Cellular and Molecular Life Sciences

, Volume 68, Issue 18, pp 3033–3046 | Cite as

Vimentin in cancer and its potential as a molecular target for cancer therapy

  • Arun Satelli
  • Shulin Li


Vimentin, a major constituent of the intermediate filament family of proteins, is ubiquitously expressed in normal mesenchymal cells and is known to maintain cellular integrity and provide resistance against stress. Vimentin is overexpressed in various epithelial cancers, including prostate cancer, gastrointestinal tumors, tumors of the central nervous system, breast cancer, malignant melanoma, and lung cancer. Vimentin’s overexpression in cancer correlates well with accelerated tumor growth, invasion, and poor prognosis; however, the role of vimentin in cancer progression remains obscure. In recent years, vimentin has been recognized as a marker for epithelial–mesenchymal transition (EMT). Although EMT is associated with several tumorigenic events, vimentin’s role in the underlying events mediating these processes remains unknown. By virtue of its overexpression in cancer and its association with tumor growth and metastasis, vimentin serves as an attractive potential target for cancer therapy; however, more research would be crucial to evaluate its specific role in cancer. Our recent discovery of a vimentin-binding mini-peptide has generated further impetus for vimentin-targeted tumor-specific therapy. Furthermore, research directed toward elucidating the role of vimentin in various signaling pathways would reveal new approaches for the development of therapeutic agents. This review summarizes the expression and functions of vimentin in various types of cancer and suggests some directions toward future cancer therapy utilizing vimentin as a potential molecular target.


Vimentin Targeted therapy Cancer Epithelial mesenchymal transition 



We apologize to the authors of many other relevant studies that are not cited because of space limitations. Work in the authors’ laboratory was supported by Grants from the National Institutes of Health to Dr. Shulin Li (NIH RO1CA120895).

Conflict of interest

We declare that none of the authors has a financial interest related to this work.


  1. 1.
    Hesse M, Magin TM, Weber K (2001) Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J Cell Sci 114:2569–2575PubMedGoogle Scholar
  2. 2.
    Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 63:345–382PubMedCrossRefGoogle Scholar
  3. 3.
    Niki T, Pekny M, Hellemans K, Bleser PD, Berg KV, Vaeyens F, Quartier E et al (1999) Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. Hepatology 29:520–527PubMedCrossRefGoogle Scholar
  4. 4.
    Green KJ, Bohringer M, Gocken T, Jones JC (2005) Intermediate filament associated proteins. Adv Protein Chem 70:143–202PubMedCrossRefGoogle Scholar
  5. 5.
    Franke WW, Grund C, Kuhn C, Jackson BW, Illmensee K (1982) Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments. Differentiation 23:43–59PubMedCrossRefGoogle Scholar
  6. 6.
    Larsson A, Wilhelmsson U, Pekna M, Pekny M (2004) Increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of old GFAP(−/−)Vim(−/−) mice. Neurochem Res 29:2069–2073PubMedCrossRefGoogle Scholar
  7. 7.
    Cochard P, Paulin D (1984) Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J Neurosci 4:2080–2094PubMedGoogle Scholar
  8. 8.
    de Souza PC, Katz SG (2001) Coexpression of cytokeratin and vimentin in mice trophoblastic giant cells. Tissue Cell 33:40–45PubMedCrossRefGoogle Scholar
  9. 9.
    Ko SH, Suh SH, Kim BJ, Ahn YB, Song KH, Yoo SJ, Son HS et al (2004) Expression of the intermediate filament vimentin in proliferating duct cells as a marker of pancreatic precursor cells. Pancreas 28:121–128PubMedCrossRefGoogle Scholar
  10. 10.
    Mahrle G, Bolling R, Osborn M, Weber K (1983) Intermediate filaments of the vimentin and prekeratin type in human epidermis. J Invest Dermatol 81:46–48PubMedCrossRefGoogle Scholar
  11. 11.
    Carter V, Shenton BK, Jaques B, Turner D, Talbot D, Gupta A, Chapman CE et al (2005) Vimentin antibodies: a non-HLA antibody as a potential risk factor in renal transplantation. Transplant Proc 37:654–657PubMedCrossRefGoogle Scholar
  12. 12.
    Evans RM (1998) Vimentin: the conundrum of the intermediate filament gene family. Bioessays 20:79–86PubMedCrossRefGoogle Scholar
  13. 13.
    Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454PubMedCrossRefGoogle Scholar
  14. 14.
    Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66:11271–11278PubMedCrossRefGoogle Scholar
  15. 15.
    Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313:2050–2062PubMedCrossRefGoogle Scholar
  16. 16.
    Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C (1994) Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79:679–694PubMedCrossRefGoogle Scholar
  17. 17.
    Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T, Martin P (2000) Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci 113(Pt 13):2455–2462PubMedGoogle Scholar
  18. 18.
    Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, Ingber D, Merckling A et al (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111(Pt 13):1897–1907PubMedGoogle Scholar
  19. 19.
    Terzi F, Henrion D, Colucci-Guyon E, Federici P, Babinet C, Levy BI, Briand P et al (1997) Reduction of renal mass is lethal in mice lacking vimentin. Role of endothelin-nitric oxide imbalance. J Clin Invest 100:1520–1528PubMedCrossRefGoogle Scholar
  20. 20.
    Schiffers PM, Henrion D, Boulanger CM, Colucci-Guyon E, Langa-Vuves F, van Essen H, Fazzi GE et al (2000) Altered flow-induced arterial remodeling in vimentin-deficient mice. Arterioscler Thromb Vasc Biol 20:611–616PubMedCrossRefGoogle Scholar
  21. 21.
    Nieminen M, Henttinen T, Merinen M, Marttila-Ichihara F, Eriksson JE, Jalkanen S (2006) Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol 8:156–162PubMedCrossRefGoogle Scholar
  22. 22.
    Langa F, Kress C, Colucci-Guyon E, Khun H, Vandormael-Pournin S, Huerre M, Babinet C (2000) Teratocarcinomas induced by embryonic stem (ES) cells lacking vimentin: an approach to study the role of vimentin in tumorigenesis. J Cell Sci 113(Pt 19):3463–3472PubMedGoogle Scholar
  23. 23.
    Goldie KN, Wedig T, Mitra AK, Aebi U, Herrmann H, Hoenger A (2007) Dissecting the 3D structure of vimentin intermediate filaments by cryo-electron tomography. J Struct Biol 158:378–385PubMedCrossRefGoogle Scholar
  24. 24.
    Fuchs E, Hanukoglu I (1983) Unraveling the structure of the intermediate filaments. Cell 34:332–334PubMedCrossRefGoogle Scholar
  25. 25.
    Ku NO, Liao J, Chou CF, Omary MB (1996) Implications of intermediate filament protein phosphorylation. Cancer Metastasis Rev 15:429–444PubMedCrossRefGoogle Scholar
  26. 26.
    Aziz A, Hess JF, Budamagunta MS, Voss JC, Fitzgerald PG Site-directed spin labeling and electron paramagnetic resonance determination of vimentin head domain structure. J Biol Chem 285:15278–15285Google Scholar
  27. 27.
    Eriksson JE, He T, Trejo-Skalli AV, Harmala-Brasken AS, Hellman J, Chou YH, Goldman RD (2004) Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci 117:919–932PubMedCrossRefGoogle Scholar
  28. 28.
    Evans RM (1989) Phosphorylation of vimentin in mitotically selected cells. In vitro cyclic AMP-independent kinase and calcium-stimulated phosphatase activities. J Cell Biol 108:67–78PubMedCrossRefGoogle Scholar
  29. 29.
    Huang TJ, Lee TT, Lee WC, Lai YK, Yu JS, Yang SD (1994) Autophosphorylation-dependent protein kinase phosphorylates Ser25, Ser38, Ser65, Ser71, and Ser411 in vimentin and thereby inhibits cytoskeletal intermediate filament assembly. J Protein Chem 13:517–525PubMedCrossRefGoogle Scholar
  30. 30.
    Ando S, Tanabe K, Gonda Y, Sato C, Inagaki M (1989) Domain- and sequence-specific phosphorylation of vimentin induces disassembly of the filament structure. Biochemistry 28:2974–2979PubMedCrossRefGoogle Scholar
  31. 31.
    Ando S, Tokui T, Yamauchi T, Sugiura H, Tanabe K, Inagaki M (1991) Evidence that Ser-82 is a unique phosphorylation site on vimentin for Ca2(+)-calmodulin-dependent protein kinase II. Biochem Biophys Res Commun 175:955–962PubMedCrossRefGoogle Scholar
  32. 32.
    Nakamura Y, Hashimoto R, Amano M, Nagata K, Matsumoto N, Goto H, Fukusho E et al (2000) Localized phosphorylation of vimentin by rho-kinase in neuroblastoma N2a cells. Genes Cells 5:823–837PubMedCrossRefGoogle Scholar
  33. 33.
    Cheng TJ, Tseng YF, Chang WM, Chang MD, Lai YK (2003) Retaining of the assembly capability of vimentin phosphorylated by mitogen-activated protein kinase-activated protein kinase-2. J Cell Biochem 89:589–602PubMedCrossRefGoogle Scholar
  34. 34.
    Goto H, Tanabe K, Manser E, Lim L, Yasui Y, Inagaki M (2002) Phosphorylation and reorganization of vimentin by p21-activated kinase (PAK). Genes Cells 7:91–97PubMedCrossRefGoogle Scholar
  35. 35.
    Goto H, Yasui Y, Kawajiri A, Nigg EA, Terada Y, Tatsuka M, Nagata K et al (2003) Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem 278:8526–8530PubMedCrossRefGoogle Scholar
  36. 36.
    Turowski P, Myles T, Hemmings BA, Fernandez A, Lamb NJ (1999) Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55. Mol Biol Cell 10:1997–2015PubMedGoogle Scholar
  37. 37.
    van Venrooij WJ, Pruijn GJ (2000) Citrullination: a small change for a protein with great consequences for rheumatoid arthritis. Arthritis Res 2:249–251PubMedCrossRefGoogle Scholar
  38. 38.
    Vossenaar ER, Radstake TR, van der Heijden A, van Mansum MA, Dieteren C, de Rooij DJ, Barrera P et al (2004) Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Ann Rheum Dis 63:373–381PubMedCrossRefGoogle Scholar
  39. 39.
    Farach AM, Galileo DS (2008) O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain. Brain Cell Biol 36:191–202PubMedCrossRefGoogle Scholar
  40. 40.
    Liming Wang JZ, Banerjee Sipra, Barnes Laura, Sajja Venkateswara, Liu Yiding, Guo Baochuan, Yuping Du, Agarwal MukeshK, Wald DavidN, Wang Qin, Yang Jinbo (2010) Sumoylation of vimentin354 is associated with PIAS3 inhibition of Glioma cell migration. Oncotarget 1:620–627PubMedGoogle Scholar
  41. 41.
    Rittling SR, Baserga R (1987) Functional analysis and growth factor regulation of the human vimentin promoter. Mol Cell Biol 7:3908–3915PubMedGoogle Scholar
  42. 42.
    Lilienbaum A, Paulin D (1993) Activation of the human vimentin gene by the Tax human T-cell leukemia virus. I. Mechanisms of regulation by the NF-kappa B transcription factor. J Biol Chem 268:2180–2188PubMedGoogle Scholar
  43. 43.
    Rittling SR, Coutinho L, Amram T, Kolbe M (1989) AP-1/jun binding sites mediate serum inducibility of the human vimentin promoter. Nucleic Acids Res 17:1619–1633PubMedCrossRefGoogle Scholar
  44. 44.
    Chen JH, Vercamer C, Li Z, Paulin D, Vandenbunder B, Stehelin D (1996) PEA3 transactivates vimentin promoter in mammary epithelial and tumor cells. Oncogene 13:1667–1675PubMedGoogle Scholar
  45. 45.
    Zhang X, Diab IH, Zehner ZE (2003) ZBP-89 represses vimentin gene transcription by interacting with the transcriptional activator, Sp1. Nucleic Acids Res 31:2900–2914PubMedCrossRefGoogle Scholar
  46. 46.
    Wieczorek E, Lin Z, Perkins EB, Law DJ, Merchant JL, Zehner ZE (2000) The zinc finger repressor, ZBP-89, binds to the silencer element of the human vimentin gene and complexes with the transcriptional activator, Sp1. J Biol Chem 275:12879–12888PubMedCrossRefGoogle Scholar
  47. 47.
    Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM (2003) Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res 63:2658–2664PubMedGoogle Scholar
  48. 48.
    Min C, Eddy SF, Sherr DH, Sonenshein GE (2008) NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 104:733–744PubMedCrossRefGoogle Scholar
  49. 49.
    Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N et al (2004) NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581PubMedGoogle Scholar
  50. 50.
    Wu Y, Zhang X, Salmon M, Lin X, Zehner ZE (2007) TGFbeta1 regulation of vimentin gene expression during differentiation of the C2C12 skeletal myogenic cell line requires Smads, AP-1 and Sp1 family members. Biochim Biophys Acta 1773:427–439PubMedCrossRefGoogle Scholar
  51. 51.
    Shirahata A, Sakata M, Sakuraba K, Goto T, Mizukami H, Saito M, Ishibashi K et al (2009) Vimentin methylation as a marker for advanced colorectal carcinoma. Anticancer Res 29:279–281PubMedGoogle Scholar
  52. 52.
    Zou H, Harrington JJ, Shire AM, Rego RL, Wang L, Campbell ME, Oberg AL et al (2007) Highly methylated genes in colorectal neoplasia: implications for screening. Cancer Epidemiol Biomarkers Prev 16:2686–2696PubMedCrossRefGoogle Scholar
  53. 53.
    Wu Y, Zhang X, Salmon M, Zehner ZE (2007) The zinc finger repressor, ZBP-89, recruits histone deacetylase 1 to repress vimentin gene expression. Genes Cells 12:905–918PubMedCrossRefGoogle Scholar
  54. 54.
    Traub P, Shoeman RL (1994) Intermediate filament proteins: cytoskeletal elements with gene-regulatory function? Int Rev Cytol 154:1–103PubMedCrossRefGoogle Scholar
  55. 55.
    Hartig R, Shoeman RL, Janetzko A, Tolstonog G, Traub P (1998) DNA-mediated transport of the intermediate filament protein vimentin into the nucleus of cultured cells. J Cell Sci 111(Pt 24):3573–3584PubMedGoogle Scholar
  56. 56.
    Georgatos SD, Blobel G (1987) Lamin B constitutes an intermediate filament attachment site at the nuclear envelope. J Cell Biol 105:117–125PubMedCrossRefGoogle Scholar
  57. 57.
    Mergui X, Puiffe ML, Valteau-Couanet D, Lipinski M, Benard J, Amor-Gueret M p21Waf1 expression is regulated by nuclear intermediate filament vimentin in neuroblastoma. BMC Cancer 10:473Google Scholar
  58. 58.
    Perides G, Harter C, Traub P (1987) Electrostatic and hydrophobic interactions of the intermediate filament protein vimentin and its amino terminus with lipid bilayers. J Biol Chem 262:13742–13749PubMedGoogle Scholar
  59. 59.
    Ise H, Kobayashi S, Goto M, Sato T, Kawakubo M, Takahashi M, Ikeda U et al (2010) Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces. Glycobiology 20:843–864PubMedCrossRefGoogle Scholar
  60. 60.
    Cutrera J, Dibra D, Xia X, Hasan A, Reed S, Li S Discovery of a Linear Peptide for Improving Tumor Targeting of Gene Products and Treatment of Distal Tumors by IL-12 Gene Therapy. Mol TherGoogle Scholar
  61. 61.
    Bhattacharya R, Gonzalez AM, Debiase PJ, Trejo HE, Goldman RD, Flitney FW, Jones JC (2009) Recruitment of vimentin to the cell surface by beta3 integrin and plectin mediates adhesion strength. J Cell Sci 122:1390–1400PubMedCrossRefGoogle Scholar
  62. 62.
    Ivaska J, Vuoriluoto K, Huovinen T, Izawa I, Inagaki M, Parker PJ (2005) PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J 24:3834–3845PubMedCrossRefGoogle Scholar
  63. 63.
    Moisan E, Girard D (2006) Cell surface expression of intermediate filament proteins vimentin and lamin B1 in human neutrophil spontaneous apoptosis. J Leukoc Biol 79:489–498PubMedCrossRefGoogle Scholar
  64. 64.
    Kurki P, Virtanen I (1984) The detection of human antibodies against cytoskeletal components. J Immunol Methods 67:209–223PubMedCrossRefGoogle Scholar
  65. 65.
    Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM (2003) Vimentin is secreted by activated macrophages. Nat Cell Biol 5:59–63PubMedCrossRefGoogle Scholar
  66. 66.
    Garg A, Barnes PF, Porgador A, Roy S, Wu S, Nanda JS, Griffith DE et al (2006) Vimentin expressed on Mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor. J Immunol 177:6192–6198PubMedGoogle Scholar
  67. 67.
    Srivastava BI, Srivastava MD (2006) Expression of natural cytotoxicity receptors NKp30, NKp44, and NKp46 mRNAs and proteins by human hematopoietic and non-hematopoietic cells. Leuk Res 30:37–46PubMedCrossRefGoogle Scholar
  68. 68.
    Huet D, Bagot M, Loyaux D, Capdevielle J, Conraux L, Ferrara P, Bensussan A et al (2006) SC5 mAb represents a unique tool for the detection of extracellular vimentin as a specific marker of Sezary cells. J Immunol 176:652–659PubMedGoogle Scholar
  69. 69.
    Sun S, Poon RT, Lee NP, Yeung C, Chan KL, Ng IO, Day PJ et al (2010) Proteomics of hepatocellular carcinoma: serum vimentin as a surrogate marker for small tumors (< or = 2 cm). J Proteome Res 9:1923–1930PubMedCrossRefGoogle Scholar
  70. 70.
    Uchida A, Colot M, Micksche M (1984) Suppression of natural killer cell activity by adherent effusion cells of cancer patients. Suppression of motility, binding capacity and lethal hit of NK cells. Br J Cancer 49:17–23PubMedCrossRefGoogle Scholar
  71. 71.
    Ashiru O, Boutet P, Fernandez-Messina L, Aguera-Gonzalez S, Skepper JN, Vales-Gomez M, Reyburn HT (2010) Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res 70:481–489PubMedCrossRefGoogle Scholar
  72. 72.
    Roghanian A, Jones DC, Pattisapu JV, Wolfe J, Young NT, Behnam B (2010) Filament-associated TSGA10 protein is expressed in professional antigen presenting cells and interacts with vimentin. Cell Immunol 265:120–126PubMedCrossRefGoogle Scholar
  73. 73.
    Sukumaran B, Mastronunzio JE, Narasimhan S, Fankhauser S, Uchil PD, Levy R, Graham M et al (2011) Anaplasma phagocytophilum AptA modulates Erk1/2 signalling. Cell Microbiol 13:47–61PubMedCrossRefGoogle Scholar
  74. 74.
    Phua DC, Humbert PO, Hunziker W (2009) Vimentin regulates scribble activity by protecting it from proteasomal degradation. Mol Biol Cell 20:2841–2855PubMedCrossRefGoogle Scholar
  75. 75.
    Walter M, Chen FW, Tamari F, Wang R, Ioannou YA (2009) Endosomal lipid accumulation in NPC1 leads to inhibition of PKC, hypophosphorylation of vimentin and Rab9 entrapment. Biol Cell 101:141–152PubMedCrossRefGoogle Scholar
  76. 76.
    Santilman V, Baran J, Anand-Apte B, Evans RM, Parat MO (2007) Caveolin-1 polarization in transmigrating endothelial cells requires binding to intermediate filaments. Angiogenesis 10:297–305PubMedCrossRefGoogle Scholar
  77. 77.
    Svitkina TM, Verkhovsky AB, Borisy GG (1996) Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol 135:991–1007PubMedCrossRefGoogle Scholar
  78. 78.
    Lieska N, Shao D, Kriho V, Yang HY (1991) Expression and distribution of cytoskeletal IFAP-300 kD as an index of lens cell differentiation. Curr Eye Res 10:1165–1174PubMedCrossRefGoogle Scholar
  79. 79.
    Cheng TJ, Lai YK (1994) Transient increase in vimentin phosphorylation and vimentin-HSC70 association in 9L rat brain tumor cells experiencing heat-shock. J Cell Biochem 54:100–109PubMedCrossRefGoogle Scholar
  80. 80.
    Brown KD, Binder LI (1992) Identification of the intermediate filament-associated protein gyronemin as filamin. Implications for a novel mechanism of cytoskeletal interaction. J Cell Sci 102(Pt 1):19–30PubMedGoogle Scholar
  81. 81.
    Song S, Hanson MJ, Liu BF, Chylack LT, Liang JJ (2008) Protein–protein interactions between lens vimentin and alphaB-crystallin using FRET acceptor photobleaching. Mol Vis 14:1282–1287PubMedGoogle Scholar
  82. 82.
    MacMillan-Crow LA, Lincoln TM (1994) High-affinity binding and localization of the cyclic GMP-dependent protein kinase with the intermediate filament protein vimentin. Biochemistry 33:8035–8043PubMedCrossRefGoogle Scholar
  83. 83.
    Ciesielski-Treska J, Ulrich G, Chasserot-Golaz S, Aunis D (1995) Immunocytochemical localization of protein kinases Yes and Src in amoeboid microglia in culture: association of Yes kinase with vimentin intermediate filaments. Eur J Cell Biol 68:369–376PubMedGoogle Scholar
  84. 84.
    Stappenbeck TS, Bornslaeger EA, Corcoran CM, Luu HH, Virata ML, Green KJ (1993) Functional analysis of desmoplakin domains: specification of the interaction with keratin versus vimentin intermediate filament networks. J Cell Biol 123:691–705PubMedCrossRefGoogle Scholar
  85. 85.
    van den Heuvel AP, de Vries-Smits AM, van Weeren PC, Dijkers PF, de Bruyn KM, Riedl JA, Burgering BM (2002) Binding of protein kinase B to the plakin family member periplakin. J Cell Sci 115:3957–3966PubMedCrossRefGoogle Scholar
  86. 86.
    Cary RB, Klymkowsky MW, Evans RM, Domingo A, Dent JA, Backhus LE (1994) Vimentin’s tail interacts with actin-containing structures in vivo. J Cell Sci 107(Pt 6):1609–1622PubMedGoogle Scholar
  87. 87.
    Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V (2010) Vimentin interacts with heterogeneous nuclear ribonucleoproteins and dengue nonstructural protein 1 and is important for viral replication and release. Mol Biosyst 6:795–806PubMedCrossRefGoogle Scholar
  88. 88.
    Russell RL, Cao D, Zhang D, Handschumacher RE, Pizzorno G (2001) Uridine phosphorylase association with vimentin. Intracellular distribution and localization. J Biol Chem 276:13302–13307PubMedCrossRefGoogle Scholar
  89. 89.
    Gao Y, Sztul E (2001) A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton. J Cell Biol 152:877–894PubMedCrossRefGoogle Scholar
  90. 90.
    Perlson E, Michaelevski I, Kowalsman N, Ben-Yaakov K, Shaked M, Seger R, Eisenstein M et al (2006) Vimentin binding to phosphorylated Erk sterically hinders enzymatic dephosphorylation of the kinase. J Mol Biol 364:938–944PubMedCrossRefGoogle Scholar
  91. 91.
    Zhu QS, Rosenblatt K, Huang KL, Lahat G, Brobey R, Bolshakov S, Nguyen T et al (2011) Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene 30:457–470PubMedCrossRefGoogle Scholar
  92. 92.
    Tzivion G, Luo ZJ, Avruch J (2000) Calyculin A-induced vimentin phosphorylation sequesters 14-3-3 and displaces other 14-3-3 partners in vivo. J Biol Chem 275:29772–29778PubMedCrossRefGoogle Scholar
  93. 93.
    Lian N, Wang W, Li L, Elefteriou F, Yang X (2009) Vimentin inhibits ATF4-mediated osteocalcin transcription and osteoblast differentiation. J Biol Chem 284:30518–30525PubMedCrossRefGoogle Scholar
  94. 94.
    Vuoriluoto K, Haugen H, Kiviluoto S, Mpindi JP, Nevo J, Gjerdrum C, Tiron C et al (2011) Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30(12):1436–1448PubMedCrossRefGoogle Scholar
  95. 95.
    Barberis L, Pasquali C, Bertschy-Meier D, Cuccurullo A, Costa C, Ambrogio C, Vilbois F et al (2009) Leukocyte transmigration is modulated by chemokine-mediated PI3Kgamma-dependent phosphorylation of vimentin. Eur J Immunol 39:1136–1146PubMedCrossRefGoogle Scholar
  96. 96.
    Zhao Y, Yan Q, Long X, Chen X, Wang Y (2008) Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell Biochem Funct 26:571–577PubMedCrossRefGoogle Scholar
  97. 97.
    Lang SH, Hyde C, Reid IN, Hitchcock IS, Hart CA, Bryden AA, Villette JM et al (2002) Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. Prostate 52:253–263PubMedCrossRefGoogle Scholar
  98. 98.
    Singh S, Sadacharan S, Su S, Belldegrun A, Persad S, Singh G (2003) Overexpression of vimentin: role in the invasive phenotype in an androgen-independent model of prostate cancer. Cancer Res 63:2306–2311PubMedGoogle Scholar
  99. 99.
    Zhang X, Fournier MV, Ware JL, Bissell MJ, Yacoub A, Zehner ZE (2009) Inhibition of vimentin or beta1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Mol Cancer Ther 8:499–508PubMedCrossRefGoogle Scholar
  100. 100.
    Wei J, Xu G, Wu M, Zhang Y, Li Q, Liu P, Zhu T et al (2008) Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation. Anticancer Res 28:327–334PubMedGoogle Scholar
  101. 101.
    Hafeez BB, Zhong W, Weichert J, Dreckschmidt NE, Jamal MS, Verma AK (2011) Genetic ablation of PKC epsilon inhibits prostate cancer development and metastasis in transgenic mouse model of prostate adenocarcinoma. Cancer Res 71:2318–2327PubMedCrossRefGoogle Scholar
  102. 102.
    Wu M, Bai X, Xu G, Wei J, Zhu T, Zhang Y, Li Q et al (2007) Proteome analysis of human androgen-independent prostate cancer cell lines: variable metastatic potentials correlated with vimentin expression. Proteomics 7:1973–1983PubMedCrossRefGoogle Scholar
  103. 103.
    Sethi S, Macoska J, Chen W, Sarkar FH (2010) Molecular signature of epithelial–mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am J Transl Res 3:90–99PubMedGoogle Scholar
  104. 104.
    Fuyuhiro Y, Yashiro M, Noda S, Kashiwagi S, Matsuoka J, Doi Y, Kato Y et al (2010) Clinical significance of vimentin-positive gastric cancer cells. Anticancer Res 30:5239–5243PubMedGoogle Scholar
  105. 105.
    Takemura K, Hirayama R, Hirokawa K, Inagaki M, Tsujimura K, Esaki Y, Mishima Y (1994) Expression of vimentin in gastric cancer: a possible indicator for prognosis. Pathobiology 62:149–154PubMedCrossRefGoogle Scholar
  106. 106.
    Jin H, Morohashi S, Sato F, Kudo Y, Akasaka H, Tsutsumi S, Ogasawara H et al (2010) Vimentin expression of esophageal squamous cell carcinoma and its aggressive potential for lymph node metastasis. Biomed Res 31:105–112PubMedCrossRefGoogle Scholar
  107. 107.
    Hu L, Lau SH, Tzang CH, Wen JM, Wang W, Xie D, Huang M et al (2004) Association of Vimentin overexpression and hepatocellular carcinoma metastasis. Oncogene 23:298–302PubMedCrossRefGoogle Scholar
  108. 108.
    Li ZM, Wen YJ, Yang HB, Qin G, Tian L, Deng HX, Wen B (2008) Enhanced expression of human vimentin intermediate filaments in hepatocellular carcinoma cells decreases their proliferative and invasive abilities in vitro. Zhonghua Zhong Liu Za Zhi 30:408–412PubMedGoogle Scholar
  109. 109.
    Zou H, Harrington J, Rego RL, Ahlquist DA (2007) A novel method to capture methylated human DNA from stool: implications for colorectal cancer screening. Clin Chem 53:1646–1651PubMedCrossRefGoogle Scholar
  110. 110.
    Chen WD, Han ZJ, Skoletsky J, Olson J, Sah J, Myeroff L, Platzer P et al (2005) Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst 97:1124–1132PubMedCrossRefGoogle Scholar
  111. 111.
    von Bassewitz DB, Roessner A, Grundmann E (1982) Intermediate-sized filaments in cells of normal human colon mucosa, adenomas and carcinomas. Pathol Res Pract 175:238–255Google Scholar
  112. 112.
    Ngan CY, Yamamoto H, Seshimo I, Tsujino T, Man-i M, Ikeda JI, Konishi K et al (2007) Quantitative evaluation of vimentin expression in tumour stroma of colorectal cancer. Br J Cancer 96:986–992PubMedCrossRefGoogle Scholar
  113. 113.
    McInroy L, Maatta A (2007) Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 360:109–114PubMedCrossRefGoogle Scholar
  114. 114.
    Alfonso P, Nunez A, Madoz-Gurpide J, Lombardia L, Sanchez L, Casal JI (2005) Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics 5:2602–2611PubMedCrossRefGoogle Scholar
  115. 115.
    Di Bella A, Regoli M, Nicoletti C, Ermini L, Fonzi L, Bertelli E (2009) An appraisal of intermediate filament expression in adult and developing pancreas: vimentin is expressed in alpha cells of rat and mouse embryos. J Histochem Cytochem 57:577–586PubMedCrossRefGoogle Scholar
  116. 116.
    Hong SH, Misek DE, Wang H, Puravs E, Hinderer R, Giordano TJ, Greenson JK et al (2006) Identification of a specific vimentin isoform that induces an antibody response in pancreatic cancer. Biomark Insights 1:175–183PubMedGoogle Scholar
  117. 117.
    Liu C, Chen Y, Yu X, Jin C, Xu J, Long J, Ni Q et al (2008) Proteomic analysis of differential proteins in pancreatic carcinomas: effects of MBD1 knock-down by stable RNA interference. BMC Cancer 8:121PubMedCrossRefGoogle Scholar
  118. 118.
    Yin T, Wang C, Liu T, Zhao G, Zhou F (2006) Implication of EMT induced by TGF-beta1 in pancreatic cancer. J Huazhong Univ Sci Technolog Med Sci 26:700–702PubMedCrossRefGoogle Scholar
  119. 119.
    Walsh N, O’Donovan N, Kennedy S, Henry M, Meleady P, Clynes M, Dowling P (2009) Identification of pancreatic cancer invasion-related proteins by proteomic analysis. Proteome Sci 7:3PubMedCrossRefGoogle Scholar
  120. 120.
    Korsching E, Packeisen J, Liedtke C, Hungermann D, Wulfing P, van Diest PJ, Brandt B et al (2005) The origin of vimentin expression in invasive breast cancer: epithelial–mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 206:451–457PubMedCrossRefGoogle Scholar
  121. 121.
    Gilles C, Polette M, Zahm JM, Tournier JM, Volders L, Foidart JM, Birembaut P (1999) Vimentin contributes to human mammary epithelial cell migration. J Cell Sci 112(Pt 24):4615–4625PubMedGoogle Scholar
  122. 122.
    Domagala W, Lasota J, Bartkowiak J, Weber K, Osborn M (1990) Vimentin is preferentially expressed in human breast carcinomas with low estrogen receptor and high Ki-67 growth fraction. Am J Pathol 136:219–227PubMedGoogle Scholar
  123. 123.
    Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M (2007) Vimentin and epithelial-mesenchymal transition in human breast cancer—observations in vitro and in vivo. Cells Tissues Organs 185:191–203PubMedCrossRefGoogle Scholar
  124. 124.
    Li M, Zhang B, Sun B, Wang X, Ban X, Sun T, Liu Z et al (2010) A novel function for vimentin: the potential biomarker for predicting melanoma hematogenous metastasis. J Exp Clin Cancer Res 29:109PubMedCrossRefGoogle Scholar
  125. 125.
    Chu YW, Seftor EA, Romer LH, Hendrix MJ (1996) Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. Am J Pathol 148:63–69PubMedGoogle Scholar
  126. 126.
    Hendrix MJ, Seftor EA, Chu YW, Seftor RE, Nagle RB, McDaniel KM, Leong SP et al (1992) Coexpression of vimentin and keratins by human melanoma tumor cells: correlation with invasive and metastatic potential. J Natl Cancer Inst 84:165–174PubMedCrossRefGoogle Scholar
  127. 127.
    Ben-Ze’ev A, Raz A (1985) Relationship between the organization and synthesis of vimentin and the metastatic capability of B16 melanoma cells. Cancer Res 45:2632–2641PubMedGoogle Scholar
  128. 128.
    Caselitz J, Janner M, Breitbart E, Weber K, Osborn M (1983) Malignant melanomas contain only the vimentin type of intermediate filaments. Virchows Arch A Pathol Anat Histopathol 400:43–51PubMedCrossRefGoogle Scholar
  129. 129.
    Yamada T, Kawamata T, Walker DG, McGeer PL (1992) Vimentin immunoreactivity in normal and pathological human brain tissue. Acta Neuropathol 84:157–162PubMedCrossRefGoogle Scholar
  130. 130.
    Trog D, Yeghiazaryan K, Schild HH, Golubnitschaja O (2008) Up-regulation of vimentin expression in low-density malignant glioma cells as immediate and late effects under irradiation and temozolomide treatment. Amino Acids 34:539–545PubMedCrossRefGoogle Scholar
  131. 131.
    Fortin S, Le Mercier M, Camby I, Spiegl-Kreinecker S, Berger W, Lefranc F, Kiss R (2010) Galectin-1 is implicated in the protein kinase C epsilon/vimentin-controlled trafficking of integrin-beta1 in glioblastoma cells. Brain Pathol 20:39–49PubMedCrossRefGoogle Scholar
  132. 132.
    Bouamrani A, Ramus C, Gay E, Pelletier L, Cubizolles M, Brugiere S, Wion D et al (2010) Increased phosphorylation of vimentin in noninfiltrative meningiomas. PLoS One 5:e9238PubMedCrossRefGoogle Scholar
  133. 133.
    Kawahara E, Oda Y, Ooi A, Katsuda S, Nakanishi I, Umeda S (1988) Expression of glial fibrillary acidic protein (GFAP) in peripheral nerve sheath tumors. A comparative study of immunoreactivity of GFAP, vimentin, S-100 protein, and neurofilament in 38 schwannomas and 18 neurofibromas. Am J Surg Pathol 12:115–120PubMedCrossRefGoogle Scholar
  134. 134.
    Broers JL, de Leij L, Rot MK, ter Haar A, Lane EB, Leigh IM, Wagenaar SS et al (1989) Expression of intermediate filament proteins in fetal and adult human lung tissues. Differentiation 40:119–128PubMedCrossRefGoogle Scholar
  135. 135.
    Upton MP, Hirohashi S, Tome Y, Miyazawa N, Suemasu K, Shimosato Y (1986) Expression of vimentin in surgically resected adenocarcinomas and large cell carcinomas of lung. Am J Surg Pathol 10:560–567PubMedCrossRefGoogle Scholar
  136. 136.
    Al-Saad S, Al-Shibli K, Donnem T, Persson M, Bremnes RM, Busund LT (2008) The prognostic impact of NF-kappaB p105, vimentin, E-cadherin and Par6 expression in epithelial and stromal compartment in non-small-cell lung cancer. Br J Cancer 99:1476–1483PubMedCrossRefGoogle Scholar
  137. 137.
    Rho JH, Roehrl MH, Wang JY (2009) Glycoproteomic analysis of human lung adenocarcinomas using glycoarrays and tandem mass spectrometry: differential expression and glycosylation patterns of vimentin and fetuin A isoforms. Protein J 28:148–160PubMedCrossRefGoogle Scholar
  138. 138.
    Chu S, Xu H, Ferro TJ, Rivera PX (2007) Poly(ADP-ribose) polymerase-1 regulates vimentin expression in lung cancer cells. Am J Physiol Lung Cell Mol Physiol 293:L1127–L1134PubMedCrossRefGoogle Scholar
  139. 139.
    Gilles C, Polette M, Piette J, Delvigne AC, Thompson EW, Foidart JM, Birembaut P (1996) Vimentin expression in cervical carcinomas: association with invasive and migratory potential. J Pathol 180:175–180PubMedCrossRefGoogle Scholar
  140. 140.
    Williams AA, Higgins JP, Zhao H, Ljunberg B, Brooks JD (2009) CD 9 and vimentin distinguish clear cell from chromophobe renal cell carcinoma. BMC Clin Pathol 9:9PubMedCrossRefGoogle Scholar
  141. 141.
    Gustmann C, Altmannsberger M, Osborn M, Griesser H, Feller AC (1991) Cytokeratin expression and vimentin content in large cell anaplastic lymphomas and other non-Hodgkin’s lymphomas. Am J Pathol 138:1413–1422PubMedGoogle Scholar
  142. 142.
    Yamamoto Y, Izumi K, Otsuka H (1992) An immunohistochemical study of epithelial membrane antigen, cytokeratin, and vimentin in papillary thyroid carcinoma. Recognition of lethal and favorable prognostic types. Cancer 70:2326–2333PubMedCrossRefGoogle Scholar
  143. 143.
    Coppola D, Fu L, Nicosia SV, Kounelis S, Jones M (1998) Prognostic significance of p53, bcl-2, vimentin, and S100 protein-positive Langerhans cells in endometrial carcinoma. Hum Pathol 29:455–462PubMedCrossRefGoogle Scholar
  144. 144.
    Bargagna-Mohan P, Hamza A, Kim YE, Khuan Abby Ho Y, Mor-Vaknin N, Wendschlag N, Liu J et al (2007) The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem Biol 14:623–634PubMedCrossRefGoogle Scholar
  145. 145.
    Lahat G, Zhu QS, Huang KL, Wang S, Bolshakov S, Liu J, Torres K et al (2010) Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. PLoS One 5:e10105PubMedCrossRefGoogle Scholar
  146. 146.
    Wu KJ, Zeng J, Zhu GD, Zhang LL, Zhang D, Li L, Fan JH et al (2009) Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression. Acta Pharmacol Sin 30:1162–1168PubMedCrossRefGoogle Scholar
  147. 147.
    Singh RP, Raina K, Sharma G, Agarwal R (2008) Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial-mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clin Cancer Res 14:7773–7780PubMedCrossRefGoogle Scholar
  148. 148.
    Dong TT, Zhou HM, Wang LL, Feng B, Lv B, Zheng MH (2011) Salinomycin selectively targets ‘CD133+’ cell subpopulations and decreases malignant traits in colorectal cancer lines. Ann Surg Oncol 18(6):1797–1804PubMedCrossRefGoogle Scholar
  149. 149.
    Zhang X, Ladd A, Dragoescu E, Budd WT, Ware JL, Zehner ZE (2009) MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin Exp Metastasis 26:965–979PubMedCrossRefGoogle Scholar
  150. 150.
    Braun J, Hoang-Vu C, Dralle H, Huttelmaier S (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29:4237–4244PubMedCrossRefGoogle Scholar
  151. 151.
    Bouchard PR, Hutabarat RM, Thompson KM (2010) Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol 50:237–257PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Pediatrics, Unit 853The University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.UTMD, Graduate School of Biomedical ScienceHoustonUSA

Personalised recommendations