Cellular and Molecular Life Sciences

, Volume 68, Issue 24, pp 4045–4064 | Cite as

Emerging roles of the SUMO pathway in development



Sumoylation is a reversible post-translational modification that targets a variety of proteins mainly within the nucleus, but also in the plasma membrane and cytoplasm of the cell. It controls diverse cellular mechanisms such as subcellular localization, protein–protein interactions, or transcription factor activity. In recent years, the use of several developmental model systems has unraveled many critical functions for the sumoylation system in the early life of diverse species. In particular, detailed analyses of mutant organisms in both the components of the SUMO pathway and their targets have established the importance of the SUMO system in early developmental processes, such as cell division, cell lineage commitment, specification, and/or differentiation. In addition, an increasing number of developmental proteins, including transcription factors and epigenetic regulators, have been identified as sumoylation substrates. Sumoylation acts on these targets through various mechanisms. For example, this modification has been involved in converting a transcription factor from an activator to a repressor or in regulating the localization and/or stability of numerous transcription factors. This review will summarize current information on the function of sumoylation in embryonic development in different species from yeast to mammals.


  1. 1.
    Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280(2):275–286. doi:10.1006/jmbi.1998.1839 PubMedCrossRefGoogle Scholar
  2. 2.
    Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108(3):345–356. doi:10.1016/S0092-8674(02)00630-X PubMedCrossRefGoogle Scholar
  3. 3.
    Mossessova E, Lima CD (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5(5):865–876. doi:10.1016/S1097-2765(00)80326-3 PubMedCrossRefGoogle Scholar
  4. 4.
    Desterro JM, Rodriguez MS, Kemp GD, Hay RT (1999) Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem 274(15):10618–10624. doi:10.1074/jbc.274.15.10618 PubMedCrossRefGoogle Scholar
  5. 5.
    Gong L, Li B, Millas S, Yeh ET (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett 448(1):185–189. doi:10.1016/S0014-5793(99)00367-1 PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson ES, Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272(43):26799–26802. doi:10.1074/jbc.272.43.26799 PubMedCrossRefGoogle Scholar
  7. 7.
    Aguilar RC, Wendland B (2003) Ubiquitin: not just for proteasomes anymore. Curr Opin Cell Biol 15(2):184–190. doi:10.1016/S0955-0674(03)00010-3 PubMedCrossRefGoogle Scholar
  8. 8.
    Bingol B, Sheng M (2011) Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69(1):22–32. doi:10.1016/j.neuron.2010.11.006 PubMedCrossRefGoogle Scholar
  9. 9.
    Johnson ES (2002) Ubiquitin branches out. Nat Cell Biol 4(12):E295–E298. doi:10.1038/ncb1202-e295 PubMedCrossRefGoogle Scholar
  10. 10.
    Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8(12):947–956. doi:10.1038/nrm2293 PubMedCrossRefGoogle Scholar
  11. 11.
    Hay RT (2007) SUMO-specific proteases: a twist in the tail. Trends Cell Biol 17(8):370–376. doi:10.1016/j.tcb.2007.08.002 PubMedCrossRefGoogle Scholar
  12. 12.
    Kim KI, Baek SH (2009) Small ubiquitin-like modifiers in cellular malignancy and metastasis. Int Rev Cell Mol Biol 273:265–311. doi:10.1016/S1937-6448(08)01807-8 PubMedCrossRefGoogle Scholar
  13. 13.
    Scheschonka A, Tang Z, Betz H (2007) Sumoylation in neurons: nuclear and synaptic roles? Trends Neurosci 30(3):85–91. doi:10.1016/j.tins.2007.01.003 PubMedCrossRefGoogle Scholar
  14. 14.
    Matic I, van Hagen M, Schimmel J, Macek B, Ogg SC, Tatham MH, Hay RT, Lamond AI, Mann M, Vertegaal AC (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 7(1):132–144. doi:10.1074/mcp.M700173-MCP200 PubMedGoogle Scholar
  15. 15.
    Tatham MH, Hay RT (2009) FRET-based in vitro assays for the analysis of SUMO protease activities. Methods Mol Biol 497:253–268. doi:10.1007/978-1-59745-566-4_17 PubMedCrossRefGoogle Scholar
  16. 16.
    Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano-Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36(8):837–841. doi:10.1038/ng1391 PubMedCrossRefGoogle Scholar
  17. 17.
    Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32(6):286–295. doi:10.1016/j.tibs.2007.05.002 PubMedCrossRefGoogle Scholar
  18. 18.
    Hay RT (2005) SUMO: a history of modification. Mol Cell 18(1):1–12. doi:10.1016/j.molcel.2005.03.012 PubMedCrossRefGoogle Scholar
  19. 19.
    Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88(1):97–107. doi:10.1016/S0092-8674(00)81862-0 PubMedCrossRefGoogle Scholar
  20. 20.
    Mahajan R, Gerace L, Melchior F (1998) Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J Cell Biol 140(2):259–270. doi:10.1083/jcb.140.2.259 PubMedCrossRefGoogle Scholar
  21. 21.
    Denison C, Rudner AD, Gerber SA, Bakalarski CE, Moazed D, Gygi SP (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteomics 4(3):246–254. doi:10.1074/mcp.M400154-MCP200 PubMedCrossRefGoogle Scholar
  22. 22.
    Nie M, Xie Y, Loo JA, Courey AJ (2009) Genetic and proteomic evidence for roles of Drosophila SUMO in cell cycle control, Ras signaling, and early pattern formation. PLoS One 4(6):5905. doi:10.1371/journal.pone.0005905 CrossRefGoogle Scholar
  23. 23.
    Panse VG, Hardeland U, Werner T, Kuster B, Hurt E (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279(40):41346–41351. doi:10.1074/jbc.M407950200 PubMedCrossRefGoogle Scholar
  24. 24.
    Stielow B, Sapetschnig A, Kruger I, Kunert N, Brehm A, Boutros M, Suske G (2008) Identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen. Mol Cell 29(6):742–754. doi:10.1016/j.molcel.2007.12.032 PubMedCrossRefGoogle Scholar
  25. 25.
    Wohlschlegel JA, Johnson ES, Reed SI, Yates JR 3rd (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279(44):45662–45668. doi:10.1074/jbc.M409203200 PubMedCrossRefGoogle Scholar
  26. 26.
    Gocke CB, Yu H, Kang J (2005) Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J Biol Chem 280(6):5004–5012. doi:10.1074/jbc.M411718200 PubMedCrossRefGoogle Scholar
  27. 27.
    Li T, Evdokimov E, Shen RF, Chao CC, Tekle E, Wang T, Stadtman ER, Yang DC, Chock PB (2004) Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc Natl Acad Sci USA 101(23):8551–8556. doi:10.1073/pnas.04028891010402889101 PubMedCrossRefGoogle Scholar
  28. 28.
    Rosas-Acosta G, Russell WK, Deyrieux A, Russell DH, Wilson VG (2005) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol Cell Proteomics 4(1):56–72. doi:10.1074/mcp.M400149-MCP200 PubMedGoogle Scholar
  29. 29.
    Vertegaal AC, Ogg SC, Jaffray E, Rodriguez MS, Hay RT, Andersen JS, Mann M, Lamond AI (2004) A proteomic study of SUMO-2 target proteins. J Biol Chem 279(32):33791–33798. doi:10.1074/jbc.M404201200 PubMedCrossRefGoogle Scholar
  30. 30.
    Zhou W, Ryan JJ, Zhou H (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J Biol Chem 279(31):32262–32268. doi:10.1074/jbc.M404173200 PubMedCrossRefGoogle Scholar
  31. 31.
    Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11(12):861–871. doi:10.1038/nrm3011 PubMedCrossRefGoogle Scholar
  32. 32.
    Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180. doi:10.1146/annurev.cellbio.22.010605.093503 PubMedCrossRefGoogle Scholar
  33. 33.
    Tang Z, Hecker CM, Scheschonka A, Betz H (2008) Protein interactions in the sumoylation cascade: lessons from X-ray structures. FEBS J 275(12):3003–3015. doi:10.1111/j.1742-4658.2008.06459.x PubMedCrossRefGoogle Scholar
  34. 34.
    Yang XJ, Gregoire S (2006) A recurrent phospho-sumoyl switch in transcriptional repression and beyond. Mol Cell 23(6):779–786. doi:10.1016/j.molcel.2006.08.009 PubMedCrossRefGoogle Scholar
  35. 35.
    Kerscher O (2007) SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep 8(6):550–555. doi:10.1038/sj.embor.7400980 PubMedCrossRefGoogle Scholar
  36. 36.
    Perry JJ, Tainer JA, Boddy MN (2008) A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem Sci 33(5):201–208. doi:10.1016/j.tibs.2008.02.001 PubMedCrossRefGoogle Scholar
  37. 37.
    Yeh ET (2009) SUMOylation and De-SUMOylation: wrestling with life’s processes. J Biol Chem 284(13):8223–8227. doi:10.1074/jbc.R800050200 PubMedCrossRefGoogle Scholar
  38. 38.
    Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SA (2005) Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121(1):37–47. doi:10.1016/j.cell.2005.01.019 PubMedCrossRefGoogle Scholar
  39. 39.
    Takahashi Y, Iwase M, Strunnikov AV, Kikuchi Y (2008) Cytoplasmic sumoylation by PIAS-type Siz1-SUMO ligase. Cell Cycle 7(12):1738–1744. doi:10.4161/cc.7.12.6156 PubMedCrossRefGoogle Scholar
  40. 40.
    Wilson VG, Rosas-Acosta G (2005) Wrestling with SUMO in a new arena. Sci STKE 2005(290):pe32. doi:10.1126/stke.2902005pe32 PubMedCrossRefGoogle Scholar
  41. 41.
    Tang Z, El Far O, Betz H, Scheschonka A (2005) Pias1 interaction and sumoylation of metabotropic glutamate receptor 8. J Biol Chem 280(46):38153–38159. doi:10.1074/jbc.M508168200 PubMedCrossRefGoogle Scholar
  42. 42.
    Denuc A, Marfany G (2010) SUMO and ubiquitin paths converge. Biochem Soc Trans 38(Pt 1):34–39. doi:10.1042/BST0380034 PubMedCrossRefGoogle Scholar
  43. 43.
    Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA, McGowan CH, Boddy MN (2007) SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26(18):4089–4101. doi:10.1038/sj.emboj.7601838 PubMedCrossRefGoogle Scholar
  44. 44.
    Seufert W, Futcher B, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373(6509):78–81. doi:10.1038/373078a0 PubMedCrossRefGoogle Scholar
  45. 45.
    Dieckhoff P, Bolte M, Sancak Y, Braus GH, Irniger S (2004) Smt3/SUMO and Ubc9 are required for efficient APC/C-mediated proteolysis in budding yeast. Mol Microbiol 51(5):1375–1387. doi:10.1046/j.1365-2958.2003.03910.x PubMedCrossRefGoogle Scholar
  46. 46.
    Azuma Y, Arnaoutov A, Dasso M (2003) SUMO-2/3 regulates topoisomerase II in mitosis. J Cell Biol 163(3):477–487. doi:10.1083/jcb.200304088jcb PubMedCrossRefGoogle Scholar
  47. 47.
    Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9(6):769–779. doi:10.1016/j.devcel.2005.10.007 PubMedCrossRefGoogle Scholar
  48. 48.
    Nowak M, Hammerschmidt M (2006) Ubc9 regulates mitosis and cell survival during zebrafish development. Mol Biol Cell 17(12):5324–5336. doi:10.1091/mbc.E06-05-0413 PubMedCrossRefGoogle Scholar
  49. 49.
    Jones D, Crowe E, Stevens TA, Candido EP (2002) Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol 3 (1):RESEARCH0002. doi:10.1186/gb-2001-3-1-research0002
  50. 50.
    Bhaskar V, Valentine SA, Courey AJ (2000) A functional interaction between dorsal and components of the Smt3 conjugation machinery. J Biol Chem 275(6):4033–4040. doi:10.1074/jbc.275.6.4033 PubMedCrossRefGoogle Scholar
  51. 51.
    Sánchez J, Talamillo A, Lopitz-Otsoa F, Pérez C, Hjerpe R, Sutherland JD, Herboso L, Rodríguez MS, Barrio R (2010) Sumoylation modulates the activity of Spalt-like proteins during wing development in Drosophila. J Biol Chem 285(33):25841–25849. doi:10.1074/jbc.M110.124024 PubMedCrossRefGoogle Scholar
  52. 52.
    Bhaskar V, Smith M, Courey AJ (2002) Conjugation of Smt3 to dorsal may potentiate the Drosophila immune response. Mol Cell Biol 22(2):492–504. doi:10.1128/MCB.22.2.492-504.2002 PubMedCrossRefGoogle Scholar
  53. 53.
    Miles WO, Jaffray E, Campbell SG, Takeda S, Bayston LJ, Basu SP, Li M, Raftery LA, Ashe MP, Hay RT, Ashe HL (2008) Medea SUMOylation restricts the signaling range of the Dpp morphogen in the Drosophila embryo. Genes Dev 22(18):2578–2590. doi:10.1101/gad.494808 PubMedCrossRefGoogle Scholar
  54. 54.
    Epps JL, Tanda S (1998) The Drosophila semushi mutation blocks nuclear import of bicoid during embryogenesis. Curr Biol 8(23):1277–1280. doi:10.1016/S0960-9822(07)00538-6 PubMedCrossRefGoogle Scholar
  55. 55.
    Chiu H, Ring BC, Sorrentino RP, Kalamarz M, Garza D, Govind S (2005) dUbc9 negatively regulates the Toll-NF-kappa B pathways in larval hematopoiesis and drosomycin activation in Drosophila. Dev Biol 288(1):60–72. doi:10.1016/j.ydbio.2005.08.008 PubMedCrossRefGoogle Scholar
  56. 56.
    Long X, Griffith LC (2000) Identification and characterization of a SUMO-1 conjugation system that modifies neuronal calcium/calmodulin-dependent protein kinase II in Drosophila melanogaster. J Biol Chem 275(52):40765–40776. doi:10.1074/jbc.M003949200 PubMedCrossRefGoogle Scholar
  57. 57.
    Broday L, Kolotuev I, Didier C, Bhoumik A, Gupta BP, Sternberg PW, Podbilewicz B, Ronai Z (2004) The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. Genes Dev 18(19):2380–2391. doi:10.1101/gad.1227104 PubMedCrossRefGoogle Scholar
  58. 58.
    Leight ER, Glossip D, Kornfeld K (2005) Sumoylation of LIN-1 promotes transcriptional repression and inhibition of vulval cell fates. Development 132(5):1047–1056. doi:10.1242/dev.01664 PubMedCrossRefGoogle Scholar
  59. 59.
    Poulin G, Dong Y, Fraser AG, Hopper NA, Ahringer J (2005) Chromatin regulation and sumoylation in the inhibition of Ras-induced vulval development in Caenorhabditis elegans. EMBO J 24(14):2613–2623. doi:10.1038/sj.emboj.7600726 PubMedCrossRefGoogle Scholar
  60. 60.
    Talamillo A, Sanchez J, Barrio R (2008) Functional analysis of the SUMOylation pathway in Drosophila. Biochem Soc Trans 36(Pt 5):868–873. doi:10.1042/BST0360868 PubMedCrossRefGoogle Scholar
  61. 61.
    Shih HP, Hales KG, Pringle JR, Peifer M (2002) Identification of septin-interacting proteins and characterization of the Smt3/SUMO-conjugation system in Drosophila. J Cell Sci 115(Pt 6):1259–1271PubMedGoogle Scholar
  62. 62.
    Yuan H, Zhou J, Deng M, Liu X, Le Bras M, de The H, Chen SJ, Chen Z, Liu TX, Zhu J (2010) Small ubiquitin-related modifier paralogs are indispensable but functionally redundant during early development of zebrafish. Cell Res 20(2):185–196. doi:10.1038/cr.2009.101 PubMedCrossRefGoogle Scholar
  63. 63.
    Evdokimov E, Sharma P, Lockett SJ, Lualdi M, Kuehn MR (2008) Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. J Cell Sci 121(Pt 24):4106–4113. doi:10.1242/jcs.038570 PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang FP, Mikkonen L, Toppari J, Palvimo JJ, Thesleff I, Janne OA (2008) Sumo-1 function is dispensable in normal mouse development. Mol Cell Biol 28(17):5381–5390. doi:10.1128/MCB.00651-08 PubMedCrossRefGoogle Scholar
  65. 65.
    Alkuraya FS, Saadi I, Lund JJ, Turbe-Doan A, Morton CC, Maas RL (2006) SUMO1 haploinsufficiency leads to cleft lip and palate. Science 313(5794):1751. doi:10.1126/science.1128406 PubMedCrossRefGoogle Scholar
  66. 66.
    Lee H, Quinn JC, Prasanth KV, Swiss VA, Economides KD, Camacho MM, Spector DL, Abate-Shen C (2006) PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Dev 20(7):784–794. doi:10.1101/gad.1392006 PubMedCrossRefGoogle Scholar
  67. 67.
    Roy Chowdhuri S, Crum T, Woollard A, Aslam S, Okkema PG (2006) The T-box factor TBX-2 and the SUMO conjugating enzyme UBC-9 are required for ABa-derived pharyngeal muscle in C. elegans. Dev Biol 295(2):664–677. doi:10.1016/j.ydbio.2006.04.001 PubMedCrossRefGoogle Scholar
  68. 68.
    Yukita A, Michiue T, Danno H, Asashima M (2007) XSUMO-1 is required for normal mesoderm induction and axis elongation during early Xenopus development. Dev Dyn 236(10):2757–2766. doi:10.1002/dvdy.21297 PubMedCrossRefGoogle Scholar
  69. 69.
    Hari KL, Cook KR, Karpen GH (2001) The Drosophila Su(var)2–10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Genes Dev 15(11):1334–1348. doi:10.1101/gad.877901 PubMedCrossRefGoogle Scholar
  70. 70.
    Qiu P, Pan PC, Govind S (1998) A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125(10):1909–1920PubMedGoogle Scholar
  71. 71.
    Minakhina S, Steward R (2006) Melanotic mutants in Drosophila: pathways and phenotypes. Genetics 174(1):253–263. doi:10.1534/genetics.106.061978 PubMedCrossRefGoogle Scholar
  72. 72.
    Huang L, Ohsako S, Tanda S (2005) The lesswright mutation activates Rel-related proteins, leading to overproduction of larval hemocytes in Drosophila melanogaster. Dev Biol 280(2):407–420. doi:10.1016/j.ydbio.2005.02.006 PubMedCrossRefGoogle Scholar
  73. 73.
    Betz A, Lampen N, Martinek S, Young MW, Darnell JE Jr (2001) A Drosophila PIAS homologue negatively regulates stat92E. Proc Natl Acad Sci USA 98(17):9563–9568. doi:10.1073/pnas.171302098 PubMedCrossRefGoogle Scholar
  74. 74.
    Azuma Y, Arnaoutov A, Anan T, Dasso M (2005) PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes. EMBO J 24(12):2172–2182. doi:10.1038/sj.emboj.7600700 PubMedCrossRefGoogle Scholar
  75. 75.
    Roth W, Sustmann C, Kieslinger M, Gilmozzi A, Irmer D, Kremmer E, Turck C, Grosschedl R (2004) PIASy-deficient mice display modest defects in IFN and Wnt signaling. J Immunol 173(10):6189–6199. doi:173/10/6189 PubMedGoogle Scholar
  76. 76.
    Wong KA, Kim R, Christofk H, Gao J, Lawson G, Wu H (2004) Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life. Mol Cell Biol 24(12):5577–5586. doi:10.1128/MCB.24.12.5577-5586.2004 PubMedCrossRefGoogle Scholar
  77. 77.
    Santti H, Mikkonen L, Anand A, Hirvonen-Santti S, Toppari J, Panhuysen M, Vauti F, Perera M, Corte G, Wurst W, Janne OA, Palvimo JJ (2005) Disruption of the murine PIASx gene results in reduced testis weight. J Mol Endocrinol 34(3):645–654. doi:10.1677/jme.1.01666 PubMedCrossRefGoogle Scholar
  78. 78.
    Shalizi A, Gaudilliere B, Yuan Z, Stegmuller J, Shirogane T, Ge Q, Tan Y, Schulman B, Harper JW, Bonni A (2006) A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311(5763):1012–1017. doi:10.1126/science.1122513 PubMedCrossRefGoogle Scholar
  79. 79.
    Shalizi A, Bilimoria PM, Stegmuller J, Gaudilliere B, Yang Y, Shuai K, Bonni A (2007) PIASx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis. J Neurosci 27(37):10037–10046. doi:10.1523/JNEUROSCI.0361-07.2007 PubMedCrossRefGoogle Scholar
  80. 80.
    Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, Gurevich I, Cowan M, Ghosh A (2004) Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303(5655):197–202. doi:10.1126/science.1089845 PubMedCrossRefGoogle Scholar
  81. 81.
    Redmond L, Kashani AH, Ghosh A (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34(6):999–1010. doi:10.1016/S0896-6273(02)00737-7 PubMedCrossRefGoogle Scholar
  82. 82.
    Bendall AJ, Abate-Shen C (2000) Roles for Msx and Dlx homeoproteins in vertebrate development. Gene 247(1–2):17–31. doi:10.1016/S0378-1119(00)00081-0 PubMedCrossRefGoogle Scholar
  83. 83.
    Bendall AJ, Ding J, Hu G, Shen MM, Abate-Shen C (1999) Msx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors. Development 126(22):4965–4976PubMedGoogle Scholar
  84. 84.
    Goldhamer DJ, Faerman A, Shani M, Emerson CP Jr (1992) Regulatory elements that control the lineage-specific expression of myoD. Science 256(5056):538–542PubMedCrossRefGoogle Scholar
  85. 85.
    Daniels M, Shimizu K, Zorn AM, Ohnuma S (2004) Negative regulation of Smad2 by PIASy is required for proper Xenopus mesoderm formation. Development 131(22):5613–5626. doi:10.1242/dev.01449 PubMedCrossRefGoogle Scholar
  86. 86.
    Yamaguchi T, Sharma P, Athanasiou M, Kumar A, Yamada S, Kuehn MR (2005) Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol Cell Biol 25(12):5171–5182. doi:10.1128/MCB.25.12.5171-5182.2005 PubMedCrossRefGoogle Scholar
  87. 87.
    Cheng J, Kang X, Zhang S, Yeh ET (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131(3):584–595. doi:10.1016/j.cell.2007.08.045 PubMedCrossRefGoogle Scholar
  88. 88.
    Kang X, Qi Y, Zuo Y, Wang Q, Zou Y, Schwartz RJ, Cheng J, Yeh ET (2010) SUMO-specific protease 2 is essential for suppression of Polycomb group protein-mediated gene silencing during embryonic development. Mol Cell 38(2):191–201. doi:10.1016/j.molcel.2010.03.005 PubMedCrossRefGoogle Scholar
  89. 89.
    Chiu SY, Asai N, Costantini F, Hsu W (2008) SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol 6(12):310. doi:10.1371/journal.pbio.0060310 CrossRefGoogle Scholar
  90. 90.
    Pan MR, Chang TM, Chang HC, Su JL, Wang HW, Hung WC (2009) Sumoylation of Prox1 controls its ability to induce VEGFR3 expression and lymphatic phenotypes in endothelial cells. J Cell Sci 122(Pt 18):3358–3364. doi:10.1242/jcs.050005 PubMedCrossRefGoogle Scholar
  91. 91.
    Yan Q, Gong L, Deng M, Zhang L, Sun S, Liu J, Ma H, Yuan D, Chen PC, Hu X, Qin J, Xiao L, Huang XQ, Zhang J, Li DW (2010) Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development. Proc Natl Acad Sci USA 107(49):21034–21039. doi:10.1073/pnas.1007866107 PubMedCrossRefGoogle Scholar
  92. 92.
    Gresko E, Moller A, Roscic A, Schmitz ML (2005) Covalent modification of human homeodomain interacting protein kinase 2 by SUMO-1 at lysine 25 affects its stability. Biochem Biophys Res Commun 329(4):1293–1299. doi:10.1016/j.bbrc.2005.02.113 PubMedCrossRefGoogle Scholar
  93. 93.
    Hofmann TG, Jaffray E, Stollberg N, Hay RT, Will H (2005) Regulation of homeodomain-interacting protein kinase 2 (HIPK2) effector function through dynamic small ubiquitin-related modifier-1 (SUMO-1) modification. J Biol Chem 280(32):29224–29232. doi:10.1074/jbc.M503921200 PubMedCrossRefGoogle Scholar
  94. 94.
    Sung KS, Go YY, Ahn JH, Kim YH, Kim Y, Choi CY (2005) Differential interactions of the homeodomain-interacting protein kinase 2 (HIPK2) by phosphorylation-dependent sumoylation. FEBS Lett 579(14):3001–3008. doi:10.1016/j.febslet.2005.04.053 PubMedCrossRefGoogle Scholar
  95. 95.
    Bowles J, Schepers G, Koopman P (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227(2):239–255. doi:10.1006/dbio.2000.9883 PubMedCrossRefGoogle Scholar
  96. 96.
    Garcia-Castro M, Bronner-Fraser M (1999) Induction and differentiation of the neural crest. Curr Opin Cell Biol 11(6):695–698. doi:10.1016/S0955-0674(99)00038-1 PubMedCrossRefGoogle Scholar
  97. 97.
    Aoki Y, Saint-Germain N, Gyda M, Magner-Fink E, Lee YH, Credidio C, Saint-Jeannet JP (2003) Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. Dev Biol 259(1):19–33. doi:10.1016/S0012-1606(03)00161-1 PubMedCrossRefGoogle Scholar
  98. 98.
    Lee YH, Aoki Y, Hong CS, Saint-Germain N, Credidio C, Saint-Jeannet JP (2004) Early requirement of the transcriptional activator Sox9 for neural crest specification in Xenopus. Dev Biol 275(1):93–103. doi:10.1016/j.ydbio.2004.07.036 PubMedCrossRefGoogle Scholar
  99. 99.
    Saint-Germain N, Lee YH, Zhang Y, Sargent TD, Saint-Jeannet JP (2004) Specification of the otic placode depends on Sox9 function in Xenopus. Development 131(8):1755–1763. doi:10.1242/dev.01066dev.01066 PubMedCrossRefGoogle Scholar
  100. 100.
    Honore SM, Aybar MJ, Mayor R (2003) Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev Biol 260(1):79–96. doi:10.1016/S0012-1606(03)00247-1 PubMedCrossRefGoogle Scholar
  101. 101.
    Spokony RF, Aoki Y, Saint-Germain N, Magner-Fink E, Saint-Jeannet JP (2002) The transcription factor Sox9 is required for cranial neural crest development in Xenopus. Development 129(2):421–432PubMedGoogle Scholar
  102. 102.
    Taylor KM, Labonne C (2005) SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. Dev Cell 9(5):593–603. doi:10.1016/j.devcel.2005.09.016 PubMedCrossRefGoogle Scholar
  103. 103.
    Peng GH, Ahmad O, Ahmad F, Liu J, Chen S (2005) The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Hum Mol Genet 14(6):747–764. doi:10.1093/hmg/ddi070 PubMedCrossRefGoogle Scholar
  104. 104.
    Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, Weber G, Lee K, Fraioli RE, Cho SH, Yung R, Asch E, Ohno-Machado L, Wong WH, Cepko CL (2004) Genomic analysis of mouse retinal development. PLoS Biol 2(9):247. doi:10.1371/journal.pbio.0020247 CrossRefGoogle Scholar
  105. 105.
    Onishi A, Peng GH, Hsu C, Alexis U, Chen S, Blackshaw S (2009) Pias3-dependent SUMOylation directs rod photoreceptor development. Neuron 61(2):234–246. doi:10.1016/j.neuron.2008.12.006 PubMedCrossRefGoogle Scholar
  106. 106.
    Onishi A, Peng GH, Chen S, Blackshaw S (2010) Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation. Nat Neurosci 13(9):1059–1065. doi:10.1038/nn.2618 PubMedCrossRefGoogle Scholar
  107. 107.
    Roger JE, Nellissery J, Kim DS, Swaroop A (2010) Sumoylation of bZIP transcription factor NRL modulates target gene expression during photoreceptor differentiation. J Biol Chem 285(33):25637–25644. doi:10.1074/jbc.M110.142810 PubMedCrossRefGoogle Scholar
  108. 108.
    Papaioannou VE (2001) T-box genes in development: from hydra to humans. Int Rev Cytol 207:1–70. doi:10.1016/S0074-7696(01)07002-4 PubMedCrossRefGoogle Scholar
  109. 109.
    Lee HY, Johnson KD, Fujiwara T, Boyer ME, Kim SI, Bresnick EH (2009) Controlling hematopoiesis through sumoylation-dependent regulation of a GATA factor. Mol Cell 36(6):984–995. doi:10.1016/j.molcel.2009.11.005 PubMedCrossRefGoogle Scholar
  110. 110.
    Bresnick EH, Lee HY, Fujiwara T, Johnson KD, Keles S (2010) GATA switches as developmental drivers. J Biol Chem 285(41):31087–31093. doi:10.1074/jbc.R110.159079 PubMedCrossRefGoogle Scholar
  111. 111.
    Johnson KD, Boyer ME, Kang JA, Wickrema A, Cantor AB, Bresnick EH (2007) Friend of GATA-1-independent transcriptional repression: a novel mode of GATA-1 function. Blood 109(12):5230–5233. doi:10.1182/blood-2007-02-072983 PubMedCrossRefGoogle Scholar
  112. 112.
    Kim SI, Bresnick EH (2007) Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 26(47):6777–6794. doi:10.1038/sj.onc.1210761 PubMedCrossRefGoogle Scholar
  113. 113.
    Collavin L, Gostissa M, Avolio F, Secco P, Ronchi A, Santoro C, Del Sal G (2004) Modification of the erythroid transcription factor GATA-1 by SUMO-1. Proc Natl Acad Sci USA 101(24):8870–8875. doi:10.1073/pnas.03086051010308605101 PubMedCrossRefGoogle Scholar
  114. 114.
    Johnson KD, Kim SI, Bresnick EH (2006) Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles. Proc Natl Acad Sci USA 103(43):15939–15944. doi:10.1073/pnas.0604041103 PubMedCrossRefGoogle Scholar
  115. 115.
    Pierreux CE, Nicolas FJ, Hill CS (2000) Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol Cell Biol 20(23):9041–9054PubMedCrossRefGoogle Scholar
  116. 116.
    Yao X, Chen X, Cottonham C, Xu L (2008) Preferential utilization of Imp7/8 in nuclear import of Smads. J Biol Chem 283(33):22867–22874. doi:10.1074/jbc.M801320200 PubMedCrossRefGoogle Scholar
  117. 117.
    Ghioni P, D’Alessandra Y, Mansueto G, Jaffray E, Hay RT, La Mantia G, Guerrini L (2005) The protein stability and transcriptional activity of p63alpha are regulated by SUMO-1 conjugation. Cell Cycle 4(1):183–190. doi:1359 PubMedCrossRefGoogle Scholar
  118. 118.
    Stehmeier P, Muller S (2009) Regulation of p53 family members by the ubiquitin-like SUMO system. DNA Repair (Amst) 8(4):491–498. doi:10.1016/j.dnarep.2009.01.002 CrossRefGoogle Scholar
  119. 119.
    Bakkers J, Hild M, Kramer C, Furutani-Seiki M, Hammerschmidt M (2002) Zebrafish DeltaNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev Cell 2(5):617–627. doi:10.1016/S1534-5807(02)00163-6 PubMedCrossRefGoogle Scholar
  120. 120.
    Bakkers J, Camacho-Carvajal M, Nowak M, Kramer C, Danger B, Hammerschmidt M (2005) Destabilization of DeltaNp63alpha by Nedd4-mediated ubiquitination and Ubc9-mediated sumoylation, and its implications on dorsoventral patterning of the zebrafish embryo. Cell Cycle 4(6):790–800. doi:10.4161/cc.4.6.1694 PubMedCrossRefGoogle Scholar
  121. 121.
    Buschmann T, Lerner D, Lee CG, Ronai Z (2001) The Mdm-2 amino terminus is required for Mdm2 binding and SUMO-1 conjugation by the E2 SUMO-1 conjugating enzyme Ubc9. J Biol Chem 276(44):40389–40395. doi:10.1074/jbc.M103786200 PubMedCrossRefGoogle Scholar
  122. 122.
    Meek DW, Knippschild U (2003) Posttranslational modification of MDM2. Mol Cancer Res 1(14):1017–1026PubMedGoogle Scholar
  123. 123.
    Miyauchi Y, Yogosawa S, Honda R, Nishida T, Yasuda H (2002) Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J Biol Chem 277(51):50131–50136. doi:10.1074/jbc.M208319200 PubMedCrossRefGoogle Scholar
  124. 124.
    Kagey MH, Melhuish TA, Wotton D (2003) The Polycomb protein Pc2 is a SUMO E3. Cell 113(1):127–137. doi:10.1016/S0092-8674(03)00159-4 PubMedCrossRefGoogle Scholar
  125. 125.
    Riising EM, Boggio R, Chiocca S, Helin K, Pasini D (2008) The Polycomb repressive complex 2 is a potential target of SUMO modifications. PLoS One 3(7):2704. doi:10.1371/journal.pone.0002704 CrossRefGoogle Scholar
  126. 126.
    Roscic A, Moller A, Calzado MA, Renner F, Wimmer VC, Gresko E, Ludi KS, Schmitz ML (2006) Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol Cell 24(1):77–89. doi:10.1016/j.molcel.2006.08.004 PubMedCrossRefGoogle Scholar
  127. 127.
    Zhang H, Azevedo RB, Lints R, Doyle C, Teng Y, Haber D, Emmons SW (2003) Global regulation of Hox gene expression in C. elegans by a SAM domain protein. Dev Cell 4(6):903–915. doi:10.1016/S1534-5807(03)00136-9 PubMedCrossRefGoogle Scholar
  128. 128.
    Smith M, Mallin DR, Simon JA, Courey AJ (2011) Small ubiquitin-like modifier (SUMO) conjugation impedes transcriptional silencing by the Polycomb group repressor Sex Comb on Midleg. J Biol Chem 286(13):11391–11400. doi:10.1074/jbc.M110.214569 PubMedCrossRefGoogle Scholar
  129. 129.
    Apionishev S, Malhotra D, Raghavachari S, Tanda S, Rasooly RS (2001) The Drosophila UBC9 homologue lesswright mediates the disjunction of homologues in meiosis I. Genes Cells 6(3):215–224. doi:10.1046/j.1365-2443.2001.00413.x PubMedCrossRefGoogle Scholar
  130. 130.
    Brown PW, Hwang K, Schlegel PN, Morris PL (2008) Small ubiquitin-related modifier (SUMO)-1, SUMO-2/3 and SUMOylation are involved with centromeric heterochromatin of chromosomes 9 and 1 and proteins of the synaptonemal complex during meiosis in men. Hum Reprod 23(12):2850–2857. doi:10.1093/humrep/den300 PubMedCrossRefGoogle Scholar
  131. 131.
    La Salle S, Sun F, Zhang XD, Matunis MJ, Handel MA (2008) Developmental control of sumoylation pathway proteins in mouse male germ cells. Dev Biol 321(1):227–237. doi:10.1016/j.ydbio.2008.06.020 PubMedCrossRefGoogle Scholar
  132. 132.
    Metzler-Guillemain C, Depetris D, Luciani JJ, Mignon-Ravix C, Mitchell MJ, Mattei MG (2008) In human pachytene spermatocytes, SUMO protein is restricted to the constitutive heterochromatin. Chromosome Res 16(5):761–782. doi:10.1007/s10577-008-1225-7 PubMedCrossRefGoogle Scholar
  133. 133.
    Rogers RS, Inselman A, Handel MA, Matunis MJ (2004) SUMO modified proteins localize to the XY body of pachytene spermatocytes. Chromosoma 113(5):233–243. doi:10.1007/s00412-004-0311-7 PubMedCrossRefGoogle Scholar
  134. 134.
    Vigodner M, Morris PL (2005) Testicular expression of small ubiquitin-related modifier-1 (SUMO-1) supports multiple roles in spermatogenesis: silencing of sex chromosomes in spermatocytes, spermatid microtubule nucleation, and nuclear reshaping. Dev Biol 282(2):480–492. doi:10.1016/j.ydbio.2005.03.034 PubMedCrossRefGoogle Scholar
  135. 135.
    Wang ZB, Ou XH, Tong JS, Li S, Wei L, Ouyang YC, Hou Y, Schatten H, Sun QY (2010) The SUMO pathway functions in mouse oocyte maturation. Cell Cycle 9(13):2640–2646. doi:10.4161/cc.9.13.12120 PubMedCrossRefGoogle Scholar
  136. 136.
    Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20(15):2067–2081. doi:10.1101/gad.1430406 PubMedCrossRefGoogle Scholar
  137. 137.
    Lin FM, Lai YJ, Shen HJ, Cheng YH, Wang TF (2010) Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis. EMBO J 29(3):586–596. doi:10.1038/emboj.2009.362 PubMedCrossRefGoogle Scholar
  138. 138.
    de Carvalho CE, Colaiacovo MP (2006) SUMO-mediated regulation of synaptonemal complex formation during meiosis. Genes Dev 20(15):1986–1992. doi:10.1101/gad.1457806 PubMedCrossRefGoogle Scholar
  139. 139.
    Hooker GW, Roeder GS (2006) A Role for SUMO in meiotic chromosome synapsis. Curr Biol 16(12):1238–1243. doi:10.1016/j.cub.2006.04.045 PubMedCrossRefGoogle Scholar
  140. 140.
    Tarsounas M, Pearlman RE, Gasser PJ, Park MS, Moens PB (1997) Protein-protein interactions in the synaptonemal complex. Mol Biol Cell 8(8):1405–1414PubMedGoogle Scholar
  141. 141.
    Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R (2007) Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci 120(Pt 9):1689–1700. doi:10.1242/jcs.004663 PubMedCrossRefGoogle Scholar
  142. 142.
    Shigenobu S, Kitadate Y, Noda C, Kobayashi S (2006) Molecular characterization of embryonic gonads by gene expression profiling in Drosophila melanogaster. Proc Natl Acad Sci USA 103(37):13728–13733. doi:10.1073/pnas.0603767103 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations