Cellular and Molecular Life Sciences

, Volume 69, Issue 1, pp 165–173 | Cite as

Mechanisms regulating cilia growth and cilia function in endothelial cells

  • Shakila Abdul-Majeed
  • Bryan C. Moloney
  • Surya M. Nauli
Research Article

Abstract

The primary cilium is an important sensory organelle present in most mammalian cells. Our current studies aim at examining intracellular molecules that regulate cilia length and/or cilia function in vitro and ex vivo. For the first time, we show that intracellular cAMP and cAMP-dependent protein kinase (PKA) regulate both cilia length and function in vascular endothelial cells. Although calcium-dependent protein kinase modulates cilia length, it does not play a significant role in cilia function. Cilia length regulation also involves mitogen-activated protein kinase (MAPK), protein phosphatase-1 (PP-1), and cofilin. Furthermore, cofilin regulates cilia length through actin rearrangement. Overall, our study suggests that the molecular interactions between cilia function and length can be independent of one another. Although PKA regulates both cilia length and function, changes in cilia length by MAPK, PP-1, or cofilin do not have a direct correlation to changes in cilia function. We propose that cilia length and function are regulated by distinct, yet complex intertwined signaling pathways.

Keywords

Calcium signaling Cardiovascular homeostasis Ciliopathy Fluid-shear stress Intraflagellar transport Mechanosensory cilium 

References

  1. 1.
    Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313(5787):629–633PubMedCrossRefGoogle Scholar
  2. 2.
    Nauli SM, Haymour HS, AbouAlaiwi WA, Lo ST, Nauli AM (2011) Primary cilia are mechanosensory organelles in vestibular tissues. In: Mechanosensitivity and mechanotransduction, Chap 14. Springer, Berlin Heidelberg New York. ISBN: 978-90-481-9880-1Google Scholar
  3. 3.
    Brown NE, Murcia NS (2003) Delayed cystogenesis and increased ciliogenesis associated with the re-expression of polaris in Tg737 mutant mice. Kidney Int 63(4):1220–1229PubMedCrossRefGoogle Scholar
  4. 4.
    Pitaval A, Tseng Q, Bornens M, Thery M (2010) Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J Cell Biol 191(2):303–312PubMedCrossRefGoogle Scholar
  5. 5.
    Resnick A, Hopfer U (2007) Force-response considerations in ciliary mechanosensation. Biophys J 93(4):1380–1390PubMedCrossRefGoogle Scholar
  6. 6.
    AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104(7):860–869PubMedCrossRefGoogle Scholar
  7. 7.
    Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117(9):1161–1171PubMedCrossRefGoogle Scholar
  8. 8.
    Nauli SM, White CR, Hull AD, Pearce WJ (2003) Maturation alters cyclic nucleotide and relaxation responses to nitric oxide donors in ovine cerebral arteries. Biol Neonate 83(2):123–135PubMedCrossRefGoogle Scholar
  9. 9.
    Nauli SM, Williams JM, Akopov SE, Zhang L, Pearce WJ (2001) Developmental changes in ryanodine- and IP(3)-sensitive Ca(2+) pools in ovine basilar artery. Am J Physiol Cell Physiol 281(6):C1785–C1796PubMedGoogle Scholar
  10. 10.
    Low SH, Roche PA, Anderson HA, van Ijzendoorn SC, Zhang M, Mostov KE, Weimbs T (1998) Targeting of SNAP-23 and SNAP-25 in polarized epithelial cells. J Biol Chem 273(6):3422–3430PubMedCrossRefGoogle Scholar
  11. 11.
    Ou Y, Ruan Y, Cheng M, Moser JJ, Rattner JB, van der Hoorn FA (2009) Adenylate cyclase regulates elongation of mammalian primary cilia. Exp Cell Res 315(16):2802–2817PubMedCrossRefGoogle Scholar
  12. 12.
    Klemke M, Kramer E, Konstandin MH, Wabnitz GH, Samstag Y (2010) An MEK-cofilin signalling module controls migration of human T cells in 3D but not 2D environments. EMBO J 29(17):2915–2929PubMedCrossRefGoogle Scholar
  13. 13.
    Nebl G, Fischer S, Penzel R, Samstag Y (2004) Dephosphorylation of cofilin is regulated through Ras and requires the combined activities of the Ras-effectors MEK and PI3K. Cell Signal 16(2):235–243PubMedCrossRefGoogle Scholar
  14. 14.
    Oleinik NV, Krupenko NI, Krupenko SA (2010) ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by PP1 and PP2A. Oncogene 29(47):6233–6244PubMedCrossRefGoogle Scholar
  15. 15.
    Flores D, Battini L, Gusella GL, Rohatgi R (2010) Fluid shear stress induces renal epithelial gene expression through polycystin-2-dependent trafficking of extracellular regulated kinase. Nephron Physiol 117(4):p27–p36PubMedCrossRefGoogle Scholar
  16. 16.
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33(2):129–137PubMedCrossRefGoogle Scholar
  17. 17.
    Abdul-Majeed S, Nauli SM (2010) Calcium-mediated mechanisms of cystic expansion. Biochim Biophys Acta. doi:10.1016/j.bbadis.2010.09.016
  18. 18.
    Luo M, Cao M, Kan Y, Li G, Snell W, Pan J (2011) The phosphorylation state of an aurora-like kinase marks the length of growing flagella in Chlamydomonas. Curr Biol 21(7):586–591PubMedCrossRefGoogle Scholar
  19. 19.
    Piao T, Luo M, Wang L, Guo Y, Li D, Li P, Snell WJ, Pan J (2009) A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas. Proc Natl Acad Sci USA 106(12):4713–4718PubMedCrossRefGoogle Scholar
  20. 20.
    Horiuchi D, Collins CA, Bhat P, Barkus RV, Diantonio A, Saxton WM (2007) Control of a kinesin-cargo linkage mechanism by JNK pathway kinases. Curr Biol 17(15):1313–1317PubMedCrossRefGoogle Scholar
  21. 21.
    Burghoorn J, Dekkers MP, Rademakers S, de Jong T, Willemsen R, Jansen G (2007) Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans. Proc Natl Acad Sci USA 104(17):7157–7162PubMedCrossRefGoogle Scholar
  22. 22.
    Erdmann M, Scholz A, Melzer IM, Schmetz C, Wiese M (2006) Interacting protein kinases involved in the regulation of flagellar length. Mol Biol Cell 17(4):2035–2045PubMedCrossRefGoogle Scholar
  23. 23.
    Wang QM, Guan KL, Roach PJ, DePaoli-Roach AA (1995) Phosphorylation and activation of the ATP-Mg-dependent protein phosphatase by the mitogen-activated protein kinase. J Biol Chem 270(31):18352–18358PubMedCrossRefGoogle Scholar
  24. 24.
    Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K, Lee K, Ideker T, Aza-Blanc P, Gleeson JG (2010) Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464(7291):1048–1051PubMedCrossRefGoogle Scholar
  25. 25.
    Sharma N, Kosan ZA, Stallworth JE, Berbari NF, Yoder BK (2011) Soluble levels of cytosolic tubulin regulate ciliary length control. Mol Biol Cell 22(6):806–816Google Scholar
  26. 26.
    Hunter RW, Mackintosh C, Hers I (2009) Protein kinase C-mediated phosphorylation and activation of PDE3A regulate cAMP levels in human platelets. J Biol Chem 284(18):12339–12348PubMedCrossRefGoogle Scholar
  27. 27.
    Marquardt B, Frith D, Stabel S (1994) Signalling from TPA to MAP kinase requires protein kinase C, raf and MEK: reconstitution of the signalling pathway in vitro. Oncogene 9(11):3213–3218PubMedGoogle Scholar
  28. 28.
    Fernandez A, Brautigan DL, Mumby M, Lamb NJ (1990) Protein phosphatase type-1, not type-2A, modulates actin microfilament integrity and myosin light chain phosphorylation in living nonmuscle cells. J Cell Biol 111(1):103–112PubMedCrossRefGoogle Scholar
  29. 29.
    DesMarais V, Ghosh M, Eddy R, Condeelis J (2005) Cofilin takes the lead. J Cell Sci 118(Pt 1):19–26PubMedCrossRefGoogle Scholar
  30. 30.
    Pan J, You Y, Huang T, Brody SL (2007) RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1. J Cell Sci 120(Pt 11):1868–1876PubMedCrossRefGoogle Scholar
  31. 31.
    Alenghat FJ, Nauli SM, Kolb R, Zhou J, Ingber DE (2004) Global cytoskeletal control of mechanotransduction in kidney epithelial cells. Exp Cell Res 301(1):23–30PubMedCrossRefGoogle Scholar
  32. 32.
    AbouAlaiwi WA, Ratnam S, Booth RL, Shah JV, Nauli SM (2011) Endothelial cells from humans and mice with polycystic kidney disease are characterized by polyploidy and chromosome segregation defects through survivin down-regulation. Hum Mol Genet 20(2):354–367PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Shakila Abdul-Majeed
    • 1
  • Bryan C. Moloney
    • 2
  • Surya M. Nauli
    • 1
    • 2
    • 3
  1. 1.Department of Medicinal and Biological ChemistryThe University of ToledoToledoUSA
  2. 2.Department of MedicineThe University of ToledoToledoUSA
  3. 3.Department of PharmacologyThe University of ToledoToledoUSA

Personalised recommendations