Insights into NK cell biology from human genetics and disease associations

  • Stephanie M. Wood
  • Hans-Gustaf Ljunggren
  • Yenan T. Bryceson
Multi-author review

Abstract

Rare human primary immunodeficiency disorders with extreme susceptibility to infections in infancy have provided important insights into immune function. Increasingly, however, primary immunodeficiencies are also recognized as a cause of other more common, often discrete, infectious susceptibilities. In a wider context, loss-of-function mutations in immune genes may also cause disorders of immune regulation and predispose to cancer. Here, we review the associations between human diseases and mutations in genetic elements affecting natural killer (NK) cell development and function. Although many such genetic aberrations significantly reduce NK cell numbers or severely impair NK cell responses, inferences regarding the role of NK cells in disease are confounded by the fact that most mutations also affect the development or function of other cell types. Still, data suggest an important role for NK cells in diseases ranging from classical immunodeficiency syndromes with susceptibility to viruses and other intracellular pathogens to cancer, autoimmunity, and hypersensitivity reactions.

Keywords

Natural killer cells Primary immunodeficiency Cytotoxic lymphocytes 

References

  1. 1.
    Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510PubMedGoogle Scholar
  2. 2.
    Stinchcombe JC, Griffiths GM (2007) Secretory mechanisms in cell-mediated cytotoxicity. Annu Rev Cell Dev Biol 23:495–517PubMedGoogle Scholar
  3. 3.
    Dustin ML, Long EO (2010) Cytotoxic immunological synapses. Immunol Rev 235:24–34PubMedGoogle Scholar
  4. 4.
    Strowig T, Brilot F, Munz C (2008) Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J Immunol 180:7785–7791PubMedGoogle Scholar
  5. 5.
    Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49PubMedGoogle Scholar
  6. 6.
    Biron CA, Byron KS, Sullivan JL (1989) Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320:1731–1735PubMedGoogle Scholar
  7. 7.
    Lanier LL (2008) Evolutionary struggles between NK cells and viruses. Nat Rev Immunol 8:259–268PubMedGoogle Scholar
  8. 8.
    Orange JS (2006) Human natural killer cell deficiencies. Curr Opin Allergy Clin Immunol 6:399–409PubMedGoogle Scholar
  9. 9.
    Wu J, Lanier LL (2003) Natural killer cells and cancer. Adv Cancer Res 90:127–156PubMedGoogle Scholar
  10. 10.
    Flodstrom-Tullberg M, Bryceson YT, Shi FD, Hoglund P, Ljunggren HG (2009) Natural killer cells in human autoimmunity. Curr Opin Immunol 21:634–640PubMedGoogle Scholar
  11. 11.
    von Bubnoff D, Andres E, Hentges F, Bieber T, Michel T, Zimmer J (2010) Natural killer cells in atopic and autoimmune diseases of the skin. J Allergy Clin Immunol 125:60–68Google Scholar
  12. 12.
    Freud AG, Caligiuri MA (2006) Human natural killer cell development. Immunol Rev 214:56–72PubMedGoogle Scholar
  13. 13.
    Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, Moretta A, Munz C (2004) The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 172:1455–1462PubMedGoogle Scholar
  14. 14.
    Romagnani C, Juelke K, Falco M, Morandi B, D’Agostino A, Costa R, Ratto G, Forte G, Carrega P, Lui G, Conte R, Strowig T, Moretta A, Munz C, Thiel A, Moretta L, Ferlazzo G (2007) CD56brightCD16—killer Ig-like receptor—NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 178:4947–4955PubMedGoogle Scholar
  15. 15.
    Fauriat C, Long EO, Ljunggren HG, Bryceson YT (2010) Regulation of human NK cell cytokine and chemokine production by target cell recognition. Blood 115:2167–2176PubMedGoogle Scholar
  16. 16.
    Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park IK, Liu S, McClory S, Marcucci G, Trotta R, Caligiuri MA (2010) CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood 115:274–281PubMedGoogle Scholar
  17. 17.
    Juelke K, Killig M, Luetke-Eversloh M, Parente E, Gruen J, Morandi B, Ferlazzo G, Thiel A, Schmitt-Knosalla I, Romagnani C (2010) CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 116:1299–1307PubMedGoogle Scholar
  18. 18.
    Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, Bjorklund AT, Flodstrom-Tullberg M, Michaelsson J, Rottenberg ME, Guzman CA, Ljunggren HG, Malmberg KJ (2010) Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK cell differentiation uncoupled from NK cell education. Blood 116:3853–3864PubMedGoogle Scholar
  19. 19.
    Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL (2010) CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK cell subset. Blood 116:3865–3874PubMedGoogle Scholar
  20. 20.
    Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D, Romagne F, Ugolini S, Vivier E (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–342PubMedGoogle Scholar
  21. 21.
    Manaster I, Mandelboim O (2010) The unique properties of uterine NK cells. Am J Reprod Immunol 63:434–444PubMedGoogle Scholar
  22. 22.
    Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274PubMedGoogle Scholar
  23. 23.
    Bryceson YT, Long EO (2008) Line of attack: NK cell specificity and integration of signals. Curr Opin Immunol 20:344–352PubMedGoogle Scholar
  24. 24.
    Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91PubMedGoogle Scholar
  25. 25.
    Orange JS (2008) Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol 8:713–725PubMedGoogle Scholar
  26. 26.
    Bryceson YT, Ljunggren HG, Long EO (2009) Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood 114:2657–2666PubMedGoogle Scholar
  27. 27.
    Mentlik AN, Sanborn KB, Holzbaur EL, Orange JS (2010) Rapid lytic granule convergence to the MTOC in natural killer cells is dependent on dynein but not cytolytic commitment. Mol Biol Cell 21:2241–2256PubMedGoogle Scholar
  28. 28.
    Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO (2005) Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med 202:1001–1012PubMedGoogle Scholar
  29. 29.
    Culley FJ, Johnson M, Evans JH, Kumar S, Crilly R, Casasbuenas J, Schnyder T, Mehrabi M, Deonarain MP, Ushakov DS, Braud V, Roth G, Brock R, Kohler K, Davis DM (2009) Natural killer cell signal integration balances synapse symmetry and migration. PLoS Biol 7:e1000159PubMedGoogle Scholar
  30. 30.
    Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107:159–166PubMedGoogle Scholar
  31. 31.
    Kim HS, Das A, Gross CC, Bryceson YT, Long EO (2010) Synergistic signals for natural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase. Immunity 32:175–186PubMedGoogle Scholar
  32. 32.
    Liu D, Bryceson YT, Meckel T, Vasiliver-Shamis G, Dustin ML, Long EO (2009) Integrin-dependent organization and bidirectional vesicular traffic at cytotoxic immune synapses. Immunity 31:99–109PubMedGoogle Scholar
  33. 33.
    Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6:940–952PubMedGoogle Scholar
  34. 34.
    Bossi G, Griffiths GM (1999) Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med 5:90–96PubMedGoogle Scholar
  35. 35.
    Monleon I, Martinez-Lorenzo MJ, Monteagudo L, Lasierra P, Taules M, Iturralde M, Pineiro A, Larrad L, Alava MA, Naval J, Anel A (2001) Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol 167:6736–6744PubMedGoogle Scholar
  36. 36.
    Davis DM (2009) Mechanisms and functions for the duration of intercellular contacts made by lymphocytes. Nat Rev Immunol 9:543–555PubMedGoogle Scholar
  37. 37.
    Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220PubMedGoogle Scholar
  38. 38.
    Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469PubMedGoogle Scholar
  39. 39.
    Munz C (2008) Non-cytotoxic protection by human NK cells in mucosal secondary lymphoid tissues. Eur J Immunol 38:2946–2948PubMedGoogle Scholar
  40. 40.
    Fischer A, Latour S, de Saint Basile G (2007) Genetic defects affecting lymphocyte cytotoxicity. Curr Opin Immunol 19:348–353PubMedGoogle Scholar
  41. 41.
    Notarangelo LD, Fischer A, Geha RS, Casanova JL, Chapel H, Conley ME, Cunningham-Rundles C, Etzioni A, Hammartrom L, Nonoyama S, Ochs HD, Puck J, Roifman C, Seger R, Wedgwood J (2009) Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol 124:1161–1178PubMedGoogle Scholar
  42. 42.
    Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S, Modi WS, McBride OW, Leonard WJ (1993) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73:147–157PubMedGoogle Scholar
  43. 43.
    Gilmour KC, Fujii H, Cranston T, Davies EG, Kinnon C, Gaspar HB (2001) Defective expression of the interleukin-2/interleukin-15 receptor beta subunit leads to a natural killer cell-deficient form of severe combined immunodeficiency. Blood 98:877–879PubMedGoogle Scholar
  44. 44.
    Lee KN, Kang HS, Jeon JH, Kim EM, Yoon SR, Song H, Lyu CY, Piao ZH, Kim SU, Han YH, Song SS, Lee YH, Song KS, Kim YM, Yu DY, Choi I (2005) VDUP1 is required for the development of natural killer cells. Immunity 22:195–208PubMedGoogle Scholar
  45. 45.
    Macchi P, Villa A, Giliani S, Sacco MG, Frattini A, Porta F, Ugazio AG, Johnston JA, Candotti F, O’Shea JJ et al (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377:65–68PubMedGoogle Scholar
  46. 46.
    Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ, Migone TS, Noguchi M, Markert ML, Buckley RH, O’Shea JJ, Leonard WJ (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270:797–800PubMedGoogle Scholar
  47. 47.
    Rochman Y, Spolski R, Leonard WJ (2009) New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 9:480–490PubMedGoogle Scholar
  48. 48.
    Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, Pratt KL, Bezrodnik L, Jasper H, Tepper A, Heinrich JJ, Rosenfeld RG (2003) Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med 349:1139–1147PubMedGoogle Scholar
  49. 49.
    Hwa V, Little B, Adiyaman P, Kofoed EM, Pratt KL, Ocal G, Berberoglu M, Rosenfeld RG (2005) Severe growth hormone insensitivity resulting from total absence of signal transducer and activator of transcription 5b. J Clin Endocrinol Metab 90:4260–4266PubMedGoogle Scholar
  50. 50.
    Bernasconi A, Marino R, Ribas A, Rossi J, Ciaccio M, Oleastro M, Ornani A, Paz R, Rivarola MA, Zelazko M, Belgorosky A (2006) Characterization of immunodeficiency in a patient with growth hormone insensitivity secondary to a novel STAT5b gene mutation. Pediatrics 118:e1584–e1592PubMedGoogle Scholar
  51. 51.
    Giblett ER, Anderson JE, Cohen F, Pollara B, Meuwissen HJ (1972) Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 2:1067–1069PubMedGoogle Scholar
  52. 52.
    Apasov SG, Blackburn MR, Kellems RE, Smith PT, Sitkovsky MV (2001) Adenosine deaminase deficiency increases thymic apoptosis and causes defective T cell receptor signaling. J Clin Invest 108:131–141PubMedGoogle Scholar
  53. 53.
    Etzioni A, Eidenschenk C, Katz R, Beck R, Casanova JL, Pollack S (2005) Fatal varicella associated with selective natural killer cell deficiency. J Pediatr 146:423–425PubMedGoogle Scholar
  54. 54.
    Eidenschenk C, Dunne J, Jouanguy E, Fourlinnie C, Gineau L, Bacq D, McMahon C, Smith O, Casanova JL, Abel L, Feighery C (2006) A novel primary immunodeficiency with specific natural-killer cell deficiency maps to the centromeric region of chromosome 8. Am J Hum Genet 78:721–727PubMedGoogle Scholar
  55. 55.
    Eidenschenk C, Jouanguy E, Alcais A, Mention JJ, Pasquier B, Fleckenstein IM, Puel A, Gineau L, Carel JC, Vivier E, Le Deist F, Casanova JL (2006) Familial NK cell deficiency associated with impaired IL-2- and IL-15-dependent survival of lymphocytes. J Immunol 177:8835–8843PubMedGoogle Scholar
  56. 56.
    Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, Ma A (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9:669–676PubMedGoogle Scholar
  57. 57.
    Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706PubMedGoogle Scholar
  58. 58.
    Gascoyne DM, Long E, Veiga-Fernandes H, de Boer J, Williams O, Seddon B, Coles M, Kioussis D, Brady HJ (2009) The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 10:1118–1124PubMedGoogle Scholar
  59. 59.
    Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, Biron CA, Gapin L, Glimcher LH (2004) T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20:477–494PubMedGoogle Scholar
  60. 60.
    Etzioni A (2009) Genetic etiologies of leukocyte adhesion defects. Curr Opin Immunol 21:481–486PubMedGoogle Scholar
  61. 61.
    Kohl S, Loo LS, Schmalstieg FS, Anderson DC (1986) The genetic deficiency of leukocyte surface glycoprotein Mac-1, LFA-1, p150,95 in humans is associated with defective antibody-dependent cellular cytotoxicity in vitro and defective protection against herpes simplex virus infection in vivo. J Immunol 137:1688–1694PubMedGoogle Scholar
  62. 62.
    Lau YL, Low LC, Jones BM, Lawton JW (1991) Defective neutrophil and lymphocyte function in leucocyte adhesion deficiency. Clin Exp Immunol 85:202–208PubMedGoogle Scholar
  63. 63.
    Castriconi R, Dondero A, Cantoni C, Della Chiesa M, Prato C, Nanni M, Fiorini M, Notarangelo L, Parolini S, Moretta L, Moretta A, Bottino C (2007) Functional characterization of natural killer cells in type I leukocyte adhesion deficiency. Blood 109:4873–4881PubMedGoogle Scholar
  64. 64.
    Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758PubMedGoogle Scholar
  65. 65.
    Kastbom A, Ahmadi A, Soderkvist P, Skogh T (2005) The 158V polymorphism of Fc gamma receptor type IIIA in early rheumatoid arthritis: increased susceptibility and severity in male patients (the Swedish TIRA project). Rheumatology (Oxford) 44:1294–1298Google Scholar
  66. 66.
    Takeuchi T, Nakagawa T, Ikemoto T, Sasaki M, Makino S, Shimizu A, Ohsawa N (1999) A novel mutation in the FcgammaRIIIA gene (CD16) results in active natural killer cells lacking CD16. Autoimmunity 31:265–271PubMedGoogle Scholar
  67. 67.
    Lenart M, Trzyna E, Rutkowska M, Bukowska-Strakova K, Szaflarska A, Pituch-Noworolska A, Szczepanik A, Zembala M, Siedlar M (2010) The loss of the CD16 B73.1/Leu11c epitope occurring in some primary immunodeficiency diseases is not associated with the FcgammaRIIIa-48L/R/H polymorphism. Int J Mol Med 26:435–442PubMedGoogle Scholar
  68. 68.
    Hafler JP, Maier LM, Cooper JD, Plagnol V, Hinks A, Simmonds MJ, Stevens HE, Walker NM, Healy B, Howson JM, Maisuria M, Duley S, Coleman G, Gough SC, Worthington J, Kuchroo VK, Wicker LS, Todd JA (2009) CD226 Gly307Ser association with multiple autoimmune diseases. Genes Immun 10:5–10PubMedGoogle Scholar
  69. 69.
    Suzuki A, Yamada R, Kochi Y, Sawada T, Okada Y, Matsuda K, Kamatani Y, Mori M, Shimane K, Hirabayashi Y, Takahashi A, Tsunoda T, Miyatake A, Kubo M, Kamatani N, Nakamura Y, Yamamoto K (2008) Functional SNPs in CD244 increase the risk of rheumatoid arthritis in a Japanese population. Nat Genet 40:1224–1229PubMedGoogle Scholar
  70. 70.
    Melum E, Karlsen TH, Schrumpf E, Bergquist A, Thorsby E, Boberg KM, Lie BA (2008) Cholangiocarcinoma in primary sclerosing cholangitis is associated with NKG2D polymorphisms. Hepatology 47:90–96PubMedGoogle Scholar
  71. 71.
    Van Belle TL, von Herrath MG (2009) The role of the activating receptor NKG2D in autoimmunity. Mol Immunol 47:8–11PubMedGoogle Scholar
  72. 72.
    Petukhova L, Duvic M, Hordinsky M, Norris D, Price V, Shimomura Y, Kim H, Singh P, Lee A, Chen WV, Meyer KC, Paus R, Jahoda CA, Amos CI, Gregersen PK, Christiano AM (2010) Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466:113–117PubMedGoogle Scholar
  73. 73.
    Kulkarni S, Martin MP, Carrington M (2008) The Yin and Yang of HLA and KIR in human disease. Semin Immunol 20:343–352PubMedGoogle Scholar
  74. 74.
    Momot T, Koch S, Hunzelmann N, Krieg T, Ulbricht K, Schmidt RE, Witte T (2004) Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum 50:1561–1565PubMedGoogle Scholar
  75. 75.
    Nelson GW, Martin MP, Gladman D, Wade J, Trowsdale J, Carrington M (2004) Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 173:4273–4276PubMedGoogle Scholar
  76. 76.
    Yen JH, Moore BE, Nakajima T, Scholl D, Schaid DJ, Weyand CM, Goronzy JJ (2001) Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med 193:1159–1167PubMedGoogle Scholar
  77. 77.
    van der Slik AR, Alizadeh BZ, Koeleman BP, Roep BO, Giphart MJ (2007) Modelling KIR-HLA genotype disparities in type 1 diabetes. Tissue Antigens 69(Suppl 1):101–105PubMedGoogle Scholar
  78. 78.
    de la Salle H, Hanau D, Fricker D, Urlacher A, Kelly A, Salamero J, Powis SH, Donato L, Bausinger H, Laforet M et al (1994) Homozygous human TAP peptide transporter mutation in HLA class I deficiency. Science 265:237–241PubMedGoogle Scholar
  79. 79.
    Furukawa H, Murata S, Yabe T, Shimbara N, Keicho N, Kashiwase K, Watanabe K, Ishikawa Y, Akaza T, Tadokoro K, Tohma S, Inoue T, Tokunaga K, Yamamoto K, Tanaka K, Juji T (1999) Splice acceptor site mutation of the transporter associated with antigen processing-1 gene in human bare lymphocyte syndrome. J Clin Invest 103:755–758PubMedGoogle Scholar
  80. 80.
    Cerundolo V, de la Salle H (2006) Description of HLA class I- and CD8-deficient patients: insights into the function of cytotoxic T lymphocytes and NK cells in host defense. Semin Immunol 18:330–336PubMedGoogle Scholar
  81. 81.
    Rieux-Laucat F, Hivroz C, Lim A, Mateo V, Pellier I, Selz F, Fischer A, Le Deist F (2006) Inherited and somatic CD3zeta mutations in a patient with T-cell deficiency. N Engl J Med 354:1913–1921PubMedGoogle Scholar
  82. 82.
    Roberts JL, Lauritsen JP, Cooney M, Parrott RE, Sajaroff EO, Win CM, Keller MD, Carpenter JH, Carabana J, Krangel MS, Sarzotti M, Zhong XP, Wiest DL, Buckley RH (2007) T-B+NK+ severe combined immunodeficiency caused by complete deficiency of the CD3zeta subunit of the T-cell antigen receptor complex. Blood 109:3198–3206PubMedGoogle Scholar
  83. 83.
    Paloneva J, Kestila M, Wu J, Salminen A, Bohling T, Ruotsalainen V, Hakola P, Bakker AB, Phillips JH, Pekkarinen P, Lanier LL, Timonen T, Peltonen L (2000) Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet 25:357–361PubMedGoogle Scholar
  84. 84.
    Derry JM, Ochs HD, Francke U (1994) Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell 78:635–644PubMedGoogle Scholar
  85. 85.
    Orange JS, Ramesh N, Remold-O’Donnell E, Sasahara Y, Koopman L, Byrne M, Bonilla FA, Rosen FS, Geha RS, Strominger JL (2002) Wiskott–Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc Natl Acad Sci USA 99:11351–11356PubMedGoogle Scholar
  86. 86.
    Gismondi A, Cifaldi L, Mazza C, Giliani S, Parolini S, Morrone S, Jacobelli J, Bandiera E, Notarangelo L, Santoni A (2004) Impaired natural and CD16-mediated NK cell cytotoxicity in patients with WAS and XLT: ability of IL-2 to correct NK cell functional defect. Blood 104:436–443PubMedGoogle Scholar
  87. 87.
    Stabile H, Carlino C, Mazza C, Giliani S, Morrone S, Notarangelo LD, Notarangelo LD, Santoni A, Gismondi A (2010) Impaired NK-cell migration in WAS/XLT patients: role of Cdc42/WASp pathway in the control of chemokine-induced beta2 integrin high-affinity state. Blood 115:2818–2826PubMedGoogle Scholar
  88. 88.
    Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM, Dale JK, Puck J, Davis J, Hall CG, Skoda-Smith S, Atkinson TP, Straus SE, Lenardo MJ (2002) Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419:395–399PubMedGoogle Scholar
  89. 89.
    Su H, Bidere N, Zheng L, Cubre A, Sakai K, Dale J, Salmena L, Hakem R, Straus S, Lenardo M (2005) Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science 307:1465–1468PubMedGoogle Scholar
  90. 90.
    Zonana J, Elder ME, Schneider LC, Orlow SJ, Moss C, Golabi M, Shapira SK, Farndon PA, Wara DW, Emmal SA, Ferguson BM (2000) A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 67:1555–1562PubMedGoogle Scholar
  91. 91.
    Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, Wood P, Rabia SH, Headon DJ, Overbeek PA, Le Deist F, Holland SM, Belani K, Kumararatne DS, Fischer A, Shapiro R, Conley ME, Reimund E, Kalhoff H, Abinun M, Munnich A, Israel A, Courtois G, Casanova JL (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285PubMedGoogle Scholar
  92. 92.
    Orange JS, Brodeur SR, Jain A, Bonilla FA, Schneider LC, Kretschmer R, Nurko S, Rasmussen WL, Kohler JR, Gellis SE, Ferguson BM, Strominger JL, Zonana J, Ramesh N, Ballas ZK, Geha RS (2002) Deficient natural killer cell cytotoxicity in patients with IKK-gamma/NEMO mutations. J Clin Invest 109:1501–1509PubMedGoogle Scholar
  93. 93.
    Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W (2001) Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2:223–228PubMedGoogle Scholar
  94. 94.
    Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, Cahn AP, Durham J, Heath P, Wray P, Pavitt R, Wilkinson J, Leversha M, Huckle E, Shaw-Smith CJ, Dunham A, Rhodes S, Schuster V, Porta G, Yin L, Serafini P, Sylla B, Zollo M, Franco B, Bolino A, Seri M, Lanyi A, Davis JR, Webster D, Harris A, Lenoir G, de St Basile G, Jones A, Behloradsky BH, Achatz H, Murken J, Fassler R, Sumegi J, Romeo G, Vaudin M, Ross MT, Meindl A, Bentley DR (1998) Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet 20:129–135PubMedGoogle Scholar
  95. 95.
    Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, Galicier L, Le Deist F, Rieux-Laucat F, Revy P, Fischer A, de Saint Basile G, Latour S (2006) XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444:110–114PubMedGoogle Scholar
  96. 96.
    Arico M, Imashuku S, Clementi R, Hibi S, Teramura T, Danesino C, Haber DA, Nichols KE (2001) Hemophagocytic lymphohistiocytosis due to germline mutations in SH2D1A, the X-linked lymphoproliferative disease gene. Blood 97:1131–1133PubMedGoogle Scholar
  97. 97.
    Marsh RA, Madden L, Kitchen BJ, Mody R, McClimon B, Jordan MB, Bleesing JJ, Zhang K, Filipovich AH (2010) XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood 116:1079–1082PubMedGoogle Scholar
  98. 98.
    Schwartzberg PL, Mueller KL, Qi H, Cannons JL (2009) SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat Rev Immunol 9:39–46PubMedGoogle Scholar
  99. 99.
    Sullivan JL, Byron KS, Brewster FE, Purtilo DT (1980) Deficient natural killer cell activity in x-linked lymphoproliferative syndrome. Science 210:543–545PubMedGoogle Scholar
  100. 100.
    Snow AL, Marsh RA, Krummey SM, Roehrs P, Young LR, Zhang K, van Hoff J, Dhar D, Nichols KE, Filipovich AH, Su HC, Bleesing JJ, Lenardo MJ (2009) Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J Clin Invest 119:2976–2989PubMedGoogle Scholar
  101. 101.
    Nagy N, Matskova L, Kis LL, Hellman U, Klein G, Klein E (2009) The proapoptotic function of SAP provides a clue to the clinical picture of X-linked lymphoproliferative disease. Proc Natl Acad Sci USA 106:11966–11971PubMedGoogle Scholar
  102. 102.
    Huck K, Feyen O, Niehues T, Ruschendorf F, Hubner N, Laws HJ, Telieps T, Knapp S, Wacker HH, Meindl A, Jumaa H, Borkhardt A (2009) Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest 119:1350–1358PubMedGoogle Scholar
  103. 103.
    Khurana D, Arneson LN, Schoon RA, Dick CJ, Leibson PJ (2007) Differential regulation of human NK cell-mediated cytotoxicity by the tyrosine kinase Itk. J Immunol 178:3575–3582PubMedGoogle Scholar
  104. 104.
    Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231:189–209PubMedGoogle Scholar
  105. 105.
    Maul-Pavicic A, Chiang SCC, Rensing-Ehl A, Jessen B, Fauriat C, Wood SM, Sjöqvist S, Hufnagel M, Schulze I, Bass T, Schamel WWA, Fuchs S, Pircher H, McCarl C-A, Mikoshiba K, Schwarz K, Feske S, Bryceson YT, Ehl S (2011) ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. Proc Natl Acad Sci USA (in press)Google Scholar
  106. 106.
    Janka GE (2007) Hemophagocytic syndromes. Blood Rev 21:245–253PubMedGoogle Scholar
  107. 107.
    Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew PA, Henter JI, Bennett M, Fischer A, de Saint Basile G, Kumar V (1999) Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286:1957–1959PubMedGoogle Scholar
  108. 108.
    Chia J, Yeo KP, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I (2009) Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proc Natl Acad Sci USA 106:9809–9814PubMedGoogle Scholar
  109. 109.
    Barbosa MD, Nguyen QA, Tchernev VT, Ashley JA, Detter JC, Blaydes SM, Brandt SJ, Chotai D, Hodgman C, Solari RC, Lovett M, Kingsmore SF (1996) Identification of the homologous beige and Chediak–Higashi syndrome genes. Nature 382:262–265PubMedGoogle Scholar
  110. 110.
    Dell’Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS (1999) Altered trafficking of lysosomal proteins in Hermansky–Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell 3:11–21PubMedGoogle Scholar
  111. 111.
    Badolato R, Parolini S (2007) Novel insights from adaptor protein 3 complex deficiency. J Allergy Clin Immunol 120:735–741 (quiz 742-3)PubMedGoogle Scholar
  112. 112.
    Roder JC, Haliotis T, Klein M, Korec S, Jett JR, Ortaldo J, Heberman RB, Katz P, Fauci AS (1980) A new immunodeficiency disorder in humans involving NK cells. Nature 284:553–555PubMedGoogle Scholar
  113. 113.
    Baetz K, Isaaz S, Griffiths GM (1995) Loss of cytotoxic T lymphocyte function in Chediak–Higashi syndrome arises from a secretory defect that prevents lytic granule exocytosis. J Immunol 154:6122–6131PubMedGoogle Scholar
  114. 114.
    Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556PubMedGoogle Scholar
  115. 115.
    Tanabe F, Kasai H, He L, Kin T, Fujikado T, Kumamoto T, Hara T, Iwata T, Ito M (2009) Improvement of deficient natural killer activity and delayed bactericidal activity by a thiol proteinase inhibitor, E-64-d, in leukocytes from Chediak–Higashi syndrome patients in vitro. Int Immunopharmacol 9:366–370PubMedGoogle Scholar
  116. 116.
    Jung J, Bohn G, Allroth A, Boztug K, Brandes G, Sandrock I, Schaffer AA, Rathinam C, Kollner I, Beger C, Schilke R, Welte K, Grimbacher B, Klein C (2006) Identification of a homozygous deletion in the AP3B1 gene causing Hermansky–Pudlak syndrome, type 2. Blood 108:362–369PubMedGoogle Scholar
  117. 117.
    Fontana S, Parolini S, Vermi W, Booth S, Gallo F, Donini M, Benassi M, Gentili F, Ferrari D, Notarangelo LD, Cavadini P, Marcenaro E, Dusi S, Cassatella M, Facchetti F, Griffiths GM, Moretta A, Notarangelo LD, Badolato R (2006) Innate immunity defects in Hermansky–Pudlak type 2 syndrome. Blood 107:4857–4864PubMedGoogle Scholar
  118. 118.
    Enders A, Zieger B, Schwarz K, Yoshimi A, Speckmann C, Knoepfle EM, Kontny U, Muller C, Nurden A, Rohr J, Henschen M, Pannicke U, Niemeyer C, Nurden P, Ehl S (2006) Lethal hemophagocytic lymphohistiocytosis in Hermansky–Pudlak syndrome type II. Blood 108:81–87PubMedGoogle Scholar
  119. 119.
    Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA (2010) Perforin: structure, function, and role in human immunopathology. Immunol Rev 235:35–54PubMedGoogle Scholar
  120. 120.
    Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D’Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468:447–451PubMedGoogle Scholar
  121. 121.
    Simon MM, Hausmann M, Tran T, Ebnet K, Tschopp J, ThaHla R, Mullbacher A (1997) In vitro- and ex vivo-derived cytolytic leukocytes from granzyme A x B double knockout mice are defective in granule-mediated apoptosis but not lysis of target cells. J Exp Med 186:1781–1786PubMedGoogle Scholar
  122. 122.
    Toomes C, James J, Wood AJ, Wu CL, McCormick D, Lench N, Hewitt C, Moynihan L, Roberts E, Woods CG, Markham A, Wong M, Widmer R, Ghaffar KA, Pemberton M, Hussein IR, Temtamy SA, Davies R, Read AP, Sloan P, Dixon MJ, Thakker NS (1999) Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat Genet 23:421–424PubMedGoogle Scholar
  123. 123.
    Smyth MJ, McGuire MJ, Thia KY (1995) Expression of recombinant human granzyme B. A processing and activation role for dipeptidyl peptidase I. J Immunol 154:6299–6305PubMedGoogle Scholar
  124. 124.
    Pham CT, Ley TJ (1999) Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci USA 96:8627–8632PubMedGoogle Scholar
  125. 125.
    Meade JL, de Wynter EA, Brett P, Sharif SM, Woods CG, Markham AF, Cook GP (2006) A family with Papillon–Lefevre syndrome reveals a requirement for cathepsin C in granzyme B activation and NK cell cytolytic activity. Blood 107:3665–3668PubMedGoogle Scholar
  126. 126.
    Menasche G, Pastural E, Feldmann J, Certain S, Ersoy F, Dupuis S, Wulffraat N, Bianchi D, Fischer A, Le Deist F, de Saint Basile G (2000) Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 25:173–176PubMedGoogle Scholar
  127. 127.
    Feldmann J, Callebaut I, Raposo G, Certain S, Bacq D, Dumont C, Lambert N, Ouachee-Chardin M, Chedeville G, Tamary H, Minard-Colin V, Vilmer E, Blanche S, Le Deist F, Fischer A, de Saint Basile G (2003) Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115:461–473PubMedGoogle Scholar
  128. 128.
    zur Stadt U, Schmidt S, Kasper B, Beutel K, Diler AS, Henter JI, Kabisch H, Schneppenheim R, Nurnberg P, Janka G, Hennies HC (2005) Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet 14:827–834PubMedGoogle Scholar
  129. 129.
    Cote M, Menager MM, Burgess A, Mahlaoui N, Picard C, Schaffner C, Al-Manjomi F, Al-Harbi M, Alangari A, Le Deist F, Gennery AR, Prince N, Cariou A, Nitschke P, Blank U, El-Ghazali G, Menasche G, Latour S, Fischer A, de Saint Basile G (2009) Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest 119:3765–3773PubMedGoogle Scholar
  130. 130.
    zur Stadt U, Rohr J, Seifert W, Koch F, Grieve S, Pagel J, Strauss J, Kasper B, Nurnberg G, Becker C, Maul-Pavicic A, Beutel K, Janka G, Griffiths G, Ehl S, Hennies HC (2009) Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet 85:482–492PubMedGoogle Scholar
  131. 131.
    Meeths M, Entesarian M, Al-Herz W, Chiang SC, Wood SM, Al-Ateeqi W, Almazan F, Boelens JJ, Hasle H, Ifversen M, Lund B, van den Berg JM, Gustafsson B, Hjelmqvist H, Nordenskjold M, Bryceson YT, Henter JI (2010) Spectrum of clinical presentations in familial hemophagocytic lymphohistiocytosis (FHL) type 5 patients with mutations in STXBP2. Blood 116:2635–2643PubMedGoogle Scholar
  132. 132.
    Rohr J, Beutel K, Maul-Pavicic A, Vraetz T, Thiel J, Warnatz K, Bondzio I, Gross-Wieltsch U, Schundeln M, Schutz B, Woessmann W, Groll AH, Strahm B, Pagel J, Speckmann C, Janka G, Griffiths G, Schwarz K, Zur Stadt U, Ehl S (2010) Atypical familial hemophagocytic lymphohistiocytosis due to mutations in UNC13D and STXBP2 overlaps with primary immunodeficiency diseases. Haematologica 95:2080–2087PubMedGoogle Scholar
  133. 133.
    Bryceson YT, Rudd E, Zheng C, Edner J, Ma D, Wood SM, Bechensteen AG, Boelens JJ, Celkan T, Farah RA, Hultenby K, Winiarski J, Roche PA, Nordenskjold M, Henter JI, Long EO, Ljunggren HG (2007) Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood 110:1906–1915PubMedGoogle Scholar
  134. 134.
    Menager MM, Menasche G, Romao M, Knapnougel P, Ho CH, Garfa M, Raposo G, Feldmann J, Fischer A, de Saint Basile G (2007) Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4. Nat Immunol 8:257–267PubMedGoogle Scholar
  135. 135.
    Wood SM, Meeths M, Chiang SC, Bechensteen AG, Boelens JJ, Heilmann C, Horiuchi H, Rosthoj S, Rutynowska O, Winiarski J, Stow JL, Nordenskjold M, Henter JI, Ljunggren HG, Bryceson YT (2009) Different NK cell activating receptors preferentially recruit Rab27a or Munc13-4 to perforin-containing granules for cytotoxicity. Blood 114:4117–4127PubMedGoogle Scholar
  136. 136.
    Yoshimura S, Gerondopoulos A, Linford A, Rigden DJ, Barr FA (2010) Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J Cell Biol 191:367–381PubMedGoogle Scholar
  137. 137.
    Shirakawa R, Higashi T, Tabuchi A, Yoshioka A, Nishioka H, Fukuda M, Kita T, Horiuchi H (2004) Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. J Biol Chem 279:10730–10737PubMedGoogle Scholar
  138. 138.
    Holt O, Kanno E, Bossi G, Booth S, Daniele T, Santoro A, Arico M, Saegusa C, Fukuda M, Griffiths GM (2008) Slp1 and Slp2-a Localize to the plasma membrane of CTL and contribute to secretion from the immunological synapse. Traffic 9:446–457PubMedGoogle Scholar
  139. 139.
    Menasche G, Menager MM, Lefebvre JM, Deutsch E, Athman R, Lambert N, Mahlaoui N, Court M, Garin J, Fischer A, de Saint Basile G (2008) A newly identified isoform of Slp2a associates with Rab27a in cytotoxic T cells and participates to cytotoxic granule secretion. Blood 112:5052–5062PubMedGoogle Scholar
  140. 140.
    Marcenaro S, Gallo F, Martini S, Santoro A, Griffiths GM, Arico M, Moretta L, Pende D (2006) Analysis of natural killer-cell function in familial hemophagocytic lymphohistiocytosis (FHL): defective CD107a surface expression heralds Munc13-4 defect and discriminates between genetic subtypes of the disease. Blood 108:2316–2323PubMedGoogle Scholar
  141. 141.
    Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–465PubMedGoogle Scholar
  142. 142.
    Liu D, Meckel T, Long EO (2010) Distinct role of rab27a in granule movement at the plasma membrane and in the cytosol of NK cells. PLoS One 5:e12870PubMedGoogle Scholar
  143. 143.
    Stinchcombe JC, Barral DC, Mules EH, Booth S, Hume AN, Machesky LM, Seabra MC, Griffiths GM (2001) Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol 152:825–834PubMedGoogle Scholar
  144. 144.
    Sanborn KB, Rak GD, Maru SY, Demers K, Difeo A, Martignetti JA, Betts MR, Favier R, Banerjee PP, Orange JS (2009) Myosin IIA associates with NK cell lytic granules to enable their interaction with F-actin and function at the immunological synapse. J Immunol 182:6969–6984PubMedGoogle Scholar
  145. 145.
    Andzelm MM, Chen X, Krzewski K, Orange JS, Strominger JL (2007) Myosin IIA is required for cytolytic granule exocytosis in human NK cells. J Exp Med 204:2285–2291PubMedGoogle Scholar
  146. 146.
    Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F, Augustin I, Hesse D, Sudhof TC, Takahashi M, Rosenmund C, Brose N (2002) Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108:121–133PubMedGoogle Scholar
  147. 147.
    Junge HJ, Rhee JS, Jahn O, Varoqueaux F, Spiess J, Waxham MN, Rosenmund C, Brose N (2004) Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell 118:389–401PubMedGoogle Scholar
  148. 148.
    Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643PubMedGoogle Scholar
  149. 149.
    Advani RJ, Bae HR, Bock JB, Chao DS, Doung YC, Prekeris R, Yoo JS, Scheller RH (1998) Seven novel mammalian SNARE proteins localize to distinct membrane compartments. J Biol Chem 273:10317–10324PubMedGoogle Scholar
  150. 150.
    Valdez AC, Cabaniols JP, Brown MJ, Roche PA (1999) Syntaxin 11 is associated with SNAP-23 on late endosomes and the trans-Golgi network. J Cell Sci 112(Pt 6):845–854PubMedGoogle Scholar
  151. 151.
    Prekeris R, Klumperman J, Scheller RH (2000) Syntaxin 11 is an atypical SNARE abundant in the immune system. Eur J Cell Biol 79:771–780PubMedGoogle Scholar
  152. 152.
    Riento K, Kauppi M, Keranen S, Olkkonen VM (2000) Munc18-2, a functional partner of syntaxin 3, controls apical membrane trafficking in epithelial cells. J Biol Chem 275:13476–13483PubMedGoogle Scholar
  153. 153.
    Fukuda M, Imai A, Nashida T, Shimomura H (2005) Slp4-a/granuphilin-a interacts with syntaxin-2/3 in a Munc18-2-dependent manner. J Biol Chem 280:39175–39184PubMedGoogle Scholar
  154. 154.
    Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, Glessner JT, Grabs R, Casalunovo T, Taback SP, Frackelton EC, Lawson ML, Robinson LJ, Skraban R, Lu Y, Chiavacci RM, Stanley CA, Kirsch SE, Rappaport EF, Orange JS, Monos DS, Devoto M, Qu HQ, Polychronakos C (2007) A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448:591–594PubMedGoogle Scholar
  155. 155.
    Rubio JP, Stankovich J, Field J, Tubridy N, Marriott M, Chapman C, Bahlo M, Perera D, Johnson LJ, Tait BD, Varney MD, Speed TP, Taylor BV, Foote SJ, Butzkueven H, Kilpatrick TJ (2008) Replication of KIAA0350, IL2RA, RPL5 and CD58 as multiple sclerosis susceptibility genes in Australians. Genes Immun 9:624–630PubMedGoogle Scholar
  156. 156.
    Notarangelo LD, Casanova JL (2009) Primary immunodeficiencies: increasing market share. Curr Opin Immunol 21:461–465PubMedGoogle Scholar
  157. 157.
    Rudd E, Bryceson YT, Zheng C, Edner J, Wood SM, Ramme K, Gavhed S, Gurgey A, Hellebostad M, Bechensteen AG, Ljunggren HG, Fadeel B, Nordenskjold M, Henter JI (2008) Spectrum, and clinical and functional implications of UNC13D mutations in familial haemophagocytic lymphohistiocytosis. J Med Genet 45:134–141PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Stephanie M. Wood
    • 1
  • Hans-Gustaf Ljunggren
    • 1
  • Yenan T. Bryceson
    • 1
  1. 1.Department of Medicine, Center for Infectious Medicine, Karolinska InstitutetKarolinska University Hospital HuddingeStockholmSweden

Personalised recommendations