PubMedCrossRefGoogle Scholar
  67. 67.
    Cirulli ET, Goldstein DB (2007) In vitro assays fail to predict in vivo effects of regulatory polymorphisms. Hum Mol Genet 16:1931–1939. doi: 10.1093/hmg/ddm140 PubMedCrossRefGoogle Scholar
  68. 68.
    Naranjo JR, Mellstrom B, Achaval M, Sassone-Corsi P (1991) Molecular pathways of pain: Fos/Jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene. Neuron 6:607–617. pii: 0896-6273(91)90063-6PubMedCrossRefGoogle Scholar
  69. 69.
    Yuferov V, Ji F, Nielsen DA, Levran O, Ho A, Morgello S, Shi R, Ott J, Kreek MJ (2009) A functional haplotype implicated in vulnerability to develop cocaine dependence is associated with reduced PDYN expression in human brain. Neuropsychopharmacology 34:1185–1197. doi: 10.1038/npp.2008.187 PubMedCrossRefGoogle Scholar
  70. 70.
    Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502. doi: 10.1126/science.1141319 PubMedCrossRefGoogle Scholar
  71. 71.
    Henriksson R, Bäckman CM, Harvey BK, Bakalkin G, Shippenberg T (2010) Regulation of human prodynorphin gene (PDYN) expression by REST and miR-9 Soc Neurosci Abstr 167.5Google Scholar
  72. 72.
    Rockman MV, Hahn MW, Soranzo N, Zimprich F, Goldstein DB, Wray GA (2005) Ancient and recent positive selection transformed opioid cis-regulation in humans. PLoS Biol 3:e387. doi: 10.1371/journal.pbio.0030387 PubMedCrossRefGoogle Scholar
  73. 73.
    Edenberg HJ, Wang J, Tian H, Pochareddy S, Xuei X, Wetherill L, Goate A, Hinrichs T, Kuperman S, Nurnberger JI Jr, Schuckit M, Tischfield JA, Foroud T (2008) A regulatory variation in OPRK1, the gene encoding the kappa-opioid receptor, is associated with alcohol dependence. Hum Mol Genet 17:1783–1789. doi: 10.1093/hmg/ddn068 PubMedCrossRefGoogle Scholar
  74. 74.
    Renthal W, Kumar A, Xiao G, Wilkinson M, Covington HE 3rd, Maze I, Sikder D, Robison AJ, LaPlant Q, Dietz DM, Russo SJ, Vialou V, Chakravarty S, Kodadek TJ, Stack A, Kabbaj M, Nestler EJ (2009) Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62:335–348. doi: 10.1016/j.neuron.2009.03.026 PubMedCrossRefGoogle Scholar
  75. 75.
    Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282. pii: 0022-2836(87)90689-9PubMedCrossRefGoogle Scholar
  76. 76.
    Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, Anton E, Medina C, Nguyen L, Chiao E, Oyolu CB, Schroth GP, Absher DM, Baker JC, Myers RM (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19:1044–1056. doi: 10.1101/gr.088773.108 PubMedCrossRefGoogle Scholar
  77. 77.
    Yuferov V, Nielsen DA, Levran O, Randesi M, Hamon S, Ho A, Morgello S, Kreek MJ (2010) Tissue-specific DNA methylation of the human prodynorphin gene in post-mortem brain tissues and PBMCs. Pharmacogenet Genom. doi: 10.1097/FPC.0b013e32833eecbc
  78. 78.
    Wei LN, Loh HH (2010) Transcriptional and epigenetic regulation of opioid receptor genes— present and future. Annu Rev Pharmacol Toxicol. doi: 10.1146/annurev-pharmtox-010510-100605
  79. 79.
    Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903. doi: 10.1038/ng.154 PubMedCrossRefGoogle Scholar
  80. 80.
    Dulac C (2010) Brain function and chromatin plasticity. Nature 465:728–735. doi: 10.1038/nature09231 PubMedCrossRefGoogle Scholar
  81. 81.
    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Ohara O, Isogai T, Sugano S (2004) Complete sequencing and characterization of 21, 243 full-length human cDNAs. Nat Genet 36:40–45. doi: 10.1038/ng1285 PubMedCrossRefGoogle Scholar
  82. 82.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159. doi: 10.1038/nrg2521 PubMedCrossRefGoogle Scholar
  83. 83.
    Soranzo N, Spector TD, Mangino M, Kuhnel B, Rendon A, Teumer A, Willenborg C, Wright B, Chen L, Li M, Salo P, Voight BF, Burns P, Laskowski RA, Xue Y, Menzel S, Altshuler D, Bradley JR, Bumpstead S, Burnett MS, Devaney J, Doring A, Elosua R, Epstein SE, Erber W, Falchi M, Garner SF, Ghori MJ, Goodall AH, Gwilliam R, Hakonarson HH, Hall AS, Hammond N, Hengstenberg C, Illig T, Konig IR, Knouff CW, McPherson R, Melander O, Mooser V, Nauck M, Nieminen MS, O’Donnell CJ, Peltonen L, Potter SC, Prokisch H, Rader DJ, Rice CM, Roberts R, Salomaa V, Sambrook J, Schreiber S, Schunkert H, Schwartz SM, Serbanovic-Canic J, Sinisalo J, Siscovick DS, Stark K, Surakka I, Stephens J, Thompson JR, Volker U, Volzke H, Watkins NA, Wells GA, Wichmann HE, Van Heel DA, Tyler-Smith C, Thein SL, Kathiresan S, Perola M, Reilly MP, Stewart AF, Erdmann J, Samani NJ, Meisinger C, Greinacher A, Deloukas P, Ouwehand WH, Gieger C (2009) A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 41:1182–1190. doi: 10.1038/ng.467 PubMedCrossRefGoogle Scholar
  84. 84.
    Kim JM, Lee KH, Jeon YJ, Oh JH, Jeong SY, Song IS, Lee DS, Kim NS (2006) Identification of genes related to Parkinson’s disease using expressed sequence tags. DNA Res 13:275–286. doi: 10.1093/dnares/dsl016 PubMedCrossRefGoogle Scholar
  85. 85.
    Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245. doi: 10.1016/j.cell.2006.12.048 PubMedCrossRefGoogle Scholar
  86. 86.
    Schmidt D, Schwalie PC, Ross-Innes CS, Hurtado A, Brown GD, Carroll JS, Flicek P, Odom DT (2010) A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res 20:578–588. doi: 10.1101/gr.100479.109 PubMedCrossRefGoogle Scholar
  87. 87.
    Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137:1194–1211. doi: 10.1016/j.cell.2009.06.001 PubMedCrossRefGoogle Scholar
  88. 88.
    Bakalkin G, Yakovleva T, Terenius L (1994) Prodynorphin gene expression relates to NF-kappa B factors. Brain Res Mol Brain Res 24:301–312PubMedCrossRefGoogle Scholar
  89. 89.
    Bakalkin G, Telkov M, Yakovleva T, Terenius L (1995) [Leu5]enkephalin-encoding sequences are targets for a specific DNA-binding factor. Proc Natl Acad Sci USA 92:9024–9028PubMedCrossRefGoogle Scholar
  90. 90.
    Reddy TE, Pauli F, Sprouse RO, Neff NF, Newberry KM, Garabedian MJ, Myers RM (2009) Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res 19:2163–2171. doi: 10.1101/gr.097022.109 PubMedCrossRefGoogle Scholar
  91. 91.
    Thai L, Lee PH, Ho J, Suh H, Hong JS (1992) Regulation of prodynorphin gene expression in the hippocampus by glucocorticoids. Brain Res Mol Brain Res 16:150–157PubMedCrossRefGoogle Scholar
  92. 92.
    Persson S, Schafer MK, Nohr D, Ekstrom G, Post C, Nyberg F, Weihe E (1994) Spinal prodynorphin gene expression in collagen-induced arthritis: influence of the glucocorticosteroid budesonide. Neuroscience 63:313–326. pii: 0306-4522(94)90026-4PubMedCrossRefGoogle Scholar
  93. 93.
    Thai L, Hong JS, Wiley RG, Gallagher M (1996) The regulation of hippocampal dynorphin by neural/neuroendocrine pathways: models for effects of aging on an opioid peptide system. Neuroscience 70:661–671. pii: S0306-4522(96)83005-3PubMedCrossRefGoogle Scholar
  94. 94.
    Pan Y, Tsai CJ, Ma B, Nussinov R (2009) How do transcription factors select specific binding sites in the genome? Nat Struct Mol Biol 16:1118–1120. doi: 10.1038/nsmb1109-1118 PubMedCrossRefGoogle Scholar
  95. 95.
    Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145. doi: 10.1152/physrev.00017.2008 PubMedCrossRefGoogle Scholar
  96. 96.
    Mellstrom B, Savignac M, Gomez-Villafuertes R, Naranjo JR (2008) Ca2+-operated transcriptional networks: molecular mechanisms and in vivo models. Physiol Rev 88:421–449. doi: 10.1152/physrev.00041.2005 PubMedCrossRefGoogle Scholar
  97. 97.
    Carrion AM, Mellstrom B, Luckman SM, Naranjo JR (1998) Stimulus-specific hierarchy of enhancer elements within the rat prodynorphin promoter. J Neurochem 70:914–921PubMedCrossRefGoogle Scholar
  98. 98.
    Carrion AM, Mellstrom B, Naranjo JR (1998) Protein kinase A-dependent derepression of the human prodynorphin gene via differential binding to an intragenic silencer element. Mol Cell Biol 18:6921–6929PubMedGoogle Scholar
  99. 99.
    Ledo F, Carrion AM, Link WA, Mellstrom B, Naranjo JR (2000) DREAM-alphaCREM interaction via leucine-charged domains derepresses downstream regulatory element-dependent transcription. Mol Cell Biol 20:9120–9126PubMedCrossRefGoogle Scholar
  100. 100.
    Ledo F, Kremer L, Mellstrom B, Naranjo JR (2002) Ca2+-dependent block of CREB-CBP transcription by repressor DREAM. EMBO J 21:4583–4592PubMedCrossRefGoogle Scholar
  101. 101.
    Collins-Hicok J, Lin L, Spiro C, Laybourn PJ, Tschumper R, Rapacz B, McMurray CT (1994) Induction of the rat prodynorphin gene through Gs-coupled receptors may involve phosphorylation-dependent derepression and activation. Mol Cell Biol 14:2837–2848PubMedGoogle Scholar
  102. 102.
    Cole RL, Konradi C, Douglass J, Hyman SE (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14:813–823. pii: 0896-6273(95)90225-2PubMedCrossRefGoogle Scholar
  103. 103.
    Zachariou V, Bolanos CA, Selley DE, Theobald D, Cassidy MP, Kelz MB, Shaw-Lutchman T, Berton O, Sim-Selley LJ, Dileone RJ, Kumar A, Nestler EJ (2006) An essential role for DeltaFosB in the nucleus accumbens in morphine action. Nat Neurosci 9:205–211. doi: 10.1038/nn1636 PubMedCrossRefGoogle Scholar
  104. 104.
    McClung CA, Nestler EJ (2003) Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat Neurosci 6:1208–1215. doi: 10.1038/nn1143 PubMedCrossRefGoogle Scholar
  105. 105.
    Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA 102:4459–4464. doi: 10.1073/pnas.0501076102 PubMedCrossRefGoogle Scholar
  106. 106.
    Hartzell DD, Trinklein ND, Mendez J, Murphy N, Aldred SF, Wood K, Urh M (2009) A functional analysis of the CREB signaling pathway using HaloCHIP-chip and high-throughput reporter assays. BMC Genomic 10:497. doi: 10.1186/1471-2164-10-497 CrossRefGoogle Scholar
  107. 107.
    Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein MB (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27:66–75. doi: 10.1038/nbt.1518 PubMedCrossRefGoogle Scholar
  108. 108.
    Ramos YF, Hestand MS, Verlaan M, Krabbendam E, Ariyurek Y, van Galen M, van Dam H, van Ommen GJ, den Dunnen JT, Zantema A, t Hoen PA (2010) Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Res 38:5396–5408. doi: 10.1093/nar/gkq184 PubMedCrossRefGoogle Scholar
  109. 109.
    Cheng HY, Pitcher GM, Laviolette SR, Whishaw IQ, Tong KI, Kockeritz LK, Wada T, Joza NA, Crackower M, Goncalves J, Sarosi I, Woodgett JR, Oliveira-dos-Santos AJ, Ikura M, van der Kooy D, Salter MW, Penninger JM (2002) DREAM is a critical transcriptional repressor for pain modulation. Cell 108:31–43. pii: S0092867401006298PubMedCrossRefGoogle Scholar
  110. 110.
    Cheng HY, Laviolette SR, van der Kooy D, Penninger JM (2004) DREAM ablation selectively alters THC place aversion and analgesia but leaves intact the motivational and analgesic effects of morphine. Eur J Neurosci 19:3033–3041. doi: 10.1111/j.0953-816X.2004.03435.x PubMedCrossRefGoogle Scholar
  111. 111.
    Sakamuro D, Prendergast GC (1999) New Myc-interacting proteins: a second Myc network emerges. Oncogene 18:2942–2954. doi: 10.1038/sj.onc.1202725 PubMedCrossRefGoogle Scholar
  112. 112.
    Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699. doi: 10.1146/annurev.cellbio.16.1 PubMedCrossRefGoogle Scholar
  113. 113.
    Georgopoulos K (2002) Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol 2:162–174. doi: 10.1038/nri747 PubMedCrossRefGoogle Scholar
  114. 114.
    Damberg M, Garpenstrand H, Hallman J, Oreland L (2001) Genetic mechanisms of behavior–don’t forget about the transcription factors. Mol Psychiatry 6:503–510. doi: 10.1038/sj.mp.4000935 PubMedCrossRefGoogle Scholar
  115. 115.
    Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129. doi: 10.1101/gad.1067003 PubMedCrossRefGoogle Scholar
  116. 116.
    Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, Fu Y, Weng Z, Kuznetsov VA, Sung WK, Ruan Y, Dang CV, Wei CL (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 103:17834–17839. doi: 10.1073/pnas.0604129103 PubMedCrossRefGoogle Scholar
  117. 117.
    Odom DT, Dowell RD, Jacobsen ES, Gordon W, Danford TW, MacIsaac KD, Rolfe PA, Conboy CM, Gifford DK, Fraenkel E (2007) Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet 39:730–732. doi: 10.1038/ng2047 PubMedCrossRefGoogle Scholar
  118. 118.
    Ooi L, Wood IC (2007) Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet 8:544–554. doi: 10.1038/nrg2100 PubMedCrossRefGoogle Scholar
  119. 119.
    Bruce AW, Lopez-Contreras AJ, Flicek P, Down TA, Dhami P, Dillon SC, Koch CM, Langford CF, Dunham I, Andrews RM, Vetrie D (2009) Functional diversity for REST (NRSF) is defined by in vivo binding affinity hierarchies at the DNA sequence level. Genome Res 19:994–1005. doi: 10.1101/gr.089086.108 PubMedCrossRefGoogle Scholar
  120. 120.
    Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermuller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaoz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Loytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Xu M, Haidar JN, Yu Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrimsdottir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816. doi: 10.1038/nature05874 Google Scholar
  121. 121.
    Cohen S, Greenberg ME (2008) Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu Rev Cell Dev Biol 24:183–209. doi: 10.1146/annurev.cellbio.24.110707.175235 PubMedCrossRefGoogle Scholar
  122. 122.
    Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229. doi: 10.1126/science.1153252 PubMedCrossRefGoogle Scholar
  123. 123.
    Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427. doi: 10.1073/pnas.0511041103 PubMedCrossRefGoogle Scholar
  124. 124.
    Mortazavi A, Leeper Thompson EC, Garcia ST, Myers RM, Wold B (2006) Comparative genomics modeling of the NRSF/REST repressor network: from single conserved sites to genome-wide repertoire. Genome Res 16:1208–1221. doi: 10.1101/gr.4997306 PubMedCrossRefGoogle Scholar
  125. 125.
    Wu J, Xie X (2006) Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7:R85. doi: 10.1186/gb-2006-7-9-r85 PubMedCrossRefGoogle Scholar
  126. 126.
    Qiang M, Rani CS, Ticku MK (2005) Neuron-restrictive silencer factor regulates the N-methyl-d-aspartate receptor 2B subunit gene in basal and ethanol-induced gene expression in fetal cortical neurons. Mol Pharmacol 67:2115–2125. doi: 10.1124/mol.104.010751 PubMedCrossRefGoogle Scholar
  127. 127.
    Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM, Siegelmann HT, Treistman SN (2008) Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 59:274–287. doi: 10.1016/j.neuron.2008.05.032 PubMedCrossRefGoogle Scholar
  128. 128.
    Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, Willoughby D, Wahlestedt C, Conkright MD, Kenny PJ (2010) Striatal microRNA controls cocaine intake through CREB signalling. Nature 466:197–202. doi: 10.1038/nature09202 PubMedCrossRefGoogle Scholar
  129. 129.
    Im HI, Hollander JA, Bali P, Kenny PJ (2010) MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 13:1120–1127. doi: 10.1038/nn.2615 PubMedCrossRefGoogle Scholar
  130. 130.
    Day R, Schafer MK, Collard MW, Watson SJ, Akil H (1991) Atypical prodynorphin gene expression in corticosteroid-producing cells of the rat adrenal gland. Proc Natl Acad Sci USA 88:1320–1324PubMedCrossRefGoogle Scholar
  131. 131.
    Law PY, Loh HH, Wei LN (2004) Insights into the receptor transcription and signaling: implications in opioid tolerance and dependence. Neuropharmacology 47 (Suppl 1):300–311. doi: 10.1016/j.neuropharm.2004.07.013
  132. 132.
    Bakalkin G, Ponomariev D, Sarkisyan RA, Terenius L (1991) Sequence similarity between opioid peptide precursors and DNA-binding proteins. FEBS Lett 282:175–177PubMedCrossRefGoogle Scholar
  133. 133.
    Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501–D504. doi: 10.1093/nar/gki025 PubMedCrossRefGoogle Scholar
  134. 134.
    Wei LN, Hu X, Bi J, Loh H (2000) Post-transcriptional regulation of mouse kappa-opioid receptor expression. Mol Pharmacol 57:401–408PubMedGoogle Scholar
  135. 135.
    Hu X, Bi J, Loh HH, Wei LN (2002) Regulation of mouse kappa opioid receptor gene expression by different 3′-untranslated regions and the effect of retinoic acid. Mol Pharmacol 62:881–887PubMedCrossRefGoogle Scholar
  136. 136.
    Tsai NP, Lin YL, Tsui YC, Wei LN (2010) Dual action of epidermal growth factor: extracellular signal-stimulated nuclear-cytoplasmic export and coordinated translation of selected messenger RNA. J Cell Biol 188:325–333. doi: 10.1083/jcb.200910083 PubMedCrossRefGoogle Scholar
  137. 137.
    Tsai NP, Bi J, Loh HH, Wei LN (2006) Netrin-1 signaling regulates de novo protein synthesis of kappa opioid receptor by facilitating polysomal partition of its mRNA. J Neurosci 26:9743–9749. doi: 10.1523/JNEUROSCI.3014-06.2006 PubMedCrossRefGoogle Scholar
  138. 138.
    Tsai NP, Bi J, Wei LN (2007) The adaptor Grb7 links netrin-1 signaling to regulation of mRNA translation. EMBO J 26:1522–1531. doi: 10.1038/sj.emboj.7601598 PubMedCrossRefGoogle Scholar
  139. 139.
    Tsai NP, Tsui YC, Pintar JE, Loh HH, Wei LN (2010) Kappa opioid receptor contributes to EGF-stimulated neurite extension in development. Proc Natl Acad Sci USA 107:3216–3221. doi: 10.1073/pnas.0912367107 PubMedCrossRefGoogle Scholar
  140. 140.
    Bi J, Hu X, Loh HH, Wei LN (2003) Mouse kappa-opioid receptor mRNA differential transport in neurons. Mol Pharmacol 64:594–599. doi: 10.1124/mol.64.3.594 PubMedCrossRefGoogle Scholar
  141. 141.
    Bi J, Tsai NP, Lin YP, Loh HH, Wei LN (2006) Axonal mRNA transport and localized translational regulation of kappa-opioid receptor in primary neurons of dorsal root ganglia. Proc Natl Acad Sci USA 103:19919–19924. doi: 10.1073/pnas.0607394104 PubMedCrossRefGoogle Scholar
  142. 142.
    Bi J, Tsai NP, Lu HY, Loh HH, Wei LN (2007) Copb1-facilitated axonal transport and translation of kappa opioid-receptor mRNA. Proc Natl Acad Sci USA 104:13810–13815. doi: 10.1073/pnas.0703805104 PubMedCrossRefGoogle Scholar
  143. 143.
    Wei LN (2010) The RNA superhighway: axonal RNA trafficking of kappa opioid receptor mRNA for neurite growth. Integr Biol (Camb). doi: 10.1039/c0ib00107d
  144. 144.
    Fallon JH, Leslie FM (1986) Distribution of dynorphin and enkephalin peptides in the rat brain. J Comp Neurol 249:293–336. doi: 10.1002/cne.902490302 PubMedCrossRefGoogle Scholar
  145. 145.
    Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47. doi: 10.1038/npp.2009.93 PubMedCrossRefGoogle Scholar
  146. 146.
    Mansour A, Fox CA, Meng F, Akil H, Watson SJ (1994) Kappa 1 receptor mRNA distribution in the rat CNS: comparison to kappa receptor binding and prodynorphin mRNA. Mol Cell Neurosci 5:124–144. doi: 10.1006/mcne.1994.1015 PubMedCrossRefGoogle Scholar
  147. 147.
    Meng F, Xie GX, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H (1993) Cloning and pharmacological characterization of a rat kappa opioid receptor. Proc Natl Acad Sci USA 90:9954–9958PubMedCrossRefGoogle Scholar
  148. 148.
    Xie GX, Meng F, Mansour A, Thompson RC, Hoversten MT, Goldstein A, Watson SJ, Akil H (1994) Primary structure and functional expression of a guinea pig kappa opioid (dynorphin) receptor. Proc Natl Acad Sci USA 91:3779–3783PubMedCrossRefGoogle Scholar
  149. 149.
    Svingos AL, Colago EE, Pickel VM (1999) Cellular sites for dynorphin activation of kappa-opioid receptors in the rat nucleus accumbens shell. J Neurosci 19:1804–1813PubMedGoogle Scholar
  150. 150.
    Svingos AL, Chavkin C, Colago EE, Pickel VM (2001) Major coexpression of kappa-opioid receptors and the dopamine transporter in nucleus accumbens axonal profiles. Synapse 42:185–192. doi: 10.1002/syn.10005 PubMedCrossRefGoogle Scholar
  151. 151.
    Ma J, Ye N, Lange N, Cohen BM (2003) Dynorphinergic GABA neurons are a target of both typical and atypical antipsychotic drugs in the nucleus accumbens shell, central amygdaloid nucleus and thalamic central medial nucleus. Neuroscience 121:991–998. pii: S030645220300397XPubMedCrossRefGoogle Scholar
  152. 152.
    Steiner H, Gerfen CR (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp Brain Res 123:60–76PubMedCrossRefGoogle Scholar
  153. 153.
    Meshul CK, McGinty JF (2000) Kappa opioid receptor immunoreactivity in the nucleus accumbens and caudate-putamen is primarily associated with synaptic vesicles in axons. Neuroscience 96:91–99. pii: S0306-4522(99)90481-5PubMedCrossRefGoogle Scholar
  154. 154.
    Chefer VI, Czyzyk T, Bolan EA, Moron J, Pintar JE, Shippenberg TS (2005) Endogenous kappa-opioid receptor systems regulate mesoaccumbal dopamine dynamics and vulnerability to cocaine. J Neurosci 25:5029–5037. doi: 10.1523/JNEUROSCI.0854-05.2005 PubMedCrossRefGoogle Scholar
  155. 155.
    Spanagel R, Herz A, Shippenberg TS (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci USA 89:2046–2050PubMedCrossRefGoogle Scholar
  156. 156.
    Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278PubMedCrossRefGoogle Scholar
  157. 157.
    Zhang Y, Butelman ER, Schlussman SD, Ho A, Kreek MJ (2005) Effects of the plant-derived hallucinogen salvinorin A on basal dopamine levels in the caudate putamen and in a conditioned place aversion assay in mice: agonist actions at kappa opioid receptors. Psychopharmacology (Berl) 179:551–558. doi: 10.1007/s00213-004-2087-0 CrossRefGoogle Scholar
  158. 158.
    Maisonneuve IM, Archer S, Glick SD (1994) U50, 488, a kappa opioid receptor agonist, attenuates cocaine-induced increases in extracellular dopamine in the nucleus accumbens of rats. Neurosci Lett 181:57–60PubMedCrossRefGoogle Scholar
  159. 159.
    You ZB, Herrera-Marschitz M, Terenius L (1999) Modulation of neurotransmitter release in the basal ganglia of the rat brain by dynorphin peptides. J Pharmacol Exp Ther 290:1307–1315PubMedGoogle Scholar
  160. 160.
    Hjelmstad GO, Fields HL (2003) Kappa opioid receptor activation in the nucleus accumbens inhibits glutamate and GABA release through different mechanisms. J Neurophysiol 89:2389–2395. doi: 10.1152/jn.01115.2002 PubMedCrossRefGoogle Scholar
  161. 161.
    Hjelmstad GO, Fields HL (2001) Kappa opioid receptor inhibition of glutamatergic transmission in the nucleus accumbens shell. J Neurophysiol 85:1153–1158PubMedGoogle Scholar
  162. 162.
    Rawls SM, McGinty JF (1998) Kappa receptor activation attenuates L-trans-pyrrolidine-2, 4-dicarboxylic acid-evoked glutamate levels in the striatum. J Neurochem 70:626–634PubMedCrossRefGoogle Scholar
  163. 163.
    Rawls SM, McGinty JF, Terrian DM (1999) Presynaptic kappa-opioid and muscarinic receptors inhibit the calcium-dependent component of evoked glutamate release from striatal synaptosomes. J Neurochem 73:1058–1065PubMedCrossRefGoogle Scholar
  164. 164.
    Gray AM, Rawls SM, Shippenberg TS, McGinty JF (1999) The kappa-opioid agonist, U-69593, decreases acute amphetamine-evoked behaviors and calcium-dependent dialysate levels of dopamine and glutamate in the ventral striatum. J Neurochem 73:1066–1074PubMedCrossRefGoogle Scholar
  165. 165.
    Hill MP, Brotchie JM (1999) Control of glutamate release by calcium channels and kappa-opioid receptors in rodent and primate striatum. Br J Pharmacol 127:275–283. doi: 10.1038/sj.bjp.0702523 PubMedCrossRefGoogle Scholar
  166. 166.
    Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572. doi: 10.1038/nrn2515 PubMedCrossRefGoogle Scholar
  167. 167.
    Lewis DA, Moghaddam B (2006) Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 63:1372–1376. doi: 10.1001/archneur.63.10.1372 PubMedCrossRefGoogle Scholar
  168. 168.
    Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30:8229–8233. doi: 10.1523/JNEUROSCI.1754-10.2010 PubMedCrossRefGoogle Scholar
  169. 169.
    Hnasko TS, Chuhma N, Zhang H, Goh GY, Sulzer D, Palmiter RD, Rayport S, Edwards RH (2010) Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65:643–656. doi: 10.1016/j.neuron.2010.02.012 PubMedCrossRefGoogle Scholar
  170. 170.
    Tecuapetla F, Patel JC, Xenias H, English D, Tadros I, Shah F, Berlin J, Deisseroth K, Rice ME, Tepper JM, Koos T (2010) Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci 30:7105–7110. doi: 10.1523/JNEUROSCI.0265-10.2010 PubMedCrossRefGoogle Scholar
  171. 171.
    Floresco SB, Yang CR, Phillips AG, Blaha CD (1998) Basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anaesthetized rat. Eur J Neurosci 10:1241–1251PubMedCrossRefGoogle Scholar
  172. 172.
    Mogenson GJ, Yang CR, Yim CY (1988) Influence of dopamine on limbic inputs to the nucleus accumbens. Ann N Y Acad Sci 537:86–100PubMedCrossRefGoogle Scholar
  173. 173.
    O’Donnell P (2003) Dopamine gating of forebrain neural ensembles. Eur J Neurosci 17:429–435. pii: 2463PubMedCrossRefGoogle Scholar
  174. 174.
    Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235. doi: 10.1016/j.tins.2007.03.008 PubMedCrossRefGoogle Scholar
  175. 175.
    Hara Y, Yakovleva T, Bakalkin G, Pickel VM (2006) Dopamine D1 receptors have subcellular distributions conducive to interactions with prodynorphin in the rat nucleus accumbens shell. Synapse 60:1–19. doi: 10.1002/syn.20273 PubMedCrossRefGoogle Scholar
  176. 176.
    Drake CT, Chavkin C, Milner TA (2007) Opioid systems in the dentate gyrus. Prog Brain Res 163:245–263. doi: 10.1016/S0079-6123(07)63015-5 PubMedCrossRefGoogle Scholar
  177. 177.
    Brown CH, Scott V, Ludwig M, Leng G, Bourque CW (2007) Somatodendritic dynorphin release: orchestrating activity patterns of vasopressin neurons. Biochem Soc Trans 35:1236–1242. doi: 10.1042/BST0351236 PubMedCrossRefGoogle Scholar
  178. 178.
    Tallent MK (2008) Presynaptic inhibition of glutamate release by neuropeptides: use-dependent synaptic modification. Results Probl Cell Differ 44:177–200. doi: 10.1007/400_2007_037 PubMedCrossRefGoogle Scholar
  179. 179.
    Zhang L, Lou D, Jiao H, Zhang D, Wang X, Xia Y, Zhang J, Xu M (2004) Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors. J Neurosci 24:3344–3354. doi: 10.1523/JNEUROSCI.0060-04.2004 PubMedCrossRefGoogle Scholar
  180. 180.
    You ZB, Herrera-Marschitz M, Nylander I, Goiny M, O’Connor WT, Ungerstedt U, Terenius L (1994) The striatonigral dynorphin pathway of the rat studied with in vivo microdialysis-II. Effects of dopamine D1 and D2 receptor agonists. Neuroscience 63:427–434. pii: 0306-4522(94)90540-1Google Scholar
  181. 181.
    Drago J, Gerfen CR, Westphal H, Steiner H (1996) D1 dopamine receptor-deficient mouse: cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 74:813–823. pii: 0306-4522(96)00145-5PubMedCrossRefGoogle Scholar
  182. 182.
    Wang JQ, McGinty JF (1999) Glutamate-dopamine interactions mediate the effects of psychostimulant drugs. Addict Biol 4:141–150. doi: 10.1080/13556219971641 PubMedCrossRefGoogle Scholar
  183. 183.
    Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159. doi: 10.1016/j.biopsych.2005.09.018 PubMedCrossRefGoogle Scholar
  184. 184.
    Shippenberg TS, Zapata A, Chefer VI (2007) Dynorphin and the pathophysiology of drug addiction. Pharmacol Ther 116:306–321. doi: 10.1016/j.pharmthera.2007.06.011 PubMedCrossRefGoogle Scholar
  185. 185.
    Thompson AC, Zapata A, Justice JB Jr, Vaughan RA, Sharpe LG, Shippenberg TS (2000) Kappa-opioid receptor activation modifies dopamine uptake in the nucleus accumbens and opposes the effects of cocaine. J Neurosci 20:9333–9340. pii: 20/24/9333PubMedGoogle Scholar
  186. 186.
    Shippenberg TS, Chefer VI SR (2009) K-opioid receptor agonists up-regulate dopamine transporter (DAT) function and produce aversive effects via an ERK-dependent mechanism. Soc Neurosci Abstr 618:22Google Scholar
  187. 187.
    Acri JB, Thompson AC, Shippenberg T (2001) Modulation of pre- and postsynaptic dopamine D2 receptor function by the selective kappa-opioid receptor agonist U69593. Synapse 39:343–350. doi: 10.1002/1098-2396(20010315)39:4<343:AID-SYN1018>3.0.CO;2-Q PubMedCrossRefGoogle Scholar
  188. 188.
    Ferre S, Ciruela F, Woods AS, Lluis C, Franco R (2007) Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends Neurosci 30:440–446. doi: 10.1016/j.tins.2007.07.001 PubMedCrossRefGoogle Scholar
  189. 189.
    Fuxe K, Marcellino D, Leo G, Agnati LF (2010) Molecular integration via allosteric interactions in receptor heteromers. A working hypothesis. Curr Opin Pharmacol 10:14–22. doi: 10.1016/j.coph.2009.10.010 PubMedCrossRefGoogle Scholar
  190. 190.
    Fallon JH, Leslie FM, Cone RI (1985) Dynorphin-containing pathways in the substantia nigra and ventral tegmentum: a double labeling study using combined immunofluorescence and retrograde tracing. Neuropeptides 5:457–460. pii: 0143-4179(85)90053-8PubMedCrossRefGoogle Scholar
  191. 191.
    Chou TC, Lee CE, Lu J, Elmquist JK, Hara J, Willie JT, Beuckmann CT, Chemelli RM, Sakurai T, Yanagisawa M, Saper CB, Scammell TE (2001) Orexin (hypocretin) neurons contain dynorphin. J Neurosci. pii: 21:RC168. 20015644Google Scholar
  192. 192.
    Borgland SL, Ungless MA, Bonci A (2010) Convergent actions of orexin/hypocretin and CRF on dopamine neurons: emerging players in addiction. Brain Res 1314:139–144. doi: 10.1016/j.brainres.2009.10.068 PubMedCrossRefGoogle Scholar
  193. 193.
    Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci 28:8908–8913. doi: 10.1523/JNEUROSCI.1526-08.2008 PubMedCrossRefGoogle Scholar
  194. 194.
    Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, Fields HL (2006) Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc Natl Acad Sci USA 103:2938–2942. doi: 10.1073/pnas.0511159103 PubMedCrossRefGoogle Scholar
  195. 195.
    Devine DP, Leone P, Pocock D, Wise RA (1993) Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. J Pharmacol Exp Ther 266:1236–1246PubMedGoogle Scholar
  196. 196.
    Ford CP, Mark GP, Williams JT (2006) Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci 26:2788–2797. doi: 10.1523/JNEUROSCI.4331-05.2006 PubMedCrossRefGoogle Scholar
  197. 197.
    Margolis EB, Hjelmstad GO, Bonci A, Fields HL (2005) Both kappa and mu opioid agonists inhibit glutamatergic input to ventral tegmental area neurons. J Neurophysiol 93:3086–3093. doi: 10.1152/jn.00855.2004 PubMedCrossRefGoogle Scholar
  198. 198.
    Aston-Jones G, Cohen JD (2005) Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol 493:99–110. doi: 10.1002/cne.20723 PubMedCrossRefGoogle Scholar
  199. 199.
    Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287. doi: 10.1146/annurev.neuro.051508.135535 PubMedCrossRefGoogle Scholar
  200. 200.
    Reyes BA, Johnson AD, Glaser JD, Commons KG, Van Bockstaele EJ (2007) Dynorphin-containing axons directly innervate noradrenergic neurons in the rat nucleus locus coeruleus. Neuroscience 145:1077–1086. doi: 10.1016/j.neuroscience.2006.12.056 PubMedCrossRefGoogle Scholar
  201. 201.
    Reyes BA, Chavkin C, van Bockstaele EJ (2009) Subcellular targeting of kappa-opioid receptors in the rat nucleus locus coeruleus. J Comp Neurol 512:419–431. doi: 10.1002/cne.21880 PubMedCrossRefGoogle Scholar
  202. 202.
    Pinnock RD (1992) A highly selective kappa-opioid receptor agonist, CI-977, reduces excitatory synaptic potentials in the rat locus coeruleus in vitro. Neuroscience 47:87–94PubMedCrossRefGoogle Scholar
  203. 203.
    McFadzean I, Lacey MG, Hill RG, Henderson G (1987) Kappa opioid receptor activation depresses excitatory synaptic input to rat locus coeruleus neurons in vitro. Neuroscience 20:231–239. pii: 0306-4522(87)90015-7PubMedCrossRefGoogle Scholar
  204. 204.
    Kreibich A, Reyes BA, Curtis AL, Ecke L, Chavkin C, Van Bockstaele EJ, Valentino RJ (2008) Presynaptic inhibition of diverse afferents to the locus ceruleus by kappa-opiate receptors: a novel mechanism for regulating the central norepinephrine system. J Neurosci 28:6516–6525. doi: 10.1523/JNEUROSCI.0390-08.2008 PubMedCrossRefGoogle Scholar
  205. 205.
    Reyes BA, Drolet G, Van Bockstaele EJ (2008) Dynorphin and stress-related peptides in rat locus coeruleus: contribution of amygdalar efferents. J Comp Neurol 508:663–675. doi: 10.1002/cne.21683 PubMedCrossRefGoogle Scholar
  206. 206.
    Marchant NJ, Densmore VS, Osborne PB (2007) Coexpression of prodynorphin and corticotrophin-releasing hormone in the rat central amygdala: evidence of two distinct endogenous opioid systems in the lateral division. J Comp Neurol 504:702–715. doi: 10.1002/cne.21464 PubMedCrossRefGoogle Scholar
  207. 207.
    Khachaturian H, Lewis ME, Haber SN, Houghten RA, Akil H, Watson SJ (1985) Prodynorphin peptide immunocytochemistry in rhesus monkey brain. Peptides 6(Suppl 2):155–166Google Scholar
  208. 208.
    Vincent SR, Hokfelt T, Christensson I, Terenius L (1982) Dynorphin-immunoreactive neurons in the central nervous system of the rat. Neurosci Lett 33:185–190. pii: 0304-3940(82)90249-XPubMedCrossRefGoogle Scholar
  209. 209.
    Mansour A, Burke S, Pavlic RJ, Akil H, Watson SJ (1996) Immunohistochemical localization of the cloned kappa 1 receptor in the rat CNS and pituitary. Neuroscience 71:671–690. pii: 0306-4522(95)00464-5PubMedCrossRefGoogle Scholar
  210. 210.
    George SR, Zastawny RL, Briones-Urbina R, Cheng R, Nguyen T, Heiber M, Kouvelas A, Chan AS, O’Dowd BF (1994) Distinct distributions of mu, delta and kappa opioid receptor mRNA in rat brain. Biochem Biophys Res Commun 205:1438–1444. pii: S0006291X84728269PubMedCrossRefGoogle Scholar
  211. 211.
    Peckys D, Landwehrmeyer GB (1999) Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience 88:1093–1135. pii: S0306-4522(98)00251-6PubMedCrossRefGoogle Scholar
  212. 212.
    Svingos AL, Colago EE (2002) Kappa-opioid and NMDA glutamate receptors are differentially targeted within rat medial prefrontal cortex. Brain Res 946:262–271. pii: S0006899302028949PubMedCrossRefGoogle Scholar
  213. 213.
    Grilli M, Neri E, Zappettini S, Massa F, Bisio A, Romussi G, Marchi M, Pittaluga A (2009) Salvinorin A exerts opposite presynaptic controls on neurotransmitter exocytosis from mouse brain nerve terminals. Neuropharmacology 57:523–530. doi: 10.1016/j.neuropharm.2009.07.023 PubMedCrossRefGoogle Scholar
  214. 214.
    Heijna MH, Padt M, Hogenboom F, Portoghese PS, Mulder AH, Schoffelmeer AN (1990) Opioid receptor-mediated inhibition of dopamine and acetylcholine release from slices of rat nucleus accumbens, olfactory tubercle and frontal cortex. Eur J Pharmacol 181:267–278PubMedCrossRefGoogle Scholar
  215. 215.
    Sbrenna S, Marti M, Morari M, Calo G, Guerrini R, Beani L, Bianchi C (1999) L-glutamate and gamma-aminobutyric acid efflux from rat cerebrocortical synaptosomes: modulation by kappa- and mu- but not delta- and opioid receptor like-1 receptors. J Pharmacol Exp Ther 291:1365–1371PubMedGoogle Scholar
  216. 216.
    Berger B, Rothmaier AK, Wedekind F, Zentner J, Feuerstein TJ, Jackisch R (2006) Presynaptic opioid receptors on noradrenergic and serotonergic neurons in the human as compared to the rat neocortex. Br J Pharmacol 148:795–806. doi: 10.1038/sj.bjp.0706782 PubMedCrossRefGoogle Scholar
  217. 217.
    Tejeda HA, Schultz K, Chefer V, Shippenberg T (2010) Modulation of mesocortical dopamine transmission by mu- and kappa-opioid receptors. Soc Neurosci Abstr 368.24Google Scholar
  218. 218.
    Carboni E, Silvagni A (2004) Dopamine reuptake by norepinephrine neurons: exception or rule? Crit Rev Neurobiol 16:121–128. pii: 54f83f6510f9db32,38cfa8086853b01fPubMedCrossRefGoogle Scholar
  219. 219.
    Chavkin C, Shoemaker WJ, McGinty JF, Bayon A, Bloom FE (1985) Characterization of the prodynorphin and proenkephalin neuropeptide systems in rat hippocampus. J Neurosci 5:808–816PubMedGoogle Scholar
  220. 220.
    McGinty JF, Henriksen SJ, Goldstein A, Terenius L, Bloom FE (1983) Dynorphin is contained within hippocampal mossy fibers: immunochemical alterations after kainic acid administration and colchicine-induced neurotoxicity. Proc Natl Acad Sci USA 80:589–593PubMedCrossRefGoogle Scholar
  221. 221.
    Castillo PE, Salin PA, Weisskopf MG, Nicoll RA (1996) Characterizing the site and mode of action of dynorphin at hippocampal mossy fiber synapses in the guinea pig. J Neurosci 16:5942–5950PubMedGoogle Scholar
  222. 222.
    Salin PA, Weisskopf MG, Nicoll RA (1995) A comparison of the role of dynorphin in the hippocampal mossy fiber pathway in guinea pig and rat. J Neurosci 15:6939–6945PubMedGoogle Scholar
  223. 223.
    Weisskopf MG, Zalutsky RA, Nicoll RA (1993) The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature 365:188. doi: 10.1038/365188a0 PubMedGoogle Scholar
  224. 224.
    Wagner JJ, Terman GW, Chavkin C (1993) Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus. Nature 363:451–454. doi: 10.1038/363451a0 PubMedCrossRefGoogle Scholar
  225. 225.
    Drake CT, Terman GW, Simmons ML, Milner TA, Kunkel DD, Schwartzkroin PA, Chavkin C (1994) Dynorphin opioids present in dentate granule cells may function as retrograde inhibitory neurotransmitters. J Neurosci 14:3736–3750PubMedGoogle Scholar
  226. 226.
    Schoultz BW, Hjornevik T, Willoch F, Marton J, Noda A, Murakami Y, Miyoshi S, Nishimura S, Arstad E, Drzezga A, Matsunari I, Henriksen G (2010) Evaluation of the kappa-opioid receptor-selective tracer [(11)C]GR103545 in awake rhesus macaques. Eur J Nucl Med Mol Imaging 37:1174–1180. doi: 10.1007/s00259-010-1384-6 PubMedCrossRefGoogle Scholar
  227. 227.
    Talbot PS, Narendran R, Butelman ER, Huang Y, Ngo K, Slifstein M, Martinez D, Laruelle M, Hwang DR (2005) 11C-GR103545, a radiotracer for imaging kappa-opioid receptors in vivo with PET: synthesis and evaluation in baboons. J Nucl Med 46:484–494. pii: 46/3/484PubMedGoogle Scholar
  228. 228.
    Poisnel G, Oueslati F, Dhilly M, Delamare J, Perrio C, Debruyne D, Barre L (2008) [11C]-MeJDTic: a novel radioligand for kappa-opioid receptor positron emission tomography imaging. Nucl Med Biol 35:561–569. doi: 10.1016/j.nucmedbio.2008.02.010 PubMedCrossRefGoogle Scholar
  229. 229.
    Pfeiffer A, Brantl V, Herz A, Emrich HM (1986) Psychotomimesis mediated by kappa opiate receptors. Science 233:774–776PubMedCrossRefGoogle Scholar
  230. 230.
    Walsh SL, Strain EC, Abreu ME, Bigelow GE (2001) Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans. Psychopharmacology (Berl) 157:151–162CrossRefGoogle Scholar
  231. 231.
    Ur E, Wright DM, Bouloux PM, Grossman A (1997) The effects of spiradoline (U-62066E), a kappa-opioid receptor agonist, on neuroendocrine function in man. Br J Pharmacol 120:781–784. doi: 10.1038/sj.bjp.0700971 PubMedCrossRefGoogle Scholar
  232. 232.
    Rimoy GH, Wright DM, Bhaskar NK, Rubin PC (1994) The cardiovascular and central nervous system effects in the human of U-62066E. A selective opioid receptor agonist. Eur J Clin Pharmacol 46:203–207PubMedCrossRefGoogle Scholar
  233. 233.
    Chappell PB, Leckman JF, Scahill LD, Hardin MT, Anderson G, Cohen DJ (1993) Neuroendocrine and behavioral effects of the selective kappa agonist spiradoline in Tourette’s syndrome: a pilot study. Psychiatry Res 47:267–280PubMedCrossRefGoogle Scholar
  234. 234.
    Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB (2002) Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc Natl Acad Sci USA 99:11934–11939 10.1073/pnas.182234399PubMedCrossRefGoogle Scholar
  235. 235.
    Lange JE, Daniel J, Homer K, Reed MB, Clapp JD (2010) Salvia divinorum: effects and use among YouTube users. Drug Alcohol Depend 108:138–140. doi: 10.1016/j.drugalcdep.2009.11.010 PubMedCrossRefGoogle Scholar
  236. 236.
    Gonzalez D, Riba J, Bouso JC, Gomez-Jarabo G, Barbanoj MJ (2006) Pattern of use and subjective effects of Salvia divinorum among recreational users. Drug Alcohol Depend 85:157–162. doi: 10.1016/j.drugalcdep.2006.04.001 PubMedCrossRefGoogle Scholar
  237. 237.
    Malone DT, Hill MN, Rubino T (2010) Adolescent cannabis use and psychosis: epidemiology and neurodevelopmental models. Br J Pharmacol 160:511–522. doi: 10.1111/j.1476-5381.2010.00721.x PubMedCrossRefGoogle Scholar
  238. 238.
    Fernandez-Espejo E, Viveros MP, Nunez L, Ellenbroek BA, Rodriguez de Fonseca F (2009) Role of cannabis and endocannabinoids in the genesis of schizophrenia. Psychopharmacology (Berl) 206:531–549. doi: 10.1007/s00213-009-1612-6 CrossRefGoogle Scholar
  239. 239.
    Przekop P, Lee T (2009) Persistent psychosis associated with Salvia divinorum use. Am J Psychiatry 166:832. doi: 10.1176/appi.ajp.2009.08121759 PubMedCrossRefGoogle Scholar
  240. 240.
    Paulzen M, Grunder G (2008) Toxic psychosis after intake of the hallucinogen salvinorin A. J Clin Psychiatry 69:1501–1502. pii: ej6909lettersPubMedCrossRefGoogle Scholar
  241. 241.
    Singh S (2007) Adolescent salvia substance abuse. Addiction 102:823–824. doi: 10.1111/j.1360-0443.2007.01810.x PubMedCrossRefGoogle Scholar
  242. 242.
    Mucha RF, Herz A (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology (Berl) 86:274–280CrossRefGoogle Scholar
  243. 243.
    Bals-Kubik R, Ableitner A, Herz A, Shippenberg TS (1993) Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther 264:489–495PubMedGoogle Scholar
  244. 244.
    Braida D, Limonta V, Capurro V, Fadda P, Rubino T, Mascia P, Zani A, Gori E, Fratta W, Parolaro D, Sala M (2008) Involvement of kappa-opioid and endocannabinoid system on Salvinorin A-induced reward. Biol Psychiatry 63:286–292. doi: 10.1016/j.biopsych.2007.07.020 PubMedCrossRefGoogle Scholar
  245. 245.
    Carlezon WA Jr, Beguin C, DiNieri JA, Baumann MH, Richards MR, Todtenkopf MS, Rothman RB, Ma Z, Lee DY, Cohen BM (2006) Depressive-like effects of the kappa-opioid receptor agonist salvinorin A on behavior and neurochemistry in rats. J Pharmacol Exp Ther 316:440–447. doi: 10.1124/jpet.105.092304 PubMedCrossRefGoogle Scholar
  246. 246.
    Ebner SR, Roitman MF, Potter DN, Rachlin AB, Chartoff EH (2010) Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens. Psychopharmacology (Berl) 210:241–252. doi: 10.1007/s00213-010-1836-5 CrossRefGoogle Scholar
  247. 247.
    Braida D, Capurro V, Zani A, Rubino T, Vigano D, Parolaro D, Sala M (2009) Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents. Br J Pharmacol 157:844–853. doi: 10.1111/j.1476-5381.2009.00230.x PubMedCrossRefGoogle Scholar
  248. 248.
    Carlezon WA Jr, Chartoff EH (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc 2:2987–2995. doi: 10.1038/nprot.2007.441 PubMedCrossRefGoogle Scholar
  249. 249.
    Negus SS, Morrissey EM, Rosenberg M, Cheng K, Rice KC (2010) Effects of kappa opioids in an assay of pain-depressed intracranial self-stimulation in rats. Psychopharmacology (Berl) 210:149–159. doi: 10.1007/s00213-009-1770-6 CrossRefGoogle Scholar
  250. 250.
    Todtenkopf MS, Marcus JF, Portoghese PS, Carlezon WA Jr (2004) Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats. Psychopharmacology (Berl) 172:463–470. doi: 10.1007/s00213-003-1680-y CrossRefGoogle Scholar
  251. 251.
    Mague SD, Pliakas AM, Todtenkopf MS, Tomasiewicz HC, Zhang Y, Stevens WC Jr, Jones RM, Portoghese PS, Carlezon WA Jr (2003) Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther 305:323–330. doi: 10.1124/jpet.102.046433 PubMedCrossRefGoogle Scholar
  252. 252.
    Shippenberg TS, Herz A (1987) Place preference conditioning reveals the involvement of D1-dopamine receptors in the motivational properties of mu- and kappa-opioid agonists. Brain Res 436:169–172. pii: 0006-8993(87)91571-XPubMedCrossRefGoogle Scholar
  253. 253.
    Shippenberg TS, Bals-Kubik R, Herz A (1993) Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors. J Pharmacol Exp Ther 265:53–59PubMedGoogle Scholar
  254. 254.
    Acquas E, Carboni E, Leone P, Di Chiara G (1989) SCH 23390 blocks drug-conditioned place-preference and place-aversion: anhedonia (lack of reward) or apathy (lack of motivation) after dopamine-receptor blockade? Psychopharmacology (Berl) 99:151–155CrossRefGoogle Scholar
  255. 255.
    Liu ZH, Shin R, Ikemoto S (2008) Dual role of medial A10 dopamine neurons in affective encoding. Neuropsychopharmacology 33:3010–3020. doi: 10.1038/npp.2008.4 PubMedCrossRefGoogle Scholar
  256. 256.
    Land BB, Bruchas MR, Schattauer S, Giardino WJ, Aita M, Messinger D, Hnasko TS, Palmiter RD, Chavkin C (2009) Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking. Proc Natl Acad Sci USA 106:19168–19173. doi: 10.1073/pnas.0910705106 PubMedCrossRefGoogle Scholar
  257. 257.
    Tao R, Auerbach SB (2005) mu-Opioids disinhibit and kappa-opioids inhibit serotonin efflux in the dorsal raphe nucleus. Brain Res 1049:70–79. doi: 10.1016/j.brainres.2005.04.076 PubMedCrossRefGoogle Scholar
  258. 258.
    Tao R, Auerbach SB (2002) Opioid receptor subtypes differentially modulate serotonin efflux in the rat central nervous system. J Pharmacol Exp Ther 303:549–556. doi: 10.1124/jpet.102.037861 PubMedCrossRefGoogle Scholar
  259. 259.
    Shippenberg T, Jaligam V, Oz M, Mannangatti P, Jayanthi L, Ramamoorthy S (2010) K-opioid receptor agonists regulate serotonin transporter function, phosphorylation and cell surface expression. Soc Neurosci Abstr 741.16/D34Google Scholar
  260. 260.
    Ikemoto S (2010) Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev 35:129–150. doi: 10.1016/j.neubiorev.2010.02.001 PubMedCrossRefGoogle Scholar
  261. 261.
    Shirayama Y, Ishida H, Iwata M, Hazama GI, Kawahara R, Duman RS (2004) Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces antidepressant-like effects. J Neurochem 90:1258–1268. doi: 10.1111/j.1471-4159.2004.02589.x PubMedCrossRefGoogle Scholar
  262. 262.
    Nabeshima T, Katoh A, Wada M, Kameyama T (1992) Stress-induced changes in brain Met-enkephalin, Leu-enkephalin and dynorphin concentrations. Life Sci 51:211–217PubMedCrossRefGoogle Scholar
  263. 263.
    Goel N, Bale TL (2009) Examining the intersection of sex and stress in modelling neuropsychiatric disorders. J Neuroendocrinol 21:415–420. doi: 10.1111/j.1365-2826.2009.01843.x PubMedCrossRefGoogle Scholar
  264. 264.
    Sirinathsinghji DJ, Nikolarakis KE, Reimer S, Herz A (1990) Nigrostriatal dopamine mediates the stimulatory effects of corticotropin-releasing factor on methionine-enkephalin and dynorphin release from the rat neostriatum. Brain Res 526:173–176. pii: 0006-8993(90)90268-GPubMedCrossRefGoogle Scholar
  265. 265.
    Sirinathsinghji DJ, Nikolarakis KE, Herz A (1989) Corticotropin-releasing factor stimulates the release of methionine-enkephalin and dynorphin from the neostriatum and globus pallidus of the rat: in vitro and in vivo studies. Brain Res 490:276–291. pii: 0006-8993(89)90245-XPubMedCrossRefGoogle Scholar
  266. 266.
    Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C (2008) The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci 28:407–414. doi: 10.1523/JNEUROSCI.4458-07.2008 PubMedCrossRefGoogle Scholar
  267. 267.
    Carr GV, Bangasser DA, Bethea T, Young M, Valentino RJ, Lucki I (2010) Antidepressant-like effects of kappa-opioid receptor antagonists in Wistar Kyoto rats. Neuropsychopharmacology 35:752–763. doi: 10.1038/npp.2009.183 PubMedCrossRefGoogle Scholar
  268. 268.
    McLaughlin JP, Marton-Popovici M, Chavkin C (2003) Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci 23:5674–5683. pii: 23/13/5674PubMedGoogle Scholar
  269. 269.
    Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlezon WA Jr (2001) Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci 21:7397–7403. pii: 21/18/7397PubMedGoogle Scholar
  270. 270.
    Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391PubMedCrossRefGoogle Scholar
  271. 271.
    Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169. doi: 10.1038/nn.2647 PubMedCrossRefGoogle Scholar
  272. 272.
    McLaughlin JP, Li S, Valdez J, Chavkin TA, Chavkin C (2006) Social defeat stress-induced behavioral responses are mediated by the endogenous kappa opioid system. Neuropsychopharmacology 31:1241–1248. doi: 10.1038/sj.npp.1300872 PubMedCrossRefGoogle Scholar
  273. 273.
    Matthews K, Robbins TW (2003) Early experience as a determinant of adult behavioural responses to reward: the effects of repeated maternal separation in the rat. Neurosci Biobehav Rev 27:45–55. pii: S0149763403000083PubMedCrossRefGoogle Scholar
  274. 274.
    Ploj K, Roman E, Nylander I (2003) Long-term effects of short and long periods of maternal separation on brain opioid peptide levels in male Wistar rats. Neuropeptides 37:149–156. pii: S014341790300043XPubMedCrossRefGoogle Scholar
  275. 275.
    Gustafsson L, Oreland S, Hoffmann P, Nylander I (2008) The impact of postnatal environment on opioid peptides in young and adult male Wistar rats. Neuropeptides 42:177–191. doi: 10.1016/j.npep.2007.10.006 PubMedCrossRefGoogle Scholar
  276. 276.
    Michaels CC, Holtzman SG (2008) Early postnatal stress alters place conditioning to both mu- and kappa-opioid agonists. J Pharmacol Exp Ther 325:313–318. doi: 10.1124/jpet.107.129908 PubMedCrossRefGoogle Scholar
  277. 277.
    Hurd YL, Herkenham M (1993) Molecular alterations in the neostriatum of human cocaine addicts. Synapse 13:357–369. doi: 10.1002/syn.890130408 PubMedCrossRefGoogle Scholar
  278. 278.
    Hurd YL, Herman MM, Hyde TM, Bigelow LB, Weinberger DR, Kleinman JE (1997) Prodynorphin mRNA expression is increased in the patch vs matrix compartment of the caudate nucleus in suicide subjects. Mol Psychiatry 2:495–500PubMedCrossRefGoogle Scholar
  279. 279.
    Bruchas MR, Land BB, Chavkin C (2010) The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 1314:44–55. doi: 10.1016/j.brainres.2009.08.062 PubMedCrossRefGoogle Scholar
  280. 280.
    Peckys D, Hurd YL (2001) Prodynorphin and kappa opioid receptor mRNA expression in the cingulate and prefrontal cortices of subjects diagnosed with schizophrenia or affective disorders. Brain Res Bull 55:619–624. pii: S0361-9230(01)00525-1PubMedCrossRefGoogle Scholar
  281. 281.
    Hurd YL (2002) Subjects with major depression or bipolar disorder show reduction of prodynorphin mRNA expression in discrete nuclei of the amygdaloid complex. Mol Psychiatry 7:75–81. doi: 10.1038/sj/mp/4000930 PubMedCrossRefGoogle Scholar
  282. 282.
    Blendy JA (2006) The role of CREB in depression and antidepressant treatment. Biol Psychiatry 59:1144–1150. doi: 10.1016/j.biopsych.2005.11.003 PubMedCrossRefGoogle Scholar
  283. 283.
    Newton SS, Thome J, Wallace TL, Shirayama Y, Schlesinger L, Sakai N, Chen J, Neve R, Nestler EJ, Duman RS (2002) Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J Neurosci 22:10883–10890. pii: 22/24/10883PubMedGoogle Scholar
  284. 284.
    Dinieri JA, Nemeth CL, Parsegian A, Carle T, Gurevich VV, Gurevich E, Neve RL, Nestler EJ, Carlezon WA Jr (2009) Altered sensitivity to rewarding and aversive drugs in mice with inducible disruption of cAMP response element-binding protein function within the nucleus accumbens. J Neurosci 29:1855–1859. doi: 10.1523/JNEUROSCI.5104-08.2009 PubMedCrossRefGoogle Scholar
  285. 285.
    Knoll AT, Meloni EG, Thomas JB, Carroll FI, Carlezon WA Jr (2007) Anxiolytic-like effects of kappa-opioid receptor antagonists in models of unlearned and learned fear in rats. J Pharmacol Exp Ther 323:838–845. doi: 10.1124/jpet.107.127415 PubMedCrossRefGoogle Scholar
  286. 286.
    Wittmann W, Schunk E, Rosskothen I, Gaburro S, Singewald N, Herzog H, Schwarzer C (2009) Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone. Neuropsychopharmacology 34:775–785. doi: 10.1038/npp.2008.142 PubMedCrossRefGoogle Scholar
  287. 287.
    Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F, Befort K, Gaveriaux-Ruff C, Dierich A, LeMeur M, Valverde O, Maldonado R, Kieffer BL (2000) Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 25:195–200. doi: 10.1038/76061 PubMedCrossRefGoogle Scholar
  288. 288.
    Bruchas MR, Land BB, Lemos JC, Chavkin C (2009) CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior. PLoS One 4:e8528. doi: 10.1371/journal.pone.0008528 PubMedCrossRefGoogle Scholar
  289. 289.
    Narita M, Kaneko C, Miyoshi K, Nagumo Y, Kuzumaki N, Nakajima M, Nanjo K, Matsuzawa K, Yamazaki M, Suzuki T (2006) Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology 31:739–750. doi: 10.1038/sj.npp.1300858 PubMedCrossRefGoogle Scholar
  290. 290.
    Carr GV, Lucki I (2010) Comparison of the kappa-opioid receptor antagonist DIPPA in tests of anxiety-like behavior between Wistar Kyoto and Sprague–Dawley rats. Psychopharmacology (Berl) 210:295–302. doi: 10.1007/s00213-010-1832-9 CrossRefGoogle Scholar
  291. 291.
    Koob GF, Le Moal M (2008) Review. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc Lond B Biol Sci 363:3113–3123. doi: 10.1098/rstb.2008.0094 PubMedCrossRefGoogle Scholar
  292. 292.
    Wee S, Koob GF (2010) The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 210:121–135. doi: 10.1007/s00213-010-1825-8 CrossRefGoogle Scholar
  293. 293.
    Le Merrer J, Becker JA, Befort K, Kieffer BL (2009) Reward processing by the opioid system in the brain. Physiol Rev 89:1379–1412. doi: 10.1152/physrev.00005.2009 PubMedCrossRefGoogle Scholar
  294. 294.
    Gregg L, Barrowclough C, Haddock G (2007) Reasons for increased substance use in psychosis. Clin Psychol Rev 27:494–510. doi: 10.1016/j.cpr.2006.09.004 PubMedCrossRefGoogle Scholar
  295. 295.
    Frankel PS, Alburges ME, Bush L, Hanson GR, Kish SJ (2008) Striatal and ventral pallidum dynorphin concentrations are markedly increased in human chronic cocaine users. Neuropharmacology 55:41–46. doi: 10.1016/j.neuropharm.2008.04.019 PubMedCrossRefGoogle Scholar
  296. 296.
    Frankel PS, Alburges ME, Bush L, Hanson GR, Kish SJ (2007) Brain levels of neuropeptides in human chronic methamphetamine users. Neuropharmacology 53:447–454. doi: 10.1016/j.neuropharm.2007.06.009 PubMedCrossRefGoogle Scholar
  297. 297.
    Wise RA (2006) Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci 361:1149–1158. doi: 10.1098/rstb.2006.1854 PubMedCrossRefGoogle Scholar
  298. 298.
    Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7:69–76. doi: 10.1016/j.coph.2006.11.003 PubMedCrossRefGoogle Scholar
  299. 299.
    Turchan J, Przewlocka B, Lason W, Przewlocki R (1998) Effects of repeated psychostimulant administration on the prodynorphin system activity and kappa opioid receptor density in the rat brain. Neuroscience 85:1051–1059. pii: S0306-4522(97)00639-8PubMedCrossRefGoogle Scholar
  300. 300.
    Tzaferis JA, McGinty JF (2001) Kappa opioid receptor stimulation decreases amphetamine-induced behavior and neuropeptide mRNA expression in the striatum. Brain Res Mol Brain Res 93:27–35. pii: S0169328X01001784PubMedCrossRefGoogle Scholar
  301. 301.
    Spangler R, Zhou Y, Maggos CE, Schlussman SD, Ho A, Kreek MJ (1997) Prodynorphin, proenkephalin and kappa opioid receptor mRNA responses to acute “binge” cocaine. Brain Res Mol Brain Res 44:139–142. pii: S0169328X96002495PubMedCrossRefGoogle Scholar
  302. 302.
    Moratalla R, Xu M, Tonegawa S, Graybiel AM (1996) Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc Natl Acad Sci USA 93:14928–14933PubMedCrossRefGoogle Scholar
  303. 303.
    Hanson GR, Singh N, Merchant K, Johnson M, Gibb JW (1995) The role of NMDA receptor systems in neuropeptide responses to stimulants of abuse. Drug Alcohol Depend 37:107–110. pii: 037687169401065SPubMedCrossRefGoogle Scholar
  304. 304.
    Fagergren P, Smith HR, Daunais JB, Nader MA, Porrino LJ, Hurd YL (2003) Temporal upregulation of prodynorphin mRNA in the primate striatum after cocaine self-administration. Eur J Neurosci 17:2212–2218. pii: 2636PubMedCrossRefGoogle Scholar
  305. 305.
    Ziolkowska B, Stefanski R, Mierzejewski P, Zapart G, Kostowski W, Przewlocki R (2006) Contingency does not contribute to the effects of cocaine self-administration on prodynorphin and proenkephalin gene expression in the rat forebrain. Brain Res 1069:1–9. doi: 10.1016/j.brainres.2005.11.042 PubMedCrossRefGoogle Scholar
  306. 306.
    Daunais JB, McGinty JF (1996) The effects of D1 or D2 dopamine receptor blockade on zif/268 and preprodynorphin gene expression in rat forebrain following a short-term cocaine binge. Brain Res Mol Brain Res 35:237–248PubMedCrossRefGoogle Scholar
  307. 307.
    Bustamante D, You ZB, Castel MN, Johansson S, Goiny M, Terenius L, Hokfelt T, Herrera-Marschitz M (2002) Effect of single and repeated methamphetamine treatment on neurotransmitter release in substantia nigra and neostriatum of the rat. J Neurochem 83:645–654. pii: 1171PubMedCrossRefGoogle Scholar
  308. 308.
    Carlezon WA, Jr., Thomas MJ (2009) Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56(Suppl 1):122–132. doi: 10.1016/j.neuropharm.2008.06.075 Google Scholar
  309. 309.
    Bailey A, Yoo JH, Racz I, Zimmer A, Kitchen I (2007) Preprodynorphin mediates locomotion and D2 dopamine and mu-opioid receptor changes induced by chronic ‘binge’ cocaine administration. J Neurochem 102:1817–1830. doi: 10.1111/j.1471-4159.2007.04661.x PubMedCrossRefGoogle Scholar
  310. 310.
    Bailey A, Gianotti R, Ho A, Kreek MJ (2007) Downregulation of kappa-opioid receptors in basolateral amygdala and septum of rats withdrawn for 14 days from an escalating dose “binge” cocaine administration paradigm. Synapse 61:820–826. doi: 10.1002/syn.20436 PubMedCrossRefGoogle Scholar
  311. 311.
    Piras AP, Zhou Y, Schlussman SD, Ho A, Kreek MJ (2010) Acute withdrawal from chronic escalating-dose binge cocaine administration alters kappa opioid receptor stimulation of [35S] guanosine 5′-O-[gamma-thio]triphosphate acid binding in the rat ventral tegmental area. Neuroscience 169:751–757. doi: 10.1016/j.neuroscience.2010.04.060 PubMedCrossRefGoogle Scholar
  312. 312.
    Kim JA, Pollak KA, Hjelmstad GO, Fields HL (2004) A single cocaine exposure enhances both opioid reward and aversion through a ventral tegmental area-dependent mechanism. Proc Natl Acad Sci USA 101:5664–5669. doi: 10.1073/pnas.0401373101 PubMedCrossRefGoogle Scholar
  313. 313.
    Xia YF, He L, Whistler JL, Hjelmstad GO (2008) Acute amphetamine exposure selectively desensitizes kappa-opioid receptors in the nucleus accumbens. Neuropsychopharmacology 33:892–900. doi: 10.1038/sj.npp.1301463 PubMedCrossRefGoogle Scholar
  314. 314.
    Mu P, Neumann PA, Panksepp J, Schluter OM, Dong Y (2010) Exposure to cocaine alters dynorphin-mediated regulation of excitatory synaptic transmission in nucleus accumbens neurons. Biol Psychiatry. doi: 10.1016/j.biopsych.2010.09.014
  315. 315.
    Chartoff EH, Potter D, Damez-Werno D, Cohen BM, Carlezon WA Jr (2008) Exposure to the selective kappa-opioid receptor agonist salvinorin A modulates the behavioral and molecular effects of cocaine in rats. Neuropsychopharmacology 33:2676–2687. doi: 10.1038/sj.npp.1301659 PubMedCrossRefGoogle Scholar
  316. 316.
    Heidbreder CA, Goldberg SR, Shippenberg TS (1993) The kappa-opioid receptor agonist U-69593 attenuates cocaine-induced behavioral sensitization in the rat. Brain Res 616:335–338. pii: 0006-8993(93)90228-FPubMedCrossRefGoogle Scholar
  317. 317.
    Zakharova E, Collins SL, Aberg M, Kumar A, Fernandez JB, Izenwasser S (2008) Depletion of serotonin decreases the effects of the kappa-opioid receptor agonist U-69593 on cocaine-stimulated activity. Eur J Pharmacol 586:123–129. doi: 10.1016/j.ejphar.2008.02.065 PubMedCrossRefGoogle Scholar
  318. 318.
    Zhang Y, Butelman ER, Schlussman SD, Ho A, Kreek MJ (2004) Effect of the kappa opioid agonist R-84760 on cocaine-induced increases in striatal dopamine levels and cocaine-induced place preference in C57BL/6 J mice. Psychopharmacology (Berl) 173:146–152. doi: 10.1007/s00213-003-1716-3 CrossRefGoogle Scholar
  319. 319.
    Vanderschuren LJ, Schoffelmeer AN, Wardeh G, De Vries TJ (2000) Dissociable effects of the kappa-opioid receptor agonists bremazocine, U69593, and U50488H on locomotor activity and long-term behavioral sensitization induced by amphetamine and cocaine. Psychopharmacology (Berl) 150:35–44CrossRefGoogle Scholar
  320. 320.
    Suzuki T, Shiozaki Y, Masukawa Y, Misawa M, Nagase H (1992) The role of mu- and kappa-opioid receptors in cocaine-induced conditioned place preference. Jpn J Pharmacol 58:435–442PubMedCrossRefGoogle Scholar
  321. 321.
    Zhang Y, Butelman ER, Schlussman SD, Ho A, Kreek MJ (2004) Effect of the endogenous kappa opioid agonist dynorphin A(1–17) on cocaine-evoked increases in striatal dopamine levels and cocaine-induced place preference in C57BL/6 J mice. Psychopharmacology (Berl) 172:422–429. doi: 10.1007/s00213-003-1688-3 CrossRefGoogle Scholar
  322. 322.
    McLaughlin JP, Land BB, Li S, Pintar JE, Chavkin C (2006) Prior activation of kappa opioid receptors by U50, 488 mimics repeated forced swim stress to potentiate cocaine place preference conditioning. Neuropsychopharmacology 31:787–794. doi: 10.1038/sj.npp.1300860 PubMedCrossRefGoogle Scholar
  323. 323.
    Shippenberg TS, LeFevour A, Thompson AC (1998) Sensitization to the conditioned rewarding effects of morphine and cocaine: differential effects of the kappa-opioid receptor agonist U69593. Eur J Pharmacol 345:27–34. pii: S0014-2999(97)01614-2PubMedCrossRefGoogle Scholar
  324. 324.
    Tomasiewicz HC, Todtenkopf MS, Chartoff EH, Cohen BM, Carlezon WA Jr (2008) The kappa-opioid agonist U69, 593 blocks cocaine-induced enhancement of brain stimulation reward. Biol Psychiatry 64:982–988. doi: 10.1016/j.biopsych.2008.05.029 PubMedCrossRefGoogle Scholar
  325. 325.
    Chefer VI, Moron JA, Hope B, Rea W, Shippenberg TS (2000) Kappa-opioid receptor activation prevents alterations in mesocortical dopamine neurotransmission that occur during abstinence from cocaine. Neuroscience 101:619–627. pii: S0306-4522(00)00417-6PubMedCrossRefGoogle Scholar
  326. 326.
    Koya E, Golden SA, Harvey BK, Guez-Barber DH, Berkow A, Simmons DE, Bossert JM, Nair SG, Uejima JL, Marin MT, Mitchell TB, Farquhar D, Ghosh SC, Mattson BJ, Hope BT (2009) Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat Neurosci 12:1069–1073 10.1038/nn.2364PubMedCrossRefGoogle Scholar
  327. 327.
    D’Addario C, Di Benedetto M, Candeletti S, Romualdi P (2007) The kappa-opioid receptor agonist U-69593 prevents cocaine-induced phosphorylation of DARPP-32 at Thr(34) in the rat brain. Brain Res Bull 73:34–39. doi: 10.1016/j.brainresbull.2007.01.014 PubMedCrossRefGoogle Scholar
  328. 328.
    Glick SD, Maisonneuve IM, Raucci J, Archer S (1995) Kappa opioid inhibition of morphine and cocaine self-administration in rats. Brain Res 681:147–152PubMedCrossRefGoogle Scholar
  329. 329.
    Glick SD, Visker KE, Maisonneuve IM (1998) Effects of cyclazocine on cocaine self-administration in rats. Eur J Pharmacol 357:9–14. pii: S0014-2999(98)00548-2PubMedCrossRefGoogle Scholar
  330. 330.
    Schenk S, Partridge B, Shippenberg TS (1999) U69593, a kappa-opioid agonist, decreases cocaine self-administration and decreases cocaine-produced drug-seeking. Psychopharmacology (Berl) 144:339–346CrossRefGoogle Scholar
  331. 331.
    Mello NK, Negus SS (1998) Effects of kappa opioid agonists on cocaine- and food-maintained responding by rhesus monkeys. J Pharmacol Exp Ther 286:812–824PubMedGoogle Scholar
  332. 332.
    Sun W, Xue Y, Huang Z, Steketee JD (2010) Regulation of cocaine-reinstated drug-seeking behavior by kappa-opioid receptors in the ventral tegmental area of rats. Psychopharmacology (Berl) 210:179–188. doi: 10.1007/s00213-010-1812-0 CrossRefGoogle Scholar
  333. 333.
    Wee S, Orio L, Ghirmai S, Cashman JR, Koob GF (2009) Inhibition of kappa opioid receptors attenuated increased cocaine intake in rats with extended access to cocaine. Psychopharmacology (Berl) 205:565–575. doi: 10.1007/s00213-009-1563-y CrossRefGoogle Scholar
  334. 334.
    Schenk S, Partridge B, Shippenberg TS (2001) Effects of the kappa-opioid receptor agonist, U69593, on the development of sensitization and on the maintenance of cocaine self-administration. Neuropsychopharmacology 24:441–450. doi: 10.1016/S0893-133X(00)00190-1 PubMedCrossRefGoogle Scholar
  335. 335.
    Zapata A (2010) Kappa opioid receptors and cocaine seeking habits. International Narcotics Research ConferenceGoogle Scholar
  336. 336.
    Huge V, Rammes G, Beyer A, Zieglgansberger W, Azad SC (2009) Activation of kappa opioid receptors decreases synaptic transmission and inhibits long-term potentiation in the basolateral amygdala of the mouse. Eur J Pain 13:124–129. doi: 10.1016/j.ejpain.2008.03.010 PubMedCrossRefGoogle Scholar
  337. 337.
    Ruedi-Bettschen D, Rowlett JK, Spealman RD, Platt DM (2010) Attenuation of cocaine-induced reinstatement of drug seeking in squirrel monkeys: kappa opioid and serotonergic mechanisms. Psychopharmacology (Berl) 210:169–177. doi: 10.1007/s00213-009-1705-2 CrossRefGoogle Scholar
  338. 338.
    Schenk S, Partridge B, Shippenberg TS (2000) Reinstatement of extinguished drug-taking behavior in rats: effect of the kappa-opioid receptor agonist, U69593. Psychopharmacology (Berl) 151:85–90CrossRefGoogle Scholar
  339. 339.
    Schindler AG, Li S, Chavkin C (2010) Behavioral stress may increase the rewarding valence of cocaine-associated cues through a dynorphin/kappa-opioid receptor-mediated mechanism without affecting associative learning or memory retrieval mechanisms. Neuropsychopharmacology 35:1932–1942. doi: 10.1038/npp.2010.67 PubMedCrossRefGoogle Scholar
  340. 340.
    Beardsley PM, Howard JL, Shelton KL, Carroll FI (2005) Differential effects of the novel kappa opioid receptor antagonist, JDTic, on reinstatement of cocaine-seeking induced by footshock stressors vs cocaine primes and its antidepressant-like effects in rats. Psychopharmacology (Berl) 183:118–126. doi: 10.1007/s00213-005-0167-4 CrossRefGoogle Scholar
  341. 341.
    Beardsley PM, Pollard GT, Howard JL, Carroll FI (2010) Effectiveness of analogs of the kappa opioid receptor antagonist (3R)-7-hydroxy-N-((1S)-1-{[(3R, 4R)-4-(3-hydroxyphenyl)-3, 4-dimethyl-1-pipe ridinyl]methyl}-2-methylpropyl)-1, 2, 3, 4-tetrahydro-3-isoquinolinecarboxami de (JDTic) to reduce U50, 488-induced diuresis and stress-induced cocaine reinstatement in rats. Psychopharmacology (Berl) 210:189–198. doi: 10.1007/s00213-010-1846-3 CrossRefGoogle Scholar
  342. 342.
    Redila VA, Chavkin C (2008) Stress-induced reinstatement of cocaine seeking is mediated by the kappa opioid system. Psychopharmacology (Berl) 200:59–70. doi: 10.1007/s00213-008-1122-y CrossRefGoogle Scholar
  343. 343.
    Carey AN, Borozny K, Aldrich JV, McLaughlin JP (2007) Reinstatement of cocaine place-conditioning prevented by the peptide kappa-opioid receptor antagonist arodyn. Eur J Pharmacol 569:84–89. doi: 10.1016/j.ejphar.2007.05.007 PubMedCrossRefGoogle Scholar
  344. 344.
    Valdez GR, Platt DM, Rowlett JK, Ruedi-Bettschen D, Spealman RD (2007) Kappa agonist-induced reinstatement of cocaine seeking in squirrel monkeys: a role for opioid and stress-related mechanisms. J Pharmacol Exp Ther 323:525–533. doi: 10.1124/jpet.107.125484 PubMedCrossRefGoogle Scholar
  345. 345.
    Isola R, Zhang H, Tejwani GA, Neff NH, Hadjiconstantinou M (2009) Acute nicotine changes dynorphin and prodynorphin mRNA in the striatum. Psychopharmacology (Berl) 201:507–516. doi: 10.1007/s00213-008-1315-4 CrossRefGoogle Scholar
  346. 346.
    Torres OV, Tejeda HA, Natividad LA, O’Dell LE (2008) Enhanced vulnerability to the rewarding effects of nicotine during the adolescent period of development. Pharmacol Biochem Behav 90:658–663. doi: 10.1016/j.pbb.2008.05.009 PubMedCrossRefGoogle Scholar
  347. 347.
    Fudala PJ, Teoh KW, Iwamoto ET (1985) Pharmacologic characterization of nicotine-induced conditioned place preference. Pharmacol Biochem Behav 22:237–241. pii: 0091-3057(85)90384-3PubMedCrossRefGoogle Scholar
  348. 348.
    Loughlin SE, Islas MI, Cheng MY, Lee AG, Villegier AS, Leslie FM (2006) Nicotine modulation of stress-related peptide neurons. J Comp Neurol 497:575–588. doi: 10.1002/cne.20999 PubMedCrossRefGoogle Scholar
  349. 349.
    Mathieu-Kia AM, Besson MJ (1998) Repeated administration of cocaine, nicotine and ethanol: effects on preprodynorphin, preprotachykinin A and preproenkephalin mRNA expression in the dorsal and the ventral striatum of the rat. Brain Res Mol Brain Res 54:141–151. pii: S0169328X97003380PubMedCrossRefGoogle Scholar
  350. 350.
    Mathieu AM, Caboche J, Besson MJ (1996) Distribution of preproenkephalin, preprotachykinin A, and preprodynorphin mRNAs in the rat nucleus accumbens: effect of repeated administration of nicotine. Synapse 23:94–106. doi: 10.1002/(SICI)1098-2396(199606)23:2<94:AID-SYN5>3.0.CO;2-B PubMedCrossRefGoogle Scholar
  351. 351.
    Galeote L, Berrendero F, Bura SA, Zimmer A, Maldonado R (2009) Prodynorphin gene disruption increases the sensitivity to nicotine self-administration in mice. Int J Neuropsychopharmacol 12:615–625. doi: 10.1017/S1461145708009450 PubMedCrossRefGoogle Scholar
  352. 352.
    Jackson KJ, Carroll FI, Negus SS, Damaj MI (2010) Effect of the selective kappa-opioid receptor antagonist JDTic on nicotine antinociception, reward, and withdrawal in the mouse. Psychopharmacology (Berl) 210:285–294. doi: 10.1007/s00213-010-1803-1 CrossRefGoogle Scholar
  353. 353.
    Tejeda HA, Natividad LA, Torres OV, Castaneda EC, O’Dell LE (2008) The behavioral and neurochemical effects produced by kappa-opioid receptor stimulation are diminished in nicotine-dependent adolescent versus adult rats. Soc Neurosci Abstr 360:14Google Scholar
  354. 354.
    Marinelli PW, Lam M, Bai L, Quirion R, Gianoulakis C (2006) A microdialysis profile of dynorphin A(1–8) release in the rat nucleus accumbens following alcohol administration. Alcohol Clin Exp Res 30:982–990. doi: 10.1111/j.1530-0277.2006.00112.x PubMedCrossRefGoogle Scholar
  355. 355.
    Lam MP, Marinelli PW, Bai L, Gianoulakis C (2008) Effects of acute ethanol on opioid peptide release in the central amygdala: an in vivo microdialysis study. Psychopharmacology (Berl) 201:261–271. doi: 10.1007/s00213-008-1267-8 CrossRefGoogle Scholar
  356. 356.
    Przewlocka B, Lason W, Przewlocki R (1992) Repeated ethanol administration decreases prodynorphin biosynthesis in the rat hippocampus. Neurosci Lett 134:195–198PubMedCrossRefGoogle Scholar
  357. 357.
    Seizinger BR, Bovermann K, Maysinger D, Hollt V, Herz A (1983) Differential effects of acute and chronic ethanol treatment on particular opioid peptide systems in discrete regions of rat brain and pituitary. Pharmacol Biochem Behav 18(Suppl 1):361–369Google Scholar
  358. 358.
    Chang GQ, Karatayev O, Ahsan R, Avena NM, Lee C, Lewis MJ, Hoebel BG, Leibowitz SF (2007) Effect of ethanol on hypothalamic opioid peptides, enkephalin, and dynorphin: relationship with circulating triglycerides. Alcohol Clin Exp Res 31:249–259. doi: 10.1111/j.1530-0277.2006.00312.x PubMedCrossRefGoogle Scholar
  359. 359.
    Chang GQ, Barson JR, Karatayev O, Chang SY, Chen YW, Leibowitz SF (2010) Effect of chronic ethanol on enkephalin in the hypothalamus and extra-hypothalamic areas. Alcohol Clin Exp Res 34:761–770. doi: 10.1111/j.1530-0277.2010.01148.x PubMedCrossRefGoogle Scholar
  360. 360.
    Przewlocka B, Turchan J, Lason W, Przewlocki R (1997) Ethanol withdrawal enhances the prodynorphin system activity in the rat nucleus accumbens. Neurosci Lett 238:13–16. pii: S0304-3940(97)00829-XPubMedCrossRefGoogle Scholar
  361. 361.
    Lindholm S, Ploj K, Franck J, Nylander I (2000) Repeated ethanol administration induces short- and long-term changes in enkephalin and dynorphin tissue concentrations in rat brain. Alcohol 22:165–171. pii: S0741-8329(00)00118-XPubMedCrossRefGoogle Scholar
  362. 362.
    Zapata A, Shippenberg TS (2006) Endogenous kappa opioid receptor systems modulate the responsiveness of mesoaccumbal dopamine neurons to ethanol. Alcohol Clin Exp Res 30:592–597. doi: 10.1111/j.1530-0277.2006.00069.x PubMedCrossRefGoogle Scholar
  363. 363.
    Lindholm S, Rosin A, Dahlin I, Georgieva J, Franck J (2007) Ethanol alters the effect of kappa receptor ligands on dopamine release in the nucleus accumbens. Physiol Behav 92:167–171. doi: 10.1016/j.physbeh.2007.05.039 PubMedCrossRefGoogle Scholar
  364. 364.
    Nestby P, Schoffelmeer AN, Homberg JR, Wardeh G, De Vries TJ, Mulder AH, Vanderschuren LJ (1999) Bremazocine reduces unrestricted free-choice ethanol self-administration in rats without affecting sucrose preference. Psychopharmacology (Berl) 142:309–317CrossRefGoogle Scholar
  365. 365.
    Lindholm S, Werme M, Brene S, Franck J (2001) The selective kappa-opioid receptor agonist U50, 488H attenuates voluntary ethanol intake in the rat. Behav Brain Res 120:137–146. pii: S0166432800003685PubMedCrossRefGoogle Scholar
  366. 366.
    Mitchell JM, Liang MT, Fields HL (2005) A single injection of the kappa opioid antagonist norbinaltorphimine increases ethanol consumption in rats. Psychopharmacology (Berl) 182:384–392. doi: 10.1007/s00213-005-0067-7 CrossRefGoogle Scholar
  367. 367.
    Doyon WM, Howard EC, Shippenberg TS, Gonzales RA (2006) Kappa-opioid receptor modulation of accumbal dopamine concentration during operant ethanol self-administration. Neuropharmacology 51:487–496. doi: 10.1016/j.neuropharm.2006.04.005 PubMedCrossRefGoogle Scholar
  368. 368.
    Logrip ML, Janak PH, Ron D (2008) Dynorphin is a downstream effector of striatal BDNF regulation of ethanol intake. FASEB J 22:2393–2404. doi: 10.1096/fj.07-099135 PubMedCrossRefGoogle Scholar
  369. 369.
    Barson JR, Carr AJ, Soun JE, Sobhani NC, Rada P, Leibowitz SF, Hoebel BG (2010) Opioids in the hypothalamic paraventricular nucleus stimulate ethanol intake. Alcohol Clin Exp Res 34:214–222. doi: 10.1111/j.1530-0277.2009.01084.x PubMedCrossRefGoogle Scholar
  370. 370.
    Marchant NJ, Furlong TM, McNally GP (2010) Medial dorsal hypothalamus mediates the inhibition of reward seeking after extinction. J Neurosci 30:14102–14115. doi: 10.1523/JNEUROSCI.4079-10.2010 PubMedCrossRefGoogle Scholar
  371. 371.
    Walker BM, Koob GF (2008) Pharmacological evidence for a motivational role of kappa-opioid systems in ethanol dependence. Neuropsychopharmacology 33:643–652. doi: 10.1038/sj.npp.1301438 PubMedCrossRefGoogle Scholar
  372. 372.
    Walker BM, Zorrilla EP, Koob GF (2010) Systemic kappa-opioid receptor antagonism by nor-binaltorphimine reduces dependence-induced excessive alcohol self-administration in rats. Addict Biol. doi: 10.1111/j.1369-1600.2010.00226.x
  373. 373.
    Holter SM, Henniger MS, Lipkowski AW, Spanagel R (2000) Kappa-opioid receptors and relapse-like drinking in long-term ethanol-experienced rats. Psychopharmacology (Berl) 153:93–102CrossRefGoogle Scholar
  374. 374.
    Sperling RE, Gomes SM, Sypek EI, Carey AN, McLaughlin JP (2010) Endogenous kappa-opioid mediation of stress-induced potentiation of ethanol-conditioned place preference and self-administration. Psychopharmacology (Berl) 210:199–209. doi: 10.1007/s00213-010-1844-5 CrossRefGoogle Scholar
  375. 375.
    Matsuzawa S, Suzuki T, Misawa M, Nagase H (1999) Different roles of mu-, delta- and kappa-opioid receptors in ethanol-associated place preference in rats exposed to conditioned fear stress. Eur J Pharmacol 368:9–16. pii: S0014-2999(99)00008-4PubMedCrossRefGoogle Scholar
  376. 376.
    Nylander I, Vlaskovska M, Terenius L (1995) The effects of morphine treatment and morphine withdrawal on the dynorphin and enkephalin systems in Sprague–Dawley rats. Psychopharmacology (Berl) 118:391–400CrossRefGoogle Scholar
  377. 377.
    Nylander I, Stenfors C, Tan-No K, Mathe AA, Terenius L (1997) A comparison between microwave irradiation and decapitation: basal levels of dynorphin and enkephalin and the effect of chronic morphine treatment on dynorphin peptides. Neuropeptides 31:357–365. pii: S0143-4179(97)90072-XPubMedCrossRefGoogle Scholar
  378. 378.
    Rattan AK, Koo KL, Tejwani GA, Bhargava HN (1992) The effect of morphine tolerance dependence and abstinence on immunoreactive dynorphin (1–13) levels in discrete brain regions, spinal cord, pituitary gland and peripheral tissues of the rat. Brain Res 584:207–212. pii: 0006-8993(92)90896-HPubMedCrossRefGoogle Scholar
  379. 379.
    Wan XW, Li WH, Huang M, You ZD, Tan YX, Lu CL, Gong ZH (1998) Levels of immunoreactive dynorphin A1–13 during development of morphine dependence in rats. Zhongguo Yao Li Xue Bao 19:560–563PubMedGoogle Scholar
  380. 380.
    McClung CA, Nestler EJ, Zachariou V (2005) Regulation of gene expression by chronic morphine and morphine withdrawal in the locus ceruleus and ventral tegmental area. J Neurosci 25:6005–6015. doi: 10.1523/JNEUROSCI.0062-05.2005 PubMedCrossRefGoogle Scholar
  381. 381.
    Van Bockstaele EJ, Reyes BA, Valentino RJ (2010) The locus coeruleus: a key nucleus where stress and opioids intersect to mediate vulnerability to opiate abuse. Brain Res 1314:162–174. doi: 10.1016/j.brainres.2009.09.036 PubMedCrossRefGoogle Scholar
  382. 382.
    You ZB, Herrera-Marschitz M, Nylander I, Goiny M, Kehr J, Ungerstedt U, Terenius L (1996) Effect of morphine on dynorphin B and GABA release in the basal ganglia of rats. Brain Res 710:241–248. pii: 0006-8993(95)01402-0PubMedCrossRefGoogle Scholar
  383. 383.
    Chefer VI, Denoroy L, Zapata A, Shippenberg TS (2009) Mu opioid receptor modulation of somatodendritic dopamine overflow: GABAergic and glutamatergic mechanisms. Eur J Neurosci 30:272–278. doi: 10.1111/j.1460-9568.2009.06827.x PubMedCrossRefGoogle Scholar
  384. 384.
    Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488PubMedGoogle Scholar
  385. 385.
    Gieryk A, Ziolkowska B, Solecki W, Kubik J, Przewlocki R (2010) Forebrain PENK and PDYN gene expression levels in three inbred strains of mice and their relationship to genotype-dependent morphine reward sensitivity. Psychopharmacology (Berl) 208:291–300. doi: 10.1007/s00213-009-1730-1 CrossRefGoogle Scholar
  386. 386.
    Xi ZX, Fuller SA, Stein EA (1998) Dopamine release in the nucleus accumbens during heroin self-administration is modulated by kappa opioid receptors: an in vivo fast-cyclic voltammetry study. J Pharmacol Exp Ther 284:151–161PubMedGoogle Scholar
  387. 387.
    Cappendijk SL, Hurd YL, Nylander I, van Ree JM, Terenius L (1999) A heroin-, but not a cocaine-expecting, self-administration state preferentially alters endogenous brain peptides. Eur J Pharmacol 365:175–182PubMedCrossRefGoogle Scholar
  388. 388.
    Negus SS, Henriksen SJ, Mattox A, Pasternak GW, Portoghese PS, Takemori AE, Weinger MB, Koob GF (1993) Effect of antagonists selective for mu, delta and kappa opioid receptors on the reinforcing effects of heroin in rats. J Pharmacol Exp Ther 265:1245–1252PubMedGoogle Scholar
  389. 389.
    Negus SS, Rice KC (2009) Mechanisms of withdrawal-associated increases in heroin self-administration: pharmacologic modulation of heroin vs food choice in heroin-dependent rhesus monkeys. Neuropsychopharmacology 34:899–911. doi: 10.1038/npp.2008.127 PubMedCrossRefGoogle Scholar
  390. 390.
    Spanagel R, Almeida OF, Bartl C, Shippenberg TS (1994) Endogenous kappa-opioid systems in opiate withdrawal: role in aversion and accompanying changes in mesolimbic dopamine release. Psychopharmacology (Berl) 115:121–127CrossRefGoogle Scholar
  391. 391.
    Maldonado R, Negus S, Koob GF (1992) Precipitation of morphine withdrawal syndrome in rats by administration of mu-, delta- and kappa-selective opioid antagonists. Neuropharmacology 31:1231–1241PubMedCrossRefGoogle Scholar
  392. 392.
    Le Guen S, Gestreau C, Besson JM (2003) Morphine withdrawal precipitated by specific mu, delta or kappa opioid receptor antagonists: a c-Fos protein study in the rat central nervous system. Eur J Neurosci 17:2425–2437. pii 2678PubMedCrossRefGoogle Scholar
  393. 393.
    Simonin F, Valverde O, Smadja C, Slowe S, Kitchen I, Dierich A, Le Meur M, Roques BP, Maldonado R, Kieffer BL (1998) Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50, 488H and attenuates morphine withdrawal. EMBO J 17:886–897. doi: 10.1093/emboj/17.4.886 PubMedCrossRefGoogle Scholar
  394. 394.
    Carroll FI, Harris LS, Aceto MD (2005) Effects of JDTic, a selective kappa-opioid receptor antagonist, on the development and expression of physical dependence on morphine using a rat continuous-infusion model. Eur J Pharmacol 524:89–94. doi: 10.1016/j.ejphar.2005.09.013 PubMedCrossRefGoogle Scholar
  395. 395.
    Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Review, neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363:3125–3135. doi: 10.1098/rstb.2008.0089 PubMedCrossRefGoogle Scholar
  396. 396.
    Zapata A, Minney VL, Shippenberg TS (2010) Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J Neurosci 30:15457–15463. doi: 10.1523/JNEUROSCI.4072-10.2010 PubMedCrossRefGoogle Scholar
  397. 397.
    Tamminga CA, Holcomb HH (2005) Phenotype of schizophrenia: a review and formulation. Mol Psychiatry 10:27–39. doi: 10.1038/sj.mp.4001563 PubMedCrossRefGoogle Scholar
  398. 398.
    Guillin O, Abi-Dargham A, Laruelle M (2007) Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol 78:1–39. doi: 10.1016/S0074-7742(06)78001-1 PubMedCrossRefGoogle Scholar
  399. 399.
    Agid O, Kapur S, Remington G (2008) Emerging drugs for schizophrenia. Expert Opin Emerg Drugs 13:479–495. doi: 10.1517/14728214.13.3.479 PubMedCrossRefGoogle Scholar
  400. 400.
    Gonzalez-Burgos G, Hashimoto T, Lewis DA (2010) Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep 12:335–344. doi: 10.1007/s11920-010-0124-8 PubMedCrossRefGoogle Scholar
  401. 401.
    Sheffler DJ, Roth BL (2003) Salvinorin A: the “magic mint” hallucinogen finds a molecular target in the kappa opioid receptor. Trends Pharmacol Sci 24:107–109. pii: S0165614703000270PubMedCrossRefGoogle Scholar
  402. 402.
    Heikkila L, Rimon R, Terenius L (1990) Dynorphin A and substance P in the cerebrospinal fluid of schizophrenic patients. Psychiatry Res 34:229–236PubMedCrossRefGoogle Scholar
  403. 403.
    Lindstrom LH (1996) Clinical and biological markers for outcome in schizophrenia: a review of a longitudinal follow-up study in Uppsala schizophrenia research project. Neuropsychopharmacology 14:23S–26S. doi: 10.1016/0893-133X(95)00201-N PubMedCrossRefGoogle Scholar
  404. 404.
    Zhang AZ, Zhou GZ, Xi GF, Gu NF, Xia ZY, Yao JL, Chang JK, Webber R, Potkin S (1985) Lower CSF level of dynorphin(1–8) immunoreactivity in schizophrenic patients. Neuropeptides 5:553–556. pii: 0143-4179(85)90077-0PubMedCrossRefGoogle Scholar
  405. 405.
    Royston MC, Slater P, Simpson MD, Deakin JF (1991) Analysis of laminar distribution of kappa opiate receptor in human cortex: comparison between schizophrenia and normal. J Neurosci Methods 36:145–153PubMedCrossRefGoogle Scholar
  406. 406.
    Moghaddam B (2003) Bringing order to the glutamate chaos in schizophrenia. Neuron 40:881–884. pii: S0896627303007578PubMedCrossRefGoogle Scholar
  407. 407.
    Butelman ER, Harris TJ, Kreek MJ (2004) The plant-derived hallucinogen, salvinorin A, produces kappa-opioid agonist-like discriminative effects in rhesus monkeys. Psychopharmacology (Berl) 172:220–224. doi: 10.1007/s00213-003-1638-0 CrossRefGoogle Scholar
  408. 408.
    Butelman ER, Rus S, Prisinzano TE, Kreek MJ (2010) The discriminative effects of the kappa-opioid hallucinogen salvinorin A in nonhuman primates: dissociation from classic hallucinogen effects. Psychopharmacology (Berl) 210:253–262. doi: 10.1007/s00213-009-1771-5 CrossRefGoogle Scholar
  409. 409.
    Killinger BA, Peet MM, Baker LE (2010) Salvinorin A fails to substitute for the discriminative stimulus effects of LSD or ketamine in Sprague–Dawley rats. Pharmacol Biochem Behav 96:260–265. doi: 10.1016/j.pbb.2010.05.014 PubMedCrossRefGoogle Scholar
  410. 410.
    Mori T, Nomura M, Yoshizawa K, Nagase H, Sawaguchi T, Narita M, Suzuki T (2006) Generalization of NMDA-receptor antagonists to the discriminative stimulus effects of kappa-opioid receptor agonists U-50, 488H, but not TRK-820 in rats. J Pharmacol Sci 100:157–161. pii: JST.JSTAGE/jphs/SCJ05006XPubMedCrossRefGoogle Scholar
  411. 411.
    Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258CrossRefGoogle Scholar
  412. 412.
    Bortolato M, Aru GN, Frau R, Orru M, Fa M, Manunta M, Puddu M, Mereu G, Gessa GL (2005) Kappa opioid receptor activation disrupts prepulse inhibition of the acoustic startle in rats. Biol Psychiatry 57:1550–1558. doi: 10.1016/j.biopsych.2005.02.030 PubMedCrossRefGoogle Scholar
  413. 413.
    Tejeda HA, Chefer VI, Zapata A, Shippenberg TS (2010) The effects of kappa-opioid receptor ligands on prepulse inhibition and CRF-induced prepulse inhibition deficits in the rat. Psychopharmacology (Berl) 210:231–240. doi: 10.1007/s00213-010-1799-6 CrossRefGoogle Scholar
  414. 414.
    Lodge DJ, Grace AA (2010) Developmental pathology, dopamine, stress and schizophrenia. Int J Dev Neurosci. doi: 10.1016/j.ijdevneu.2010.08.002
  415. 415.
    Goto Y, O’Donnell P (2002) Delayed mesolimbic system alteration in a developmental animal model of schizophrenia. J Neurosci 22:9070–9077. pii: 22/20/9070PubMedGoogle Scholar
  416. 416.
    El-Rawas R, Saade NE, Thiriet N, Atweh S, Jaber M, Al-Amin HA (2009) Developmental changes in the mRNA expression of neuropeptides and dopamine and glutamate receptors in neonates and adult rats after ventral hippocampal lesion. Schizophr Res 113:298–307. doi: 10.1016/j.schres.2009.05.009 PubMedCrossRefGoogle Scholar
  417. 417.
    Lipska BK, Lerman DN, Khaing ZZ, Weinberger DR (2003) The neonatal ventral hippocampal lesion model of schizophrenia: effects on dopamine and GABA mRNA markers in the rat midbrain. Eur J Neurosci 18:3097–3104. pii: 3047PubMedCrossRefGoogle Scholar
  418. 418.
    Blume AW, Marlatt GA (2009) The role of executive cognitive functions in changing substance use: what we know and what we need to know. Ann Behav Med 37:117–125. doi: 10.1007/s12160-009-9093-8 PubMedCrossRefGoogle Scholar
  419. 419.
    Hill SK, Harris MS, Herbener ES, Pavuluri M, Sweeney JA (2008) Neurocognitive allied phenotypes for schizophrenia and bipolar disorder. Schizophr Bull 34:743–759. doi: 10.1093/schbul/sbn027 PubMedCrossRefGoogle Scholar
  420. 420.
    Royall DR (1999) Frontal systems impairment in major depression. Semin Clin Neuropsychiatry 4:13–23 10.1053/SCNP004PubMedGoogle Scholar
  421. 421.
    Nemeth CL, Paine TA, Rittiner JE, Beguin C, Carroll FI, Roth BL, Cohen BM, Carlezon WA Jr (2010) Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats. Psychopharmacology (Berl) 210:263–274. doi: 10.1007/s00213-010-1834-7 CrossRefGoogle Scholar
  422. 422.
    Paine TA, Tomasiewicz HC, Zhang K, Carlezon WA Jr (2007) Sensitivity of the five-choice serial reaction time task to the effects of various psychotropic drugs in Sprague–Dawley rats. Biol Psychiatry 62:687–693. doi: 10.1016/j.biopsych.2006.11.017 PubMedCrossRefGoogle Scholar
  423. 423.
    Shannon HE, Eberle EL, Mitch CH, McKinzie DL, Statnick MA (2007) Effects of kappa opioid receptor agonists on attention as assessed by a 5-choice serial reaction time task in rats. Neuropharmacology 53:930–941. doi: 10.1016/j.neuropharm.2007.09.002 PubMedCrossRefGoogle Scholar
  424. 424.
    McDaniel KL, Mundy WR, Tilson HA (1990) Microinjection of dynorphin into the hippocampus impairs spatial learning in rats. Pharmacol Biochem Behav 35:429–435. pii: 0091-3057(90)90180-PPubMedCrossRefGoogle Scholar
  425. 425.
    Sandin J, Nylander I, Georgieva J, Schott PA, Ogren SO, Terenius L (1998) Hippocampal dynorphin B injections impair spatial learning in rats: a kappa-opioid receptor-mediated effect. Neuroscience 85:375–382. pii: S0306-4522(97)00605-2PubMedCrossRefGoogle Scholar
  426. 426.
    Daumas S, Betourne A, Halley H, Wolfer DP, Lipp HP, Lassalle JM, Frances B (2007) Transient activation of the CA3 Kappa opioid system in the dorsal hippocampus modulates complex memory processing in mice. Neurobiol Learn Mem 88:94–103. doi: 10.1016/j.nlm.2007.02.001 PubMedCrossRefGoogle Scholar
  427. 427.
    Jamot L, Matthes HW, Simonin F, Kieffer BL, Roder JC (2003) Differential involvement of the mu and kappa opioid receptors in spatial learning. Genes Brain Behav 2:80–92PubMedCrossRefGoogle Scholar
  428. 428.
    Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75. doi: 10.1038/nrn2303 PubMedCrossRefGoogle Scholar
  429. 429.
    Carey AN, Lyons AM, Shay CF, Dunton O, McLaughlin JP (2009) Endogenous kappa opioid activation mediates stress-induced deficits in learning and memory. J Neurosci 29:4293–4300. doi: 10.1523/JNEUROSCI.6146-08.2009 PubMedCrossRefGoogle Scholar
  430. 430.
    Kotz CM, Weldon D, Billington CJ, Levine AS (2004) Age-related changes in brain proDynorphin gene expression in the rat. Neurobiol Aging 25:1343–1347. doi: 10.1016/j.neurobiolaging.2004.02.025 PubMedCrossRefGoogle Scholar
  431. 431.
    Jiang HK, Owyang VV, Hong JS, Gallagher M (1989) Elevated dynorphin in the hippocampal formation of aged rats: relation to cognitive impairment on a spatial learning task. Proc Natl Acad Sci USA 86:2948–2951PubMedCrossRefGoogle Scholar
  432. 432.
    Nguyen XV, Masse J, Kumar A, Vijitruth R, Kulik C, Liu M, Choi DY, Foster TC, Usynin I, Bakalkin G, Bing G (2005) Prodynorphin knockout mice demonstrate diminished age-associated impairment in spatial water maze performance. Behav Brain Res 161:254–262. doi: 10.1016/j.bbr.2005.02.010 PubMedCrossRefGoogle Scholar
  433. 433.
    Barg J, Belcheva M, Rowinski J, Ho A, Burke WJ, Chung HD, Schmidt CA, Coscia CJ (1993) Opioid receptor density changes in Alzheimer amygdala and putamen. Brain Res 632:209–215. pii: 0006-8993(93)91155-LPubMedCrossRefGoogle Scholar
  434. 434.
    Hiller JM, Itzhak Y, Simon EJ (1987) Selective changes in mu, delta and kappa opioid receptor binding in certain limbic regions of the brain in Alzheimer’s disease patients. Brain Res 406:17–23PubMedCrossRefGoogle Scholar
  435. 435.
    Mathieu-Kia AM, Fan LQ, Kreek MJ, Simon EJ, Hiller JM (2001) Mu-, delta- and kappa-opioid receptor populations are differentially altered in distinct areas of postmortem brains of Alzheimer’s disease patients. Brain Res 893:121–134. pii: S0006-8993(00)03302-3PubMedCrossRefGoogle Scholar
  436. 436.
    Ikeda M, Mackay KB, Dewar D, McCulloch J (1993) Differential alterations in adenosine A1 and kappa 1 opioid receptors in the striatum in Alzheimer’s disease. Brain Res 616:211–217. pii: 0006-8993(93)90211-5PubMedCrossRefGoogle Scholar
  437. 437.
    Risser D, You ZB, Cairns N, Herrera-Marschitz M, Seidl R, Schneider C, Terenius L, Lubec G (1996) Endogenous opioids in frontal cortex of patients with Down syndrome. Neurosci Lett 203:111–114. pii: 0304-3940(95)12275-3PubMedCrossRefGoogle Scholar
  438. 438.
    Yakovleva T, Marinova Z, Kuzmin A, Seidah NG, Haroutunian V, Terenius L, Bakalkin G (2007) Dysregulation of dynorphins in Alzheimer disease. Neurobiol Aging 28:1700–1708. doi: 10.1016/j.neurobiolaging.2006.07.002 PubMedCrossRefGoogle Scholar
  439. 439.
    Floresco SB, Magyar O (2006) Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology (Berl) 188:567–585. doi: 10.1007/s00213-006-0404-5 CrossRefGoogle Scholar
  440. 440.
    Hiramatsu M, Murasawa H, Nabeshima T, Kameyama T (1998) Effects of U-50, 488H on scopolamine-, mecamylamine- and dizocilpine-induced learning and memory impairment in rats. J Pharmacol Exp Ther 284:858–867PubMedGoogle Scholar
  441. 441.
    Hiramatsu M, Kameyama T (1998) Roles of kappa-opioid receptor agonists in learning and memory impairment in animal models. Methods Find Exp Clin Pharmacol 20:595–599. pii: 485724PubMedCrossRefGoogle Scholar
  442. 442.
    Hiramatsu M, Hoshino T (2004) Involvement of kappa-opioid receptors and sigma receptors in memory function demonstrated using an antisense strategy. Brain Res 1030:247–255. doi: 10.1016/j.brainres.2004.10.020 PubMedCrossRefGoogle Scholar
  443. 443.
    Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192. doi: 10.1001/archpsyc.60.12.1187 PubMedCrossRefGoogle Scholar
  444. 444.
    McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369. doi: 10.1038/nrg2344 PubMedCrossRefGoogle Scholar
  445. 445.
    Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Human genetic variation and its contribution to complex traits. Nat Rev Genet 10:241–251. doi: 10.1038/nrg2554 PubMedCrossRefGoogle Scholar
  446. 446.
    Chen AC, LaForge KS, Ho A, McHugh PF, Kellogg S, Bell K, Schluger RP, Leal SM, Kreek MJ (2002) Potentially functional polymorphism in the promoter region of prodynorphin gene may be associated with protection against cocaine dependence or abuse. Am J Med Genet 114:429–435. doi: 10.1002/ajmg.10362 PubMedCrossRefGoogle Scholar
  447. 447.
    Zhang CS, Tan Z, Lu L, Wu SN, He Y, Gu NF, Feng GY, He L (2004) Polymorphism of Prodynorphin promoter is associated with schizophrenia in Chinese population. Acta Pharmacol Sin 25:1022–1026PubMedGoogle Scholar
  448. 448.
    Ventriglia M, Bocchio Chiavetto L, Bonvicini C, Tura GB, Bignotti S, Racagni G, Gennarelli M (2002) Allelic variation in the human prodynorphin gene promoter and schizophrenia. Neuropsychobiology 46:17–21. pii: nps46017PubMedCrossRefGoogle Scholar
  449. 449.
    Lundström K, Trupin MP (1996) Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest virus system. Biochem Biophys Res Commun 225:1068–1072PubMedCrossRefGoogle Scholar
  450. 450.
    Hellstrand M, Danielsen EA, Steen VM, Ekman A, Eriksson E, Nilsson CL (2004) The ser9gly SNP in the dopamine D3 receptor causes a shift from cAMP related to PGE2 related signal transduction mechanisms in transfected CHO cells. J Med Genet 41:867–871PubMedCrossRefGoogle Scholar
  451. 451.
    Goldman D, Oroszi G, Ducci F (2005) The genetics of addiction: uncovering the genes. Nat Rev Genet 6:521–532PubMedCrossRefGoogle Scholar
  452. 452.
    Chefer VI, Zapata A, Shippenberg TS, Bungay PM (2006) Quantitative no-net-flux microdialysis permits detection of increases and decreases in dopamine uptake in mouse nucleus accumbens. J Neurosci Methods 155:187–193. doi: 10.1016/j.jneumeth.2005.12.018 PubMedCrossRefGoogle Scholar
  453. 453.
    Zapata A, Kivell B, Han Y, Javitch JA, Bolan EA, Kuraguntla D, Jaligam V, Oz M, Jayanthi LD, Samuvel DJ, Ramamoorthy S, Shippenberg TS (2007) Regulation of dopamine transporter function and cell surface expression by D3 dopamine receptors. J Biol Chem 282:35842–35854. doi: 10.1074/jbc.M611758200455 PubMedCrossRefGoogle Scholar
  454. 454.
    Nikoshkov A, Drakenberg K, Wang X, Horvath MC, Keller E, Hurd YL (2008) Opioid neuropeptide genotypes in relation to heroin abuse: dopamine tone contributes to reversed mesolimbic proenkephalin expression. Proc Natl Acad Sci USA 105:786–791. doi: 10.1073/pnas.0710902105 PubMedCrossRefGoogle Scholar
  455. 455.
    Xuei X, Dick D, Flury-Wetherill L, Tian HJ, Agrawal A, Bierut L, Goate A, Bucholz K, Schuckit M, Nurnberger J Jr, Tischfield J, Kuperman S, Porjesz B, Begleiter H, Foroud T, Edenberg HJ (2006) Association of the kappa-opioid system with alcohol dependence. Mol Psychiatry 11:1016–1024. doi: 10.1038/sj.mp.4001882 PubMedCrossRefGoogle Scholar
  456. 456.
    Kolsch H, Wagner M, Bilkei-Gorzo A, Toliat MR, Pentzek M, Fuchs A, Kaduszkiewicz H, van den Bussche H, Riedel-Heller SG, Angermeyer MC, Weyerer S, Werle J, Bickel H, Mosch E, Wiese B, Daerr M, Jessen F, Maier W, Dichgans M (2009) Gene polymorphisms in prodynorphin (PDYN) are associated with episodic memory in the elderly. J Neural Transm 116:897–903. doi: 10.1007/s00702-009-0238-5 PubMedCrossRefGoogle Scholar
  457. 457.
    Zhang H, Kranzler HR, Yang BZ, Luo X, Gelernter J (2008) The OPRD1 and OPRK1 loci in alcohol or drug dependence: OPRD1 variation modulates substance dependence risk. Mol Psychiatry 13:531–543. doi: 10.1038/sj.mp.4002035 PubMedCrossRefGoogle Scholar
  458. 458.
    Hansell NK, Agrawal A, Whitfield JB, Morley KI, Gordon SD, Lind PA, Pergadia ML, Montgomery GW, Madden PA, Todd RD, Heath AC, Martin NG (2009) Can we identify genes for alcohol consumption in samples ascertained for heterogeneous purposes? Alcohol Clin Exp Res 33:729–739. doi: 10.1111/j.1530-0277.2008.00890.x PubMedCrossRefGoogle Scholar
  459. 459.
    Edenberg HJ, Koller DL, Xuei X, Wetherill L, McClintick JN, Almasy L, Bierut LJ, Bucholz KK, Goate A, Aliev F, Dick D, Hesselbrock V, Hinrichs A, Kramer J, Kuperman S, Nurnberger JI Jr, Rice JP, Schuckit MA, Taylor R, Todd Webb B, Tischfield JA, Porjesz B, Foroud T (2010) Genome-wide association study of alcohol dependence implicates a region on chromosome 11. Alcohol Clin Exp Res 34:840–852. doi: 10.1111/j.1530-0277.2010.01156.x PubMedCrossRefGoogle Scholar
  460. 460.
    Sullivan PF, Gejman PV (2010) Response to Mitchell and Porteus. Mol Psychiatry 15:450–452. doi: 10.1038/mp.2009.106 PubMedCrossRefGoogle Scholar
  461. 461.
    LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37:4181–4193. doi: 10.1093/nar/gkp552 PubMedCrossRefGoogle Scholar
  462. 462.
    McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A, Shapero MH, de Bakker PI, Maller JB, Kirby A, Elliott AL, Parkin M, Hubbell E, Webster T, Mei R, Veitch J, Collins PJ, Handsaker R, Lincoln S, Nizzari M, Blume J, Jones KW, Rava R, Daly MJ, Gabriel SB, Altshuler D (2008) Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 40:1166–1174. doi: 10.1038/ng.238 PubMedCrossRefGoogle Scholar
  463. 463.
    Zeggini E, Rayner W, Morris AP, Hattersley AT, Walker M, Hitman GA, Deloukas P, Cardon LR, McCarthy MI (2005) An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat Genet 37:1320–1322. doi: 10.1038/ng1670 PubMedCrossRefGoogle Scholar
  464. 464.
    Mitchell KJ, Porteous DJ (2009) GWAS for psychiatric disease: is the framework built on a solid foundation? Mol Psychiatry 14:740–741. doi: 10.1038/mp.2009.17 PubMedCrossRefGoogle Scholar
  465. 465.
    Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11:415–525PubMedCrossRefGoogle Scholar
  466. 466.
    Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I, Artemenko KA, Yakovleva T, Dooijes D, Van de Warrenburg BP, Zubarev RA, Kremer B, Knapp PE, Hauser KF, Wijmenga C, Nyberg F, Sinke RJ, Verbeek DS (2010) Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet 87:593–603PubMedCrossRefGoogle Scholar
  467. 467.
    Feinberg AP (2010) Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nat Biotechnol 28:1049–1052. doi: 10.1038/nbt1010-1049 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG (Outside the USA) 2011

Authors and Affiliations

  • H. A. Tejeda
    • 1
    • 2
  • T. S. Shippenberg
    • 1
    Email author
  • R. Henriksson
    • 1
    • 3
  1. 1.Integrative Neuroscience SectionIntegrative Neuroscience Research BranchBaltimoreUSA
  2. 2.Department of Anatomy and NeurobiologyUniversity of Maryland, BaltimoreBaltimoreUSA
  3. 3.Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden

Personalised recommendations