Cellular and Molecular Life Sciences

, Volume 68, Issue 18, pp 3007–3017 | Cite as

Experimental approaches to study functional recovery following cerebral ischemia



Valid experimental models and behavioral tests are indispensable for the development of therapies for stroke. The translational failure with neuroprotective drugs has forced us to look for alternative approaches. Restorative therapies aiming to facilitate the recovery process by pharmacotherapy or cell-based therapy have emerged as promising options. Here we describe the most common stroke models used in cell-based therapy studies with particular emphasis on their inherent complications, which may affect behavioral outcome. Loss of body weight, stress, hyperthermia, immunodepression, and infections particularly after severe transient middle cerebral artery occlusion (filament model) are recognized as possible confounders to impair performance in certain behavioral tasks and bias the treatment effects. Inherent limitations of stroke models should be carefully considered when planning experiments to ensure translation of behavioral data to the clinic.


Behavioral tests Brain repair mechanisms Cell-based therapy Recovery of function Restorative therapies Stroke models 



This study was supported by the Health Research Council of the Academy of Finland and the Finnish Funding Agency for Technology and Innovation grant.


  1. 1.
    Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623PubMedCrossRefGoogle Scholar
  2. 2.
    Sivenius J, Torppa J, Tuomilehto J, Immonen-Räihä P, Kaarisalo M, Sarti C, Kuulasmaa K, Mähönen M, Lehtonen A, Salomaa V (2009) Modelling the burden of stroke in Finland until 2030. Int J Stroke 4:340–345PubMedCrossRefGoogle Scholar
  3. 3.
    Sivenius J, Tuomilehto J, Immonen-Räihä P, Kaarisalo M, Sarti C, Torppa J, Kuulasmaa K, Mähönen M, Lehtonen A, Salomaa V, FINSTROKE study (2004) Continuous 15-year decrease in incidence and mortality of stroke in Finland: the FINSTROKE study. Stroke 35:420–425PubMedCrossRefGoogle Scholar
  4. 4.
    Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, Albers GW, Kaste M, Marler JR, Hamilton SA, Tilley BC, Davis SM, Donnan GA, Hacke W; ECASS, ATLANTIS, NINDS and EPITHET rt-PA Study Group, Allen K, Mau J, Meier D, del Zoppo G, De Silva DA, Butcher KS, Parsons MW, Barber PA, Levi C, Bladin C, Byrnes G (2010) Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 375:1695–703Google Scholar
  5. 5.
    Stemer A, Lyden P (2010) Evolution of the thrombolytic treatment window for acute ischemic stroke. Curr Neurol Neurosci Rep 10:29–33PubMedCrossRefGoogle Scholar
  6. 6.
    Jahan R, Vinuela F (2009) Treatment of acute ischemic stroke: intravenous and endovascular therapies. Expert Rev Cardiovasc Ther 7:375–387PubMedCrossRefGoogle Scholar
  7. 7.
    O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59:467–477PubMedCrossRefGoogle Scholar
  8. 8.
    Savitz SI (2007) A critical appraisal of the NXY-059 neuroprotection studies for acute stroke: a need for more rigorous testing of neuroprotective agents in animal models of stroke. Exp Neurol 205:20–25PubMedCrossRefGoogle Scholar
  9. 9.
    Ginsberg MD (2009) Current status of neuroprotection for cerebral ischemia: synoptic overview. Stroke 40(3 Suppl):S111–S114PubMedCrossRefGoogle Scholar
  10. 10.
    Duncan PW, Lai SM, Keighley J (2000) Defining post-stroke recovery: implications for design and interpretation of drug trials. Neuropharmacology 39:835–841PubMedCrossRefGoogle Scholar
  11. 11.
    Martínez-Vila E, Irimia P (2005) Challenges of neuroprotection and neurorestoration in ischemic stroke treatment. Cerebrovasc Dis 20(Suppl 2):148–158PubMedCrossRefGoogle Scholar
  12. 12.
    Murphy TH, Corbett D (2009) Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 10:861–872PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8:491–500PubMedCrossRefGoogle Scholar
  14. 14.
    Dombovy ML, Bach-y-Rita P (1988) Clinical observations on recovery from stroke. Adv Neurol 47:265–276PubMedGoogle Scholar
  15. 15.
    Feeney D, Baron JC (1986) Diaschisis. Stroke 15:817–830Google Scholar
  16. 16.
    Stroemer RP, Kent TA, Hulsebosch CE (1998) Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with d-amphetamine therapy after neocortical infarction in rats. Stroke 29:2381–2395PubMedGoogle Scholar
  17. 17.
    Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18:7768–7778PubMedGoogle Scholar
  18. 18.
    Ohira K, Furuta T, Hioki H, Nakamura KC, Kuramoto E, Tanaka Y, Funatsu N, Shimizu K, Oishi T, Hayashi M, Miyakawa T, Kaneko T, Nakamura S (2009) Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nat Neurosci 13:173–179PubMedCrossRefGoogle Scholar
  19. 19.
    Yu SW, Friedman B, Cheng Q, Lyden PD (2007) Stroke-evoked angiogenesis results in a transient population of microvessels. J Cereb Blood Flow Metab 27:755–763PubMedGoogle Scholar
  20. 20.
    Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U (2005) Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 6:775–786PubMedCrossRefGoogle Scholar
  21. 21.
    England T, Martin P, Bath PM (2009) Stem cells for enhancing recovery after stroke: a review. Int J Stroke 4:101–110PubMedCrossRefGoogle Scholar
  22. 22.
    Miljan EA, Sinden JD (2009) Stem cell treatment of ischemic brain injury. Curr Opin Mol Ther 11:394–403PubMedGoogle Scholar
  23. 23.
    Bliss TM, Andres RH, Steinberg GK (2010) Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 37:275–283PubMedCrossRefGoogle Scholar
  24. 24.
    Stroke Therapy Academic Industry Roundtable (1999) Recommendations for standards regarding preclinical neuroprotective and restorative drugs. Stroke 30:2752–2758Google Scholar
  25. 25.
    Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2:396–409PubMedCrossRefGoogle Scholar
  26. 26.
    Braeuninger S, Kleinschnitz C (2009) Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems. Exp Transl Stroke Med 1:8PubMedCrossRefGoogle Scholar
  27. 27.
    Liu S, Zhen G, Meloni BP, Campbell K, Winn HR (2009) Rodent stroke model guidelines for preclinical stroke trials (1st edition). J Exp Stroke Transl Med 2:2–27PubMedGoogle Scholar
  28. 28.
    Howells DW, Porritt MJ, Rewell SS, O’Collins V, Sena ES, van der Worp HB, Traystman RJ, Macleod MR (2010) Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab 30:1412–1431PubMedCrossRefGoogle Scholar
  29. 29.
    Zanette EM, Roberti C, Mancini G, Pozzilli C, Bragoni M, Toni D (1995) Spontaneous middle cerebral artery reperfusion in ischemic stroke. A follow-up study with transcranial Doppler. Stroke 26:430–433PubMedGoogle Scholar
  30. 30.
    Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91PubMedGoogle Scholar
  31. 31.
    Ma J, Zhao L, Nowak TS Jr (2006) Selective, reversible occlusion of the middle cerebral artery in rats by an intraluminal approach. Optimized filament design and methodology. J Neurosci Methods 156:76–83PubMedCrossRefGoogle Scholar
  32. 32.
    Hudzik TJ, Borrelli A, Bialobok P, Widzowski D, Sydserff S, Howell A, Gendron P, Corbett D, Miller J, Palmer GC (2000) Long-term functional end points following middle cerebral artery occlusion in the rat. Pharmacol Biochem Behav 65:553–562PubMedCrossRefGoogle Scholar
  33. 33.
    Freret T, Chazalviel L, Roussel S, Bernaudin M, Schumann-Bard P, Boulouard M (2006) Long-term functional outcome following transient middle cerebral artery occlusion in the rat: correlation between brain damage and behavioral impairment. Behav Neurosci 120:1285–1298PubMedCrossRefGoogle Scholar
  34. 34.
    Karhunen H, Pitkänen A, Virtanen T, Gureviciene I, Pussinen R, Ylinen A, Sivenius J, Nissinen J, Jolkkonen J (2003) Long-term functional consequences of transient occlusion of the middle cerebral artery in rats: a 1 yr follow-up of the development of epileptogenesis and memory impairment in relation to sensorimotor deficits. Epilepsy Res 54:1–10PubMedCrossRefGoogle Scholar
  35. 35.
    Wang-Fischer Y, Divani AA, Prado R, Koetzner L (2008) Surgical models of stoke induced by intraluminal filament implantation. In: Wang-Fischer Y (ed) Manual of stroke models in rats. CRC Press, Boca Raton, pp 107–126CrossRefGoogle Scholar
  36. 36.
    Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27:1616–1622PubMedGoogle Scholar
  37. 37.
    Lourbopoulos A, Karacostas D, Artemis N, Milonas I, Grigoriadis N (2008) Effectiveness of a new modified intraluminal suture for temporary middle cerebral artery occlusion in rats of various weight. J Neurosci Methods 173:225–234PubMedCrossRefGoogle Scholar
  38. 38.
    Sharkey J, Ritchie IM, Kelly PA (1993) Perivascular microapplication of endothelin-1: a new model of focal cerebral ischaemia in the rat. J Cereb Blood Flow Metab 13:865–871PubMedCrossRefGoogle Scholar
  39. 39.
    Windle V, Szymanska A, Granter-Button S, White C, Buist R, Peeling J, Corbett D (2006) An analysis of four different methods of producing focal cerebral ischemia with endothelin-1 in the rat. Exp Neurol 201:324–334PubMedCrossRefGoogle Scholar
  40. 40.
    Biernaskie J, Chernenko G, Corbett D (2004) Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 24:1245–1254PubMedCrossRefGoogle Scholar
  41. 41.
    Hicks AU, Hewlett K, Windle V, Chernenko G, Ploughman M, Jolkkonen J, Weiss S, Corbett D (2007) Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 146:31–40PubMedCrossRefGoogle Scholar
  42. 42.
    Fuxe K, Bjelke B, Andbjer B, Grahn H, Rimondini R, Agnati LF (1997) Endothelin-1 induced lesions of the frontoparietal cortex of the rat. A possible model of focal cortical ischemia. Neuroreport 8:2623–2629PubMedCrossRefGoogle Scholar
  43. 43.
    Adkins DL, Voorhies AC, Jones TA (2004) Behavioral and neuroplastic effects of focal endothelin-1 induced sensorimotor cortex lesions. Neuroscience 128:473–486PubMedCrossRefGoogle Scholar
  44. 44.
    Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:53–60PubMedCrossRefGoogle Scholar
  45. 45.
    Butovas S, Lukkarinen J, Virtanen T, Jolkkonen J, Sivenius J (2001) Differential effect of the α2 -adrenoceptor antagonist, atipamezole, in limb-placing task and skilled forepaw use following experimental stroke. Restor Neurol Neurosci 18:143–151PubMedGoogle Scholar
  46. 46.
    Roof RL, Schielke GP, Ren X, Hall ED (2001) A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats. Stroke 32:2648–2657PubMedCrossRefGoogle Scholar
  47. 47.
    Tamura M, Aoki Y, Seto T, Itoh Y, Ukai Y (2001) Cerebroprotective action of a Na+/Ca2+ channel blocker NS-7. II. Effect on the cerebral infarction, behavioral and cognitive impairments at the chronic stage of permanent middle cerebral artery occlusion in rats. Brain Res 890:170–176PubMedCrossRefGoogle Scholar
  48. 48.
    Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD (1986) A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke 17:738–743PubMedGoogle Scholar
  49. 49.
    Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174:11–20PubMedCrossRefGoogle Scholar
  50. 50.
    Hicks AU, Lappalainen RS, Narkilahti S, Suuronen R, Corbett D, Sivenius J, Hovatta O, Jolkkonen J (2009) Transplantation of human embryonic stem cell (hESC)-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. Eur J Neurosci 29:562–572PubMedCrossRefGoogle Scholar
  51. 51.
    Bliss TM, Kelly S, Shah AK, Foo WC, Kohli P, Stokes C, Sun GH, Ma M, Masel J, Kleppner SR, Schallert T, Palmer T, Steinberg GK (2006) Transplantation of hNT neurons into the ischemic cortex: cell survival and effect on sensorimotor behavior. J Neurosci Res 83:1004–1014PubMedCrossRefGoogle Scholar
  52. 52.
    Watson BD (1998) Animal modes of photochemically induced brain ischemia and stroke. In: Ginsberg MD, Bogousslavsky J (eds) Cerebrovascular disease. Pathophysiology, diagnosis, and management, vol 1. Blackwell Science, Malden M, pp 52–74Google Scholar
  53. 53.
    Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504PubMedCrossRefGoogle Scholar
  54. 54.
    Wester P, Watson BD, Prado R, Dietrich WD (1995) A photothrombotic ‘ring’ model of rat stroke-in-evolution displaying putative penumbral inversion. Stroke 26:444–450PubMedGoogle Scholar
  55. 55.
    Yao H, Sugimori H, Fukuda K, Takada J, Ooboshi H, Kitazono T, Ibayashi S, Iida M (2003) Photothrombotic middle cerebral artery occlusion and reperfusion laser system in spontaneously hypertensive rats. Stroke 34:2716–2721PubMedCrossRefGoogle Scholar
  56. 56.
    Verlooy J, Van Reempts J, Peersman G, Van de Vyver F, Van Deuren B, Borgers M, Selosse P (1993) Photochemically-induced cerebral infarction in the rat: comparison of NMR imaging and histologic changes. Acta Neurochir (Wien) 122:250–256CrossRefGoogle Scholar
  57. 57.
    Jolkkonen J, Jokivarsi K, Laitinen K, Gröhn O (2007) Subacute hemorrhage and resolution of edema in Rose Bengal stroke model in rats coincides with improved sensorimotor functions. Neurosci Lett 428:99–102PubMedCrossRefGoogle Scholar
  58. 58.
    Miyake K, Takeo S, Kaijihara H (1993) Sustained decrease in brain regional blood flow after microsphere embolism in rats. Stroke 24:415–420PubMedGoogle Scholar
  59. 59.
    Walberer M, Rueger MA, Simard ML, Emig B, Jander S, Fink GR, Schroeter M (2010) Dynamics of neuroinflammation in the macrosphere model of arterio-arterial embolic focal ischemia: an approximation to human stroke patterns. Exp Transl Stroke Med 2:22PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang RL, Chopp M, Zhang ZG, Jiang Q, Ewing JR (1997) A rat model of focal embolic cerebral ischemia. Brain Res 766:83–92PubMedCrossRefGoogle Scholar
  61. 61.
    Orset C, Macrez R, Young AR, Panthou D, Angles-Cano E, Maubert E, Agin V, Vivien D (2007) Mouse model of in situ thromboembolic stroke and reperfusion. Stroke 38:2771–2778PubMedCrossRefGoogle Scholar
  62. 62.
    Gerriets T, Stolz E, Walberer M, Müller C, Rottger C, Kluge A, Kaps M, Fisher M, Bachmann G (2004) Complications and pitfalls in rat stroke models for middle cerebral artery occlusion: a comparison between the suture and the macrosphere model using magnetic resonance angiography. Stroke 35:2372–2377PubMedCrossRefGoogle Scholar
  63. 63.
    Herz RC, Jonker M, Verheul HB, Hillen B, Versteeg DH, de Wildt DJ (1996) Middle cerebral artery occlusion in Wistar and Fischer-344 rats: functional and morphological assessment of the model. J Cereb Blood Flow Metab 16:296–302PubMedCrossRefGoogle Scholar
  64. 64.
    Duverger D, MacKenzie ET (1988) The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab 8:449–461PubMedCrossRefGoogle Scholar
  65. 65.
    Sauter A, Rudin M (1995) Strain-dependent drug effects in rat middle cerebral artery occlusion model of stroke. J Pharmacol Exp Ther 274:1008–1013PubMedGoogle Scholar
  66. 66.
    Wang LC, Futrell N, Wang DZ, Chen FJ, Zhai QH, Schultz LR (1995) A reproducible model of middle cerebral infarcts, compatible with long-term survival, in aged rats. Stroke 26:2087–2090PubMedGoogle Scholar
  67. 67.
    Wang RY, Wang PS, Yang YR (2003) Effect of age in rats following middle cerebral artery occlusion. Gerontology 49:27–32PubMedCrossRefGoogle Scholar
  68. 68.
    Dittmar MS, Fehm NP, Vatankhah B, Bogdahn U, Schlachetzki F (2005) Adverse effects of the intraluminal filament model of middle cerebral artery occlusion. Stroke 36:530–532PubMedCrossRefGoogle Scholar
  69. 69.
    Virtanen T, Jolkkonen J, Sivenius J (2004) Re: external carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats. Stroke 35:e9–e10 author reply e9–e10PubMedCrossRefGoogle Scholar
  70. 70.
    Erdo F, Berzsenyi P, Német L, Andrási F (2006) Talampanel improves the functional deficit after transient focal cerebral ischemia in rats. A 30 day follow up study. Brain Res Bull 68:269–276PubMedCrossRefGoogle Scholar
  71. 71.
    Morikawa E, Ginsberg MD, Dietrich WD, Duncan RC, Kraydieh S, Globus MY, Busto R (1992) The significance of brain temperature in focal cerebral ischemia: histopathological consequences of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 12:380–389PubMedCrossRefGoogle Scholar
  72. 72.
    Zhao Q, Memezawa H, Smith ML, Siesjö BK (1994) Hyperthermia complicates middle cerebral artery occlusion induced by an intraluminal filament. Brain Res 649:253–259PubMedCrossRefGoogle Scholar
  73. 73.
    Liesz A, Hagmann S, Zschoche C, Adamek J, Zhou W, Sun L, Hug A, Zorn M, Dalpke A, Nawroth P, Veltkamp R (2009) The spectrum of systemic immune alterations after murine focal ischemia: immunodepression versus immunomodulation. Stroke 40:2849–2858PubMedCrossRefGoogle Scholar
  74. 74.
    Kumar S, Selim MH, Caplan LR (2010) Medical complications after stroke. Lancet Neurol 9:105–118PubMedCrossRefGoogle Scholar
  75. 75.
    Kirkland SW, Coma AK, Colwell KL, Metz GA (2008) Delayed recovery and exaggerated infarct size by post-lesion stress in a rat model of focal cerebral stroke. Brain Res 1201:151–160PubMedCrossRefGoogle Scholar
  76. 76.
    Li F, Omae T, Fisher M (1999) Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats. Stroke 30:2464–2470PubMedGoogle Scholar
  77. 77.
    Reglodi D, Somogyvari-Vigh A, Maderdrut JL, Vigh S, Arimura A (2000) Postischemic spontaneous hyperthermia and its effects in middle cerebral artery occlusion in the rat. Exp Neurol 163:399–407PubMedCrossRefGoogle Scholar
  78. 78.
    MacLellan CL, Colbourne F (2005) Mild to moderate hyperthermia does not worsen outcome after severe intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 25:1020–1029PubMedCrossRefGoogle Scholar
  79. 79.
    Meisel C, Prass K, Braun J, Victorov I, Wolf T, Megow D, Halle E, Volk HD, Dirnagl U, Meisel A (2004) Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke. Stroke 35:2–6PubMedCrossRefGoogle Scholar
  80. 80.
    Langdon KD, Maclellan CL, Corbett D (2010) Prolonged, 24 h delayed peripheral inflammation increases short- and long-term functional impairment and histopathological damage after focal ischemia in the rat. J Cereb Blood Flow Metab 30:1450–1459PubMedCrossRefGoogle Scholar
  81. 81.
    Engel O, Dirnagl U, Meisel A (2010) Infection—an amendment to the stroke model guidelines. J Exp Stroke Transl Med 3:29–32Google Scholar
  82. 82.
    Hunter AJ, Hatcher J, Virley D, Nelson P, Irving E, Hadingham SJ, Parsons AA (2000) Functional assessments in mice and rats after focal stroke. Neuropharmacology 39:806–816PubMedCrossRefGoogle Scholar
  83. 83.
    Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787PubMedCrossRefGoogle Scholar
  84. 84.
    Schallert T (2006) Behavioral tests for preclinical intervention assessment. NeuroRx 3:497–504PubMedCrossRefGoogle Scholar
  85. 85.
    Kleim JA, Boychuk JA, Adkins DL (2007) Rat models of upper extremity impairment in stroke. ILAR J 48:374–384PubMedGoogle Scholar
  86. 86.
    Modo M (2009) Long-term survival and serial assessment of stroke damage and recovery–practical and methodological considerations. J Exp Stroke Trans Med 2:52–68Google Scholar
  87. 87.
    Schaar KL, Brenneman MM, Savitz SI (2010) Functional assessments in the rodent stroke model. Exp Transl Stroke Med 2:13PubMedCrossRefGoogle Scholar
  88. 88.
    Savitz SI, Chopp M, Deans R, Carmichael ST, Phinney D, Wechsler L (2011) Stem cell therapy as an emerging paradigm for stroke (STEPS) II. Stroke 42:825–829Google Scholar
  89. 89.
    Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011PubMedGoogle Scholar
  90. 90.
    Boltze J, Kowalski I, Förschler A, Schmidt U, Wagner D, Lobsien D, Emmrich J, Egger D, Kamprad M, Blunk J, Emmrich F (2006) The stairway: a novel behavioral test detecting sensomotoric stroke deficits in rats. Artif Organs 30:756–763PubMedCrossRefGoogle Scholar
  91. 91.
    De Ryck M, Van Reempts J, Duytschaever H, Van Deuren B, Clincke G (1992) Neocortical localization of tactile/proprioceptive limb placing reactions in the rat. Brain Res 573:44–60PubMedCrossRefGoogle Scholar
  92. 92.
    Jolkkonen J, Puurunen K, Rantakömi S, Härkönen A, Haapalinna A, Sivenius J (2000) Behavioral effects of the α2-adrenoceptor antagonist, atipamezole, after focal cerebral ischemia in rats. Eur J Pharmacol 400:211–219PubMedCrossRefGoogle Scholar
  93. 93.
    Mäkinen S, Kekarainen T, Nystedt J, Liimatainen T, Huhtala T, Närvänen A, Laine J, Jolkkonen J (2006) Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Res 1123:207–215PubMedCrossRefGoogle Scholar
  94. 94.
    Hamm RJ, Pike BR, O’Dell DM, Lyeth BG, Jenkins LW (1994) The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma 11:187–196PubMedCrossRefGoogle Scholar
  95. 95.
    Modo M, Stroemer RP, Tang E, Veizovic T, Sowniski P, Hodges H (2000) Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion. J Neurosci Methods 104:99–109PubMedCrossRefGoogle Scholar
  96. 96.
    Schallert T, Woodlee MT (2005) Orienting and placing. In: Whishaw IQ, Kolb B (eds) The behavior of the laboratory rat. A handbook with tests. Oxford University Press, New York, pp 129–140Google Scholar
  97. 97.
    Karhunen H, Virtanen T, Schallert T, Sivenius J, Jolkkonen J (2003) Forelimb use after focal cerebral ischemia in rats treated with an α2-adrenoceptor antagonist. Pharmacol Biochem Behav 74:663–669PubMedCrossRefGoogle Scholar
  98. 98.
    Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Meth 36:219–228CrossRefGoogle Scholar
  99. 99.
    Whishaw IQ, O’Connor WT, Dunnett SB (1986) The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 109:805–843PubMedCrossRefGoogle Scholar
  100. 100.
    Whishaw IQ, Pellis SM, Gorny BP, Pellis VC (1991) The impairments in reaching and the movements of compensation in rats with motor cortex lesions: an endpoint, videorecording, and movement notation analysis. Behav Brain Res 42:77–91PubMedCrossRefGoogle Scholar
  101. 101.
    Metz GA, Whishaw IQ (2000) Skilled reaching an action pattern: stability in rat (Rattus norvegicus) grasping movements as a function of changing food pellet size. Behav Brain Res 116:111–122PubMedCrossRefGoogle Scholar
  102. 102.
    van Groen T, Puurunen K, Mäki HM, Sivenius J, Jolkkonen J (2005) Transformation of diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats. Stroke 36:1551–1556PubMedCrossRefGoogle Scholar
  103. 103.
    Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA 101:11839–11844PubMedCrossRefGoogle Scholar
  104. 104.
    Guzman R, Choi R, Gera A, De Los Angeles A, Andres RH, Steinberg GK (2008) Intravascular cell replacement therapy for stroke. Neurosurg Focus 24:E15PubMedCrossRefGoogle Scholar
  105. 105.
    Hicks A, Jolkkonen J (2009) Challenges and possibilities of intravascular cell therapy in stroke. Acta Neurobiol Exp (Wars) 69:1–11Google Scholar
  106. 106.
    Janowski M, Walczak P, Date I (2010) Intravenous route of cell delivery for treatment of neurological disorders: a meta-analysis of preclinical results. Stem Cells Dev 19:5–16PubMedCrossRefGoogle Scholar
  107. 107.
    Chua JY, Pendharkar AV, Wang N, Choi R, Andres RH, Gaeta X, Zhang J, Moseley ME, Guzman R (2011) Intra-arterial injection of neural stem cells using a microneedle technique does not cause microembolic strokes. J Cereb Blood Flow Metab 31:1263–1271Google Scholar
  108. 108.
    Borlongan CV, Hadman M, Sanberg CD, Sanberg PR (2004) Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35:2385–2389PubMedCrossRefGoogle Scholar
  109. 109.
    Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, Willing AE (2006) Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol 199:191–200PubMedCrossRefGoogle Scholar
  110. 110.
    Ajmo CT Jr, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, Pennypacker KR (2008) The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res 86:2227–2234PubMedCrossRefGoogle Scholar
  111. 111.
    Erdö F, Bührle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, Föcking M, Küstermann E, Kolossov E, Hescheler J, Hossmann KA, Trapp T (2003) Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 23:780–785PubMedCrossRefGoogle Scholar
  112. 112.
    Kozłowska H, Jabłonka J, Janowski M, Jurga M, Kossut M, Domańska-Janik K (2007) Transplantation of a novel human cord blood-derived neural-like stem cell line in a rat model of cortical infarct. Stem Cells Dev 16:481–488PubMedCrossRefGoogle Scholar
  113. 113.
    Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, Ikeda Y, Matsuura T, Abe K (2010) Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab 30:1487–1493PubMedCrossRefGoogle Scholar
  114. 114.
    Hicks A, Schallert T, Jolkkonen J (2009) Cell-based therapies and functional outcome in experimental stroke. Cell Stem Cell 5:139–140PubMedCrossRefGoogle Scholar
  115. 115.
    Dirnagl U, Klehmet J, Braun JS, Harms H, Meisel C, Ziemssen T, Prass K, Meisel A (2007) Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke 38(2 Suppl):770–773PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Institute of Clinical Medicine - NeurologyUniversity of Eastern FinlandKuopioFinland
  2. 2.Brain Research and Rehabilitation Center NeuronKuopioFinland

Personalised recommendations