Cellular and Molecular Life Sciences

, Volume 68, Issue 13, pp 2231–2242

Retrocyclins and their activity against HIV-1

  • W. Todd Penberthy
  • Soumya Chari
  • Amy L. Cole
  • Alexander M. Cole
Multi-author review


Primate theta-defensins are physically distinguished as the only known fully-cyclic peptides of animal origin. Humans do not produce theta-defensin peptides due to a premature stop codon present in the signal sequence of all six theta-defensin pseudogenes. Instead, since the putative coding regions of human theta-defensin pseudogenes have remained remarkably intact, their corresponding peptides, called “retrocyclins”, have been recreated using solid-phase synthetic approaches. Retrocyclins exhibit an exceptional therapeutic index both as inhibitors of HIV-1 entry and as bactericidal agents, which makes retrocyclins promising candidates for further development as topical microbicides to prevent sexually transmitted diseases. This review presents the evolution, antiretroviral mechanism of action, and potential clinical applications of retrocyclins to prevent sexual transmission of HIV-1.


Retrocyclin Defensin HIV-1 Host defense peptide Antimicrobial peptide Antiviral Microbicide 



Host-defense peptide




Rhesus theta-defensin


CXC chemokine receptor 4


CC chemokine 5


Human neutrophil peptide


Reverse transcriptase inhibitor


  1. 1.
    Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184PubMedCrossRefGoogle Scholar
  2. 2.
    Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141PubMedCrossRefGoogle Scholar
  3. 3.
    Ganz T (2005) Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen 8:209–217PubMedCrossRefGoogle Scholar
  4. 4.
    Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2:727–738PubMedCrossRefGoogle Scholar
  5. 5.
    Lehrer RI (2007) Multispecific myeloid defensins. Curr Opin Hematol 14:16–21PubMedCrossRefGoogle Scholar
  6. 6.
    Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286:498–502PubMedCrossRefGoogle Scholar
  7. 7.
    Leonova L, Kokryakov VN, Aleshina G, Hong T, Nguyen T, Zhao C, Waring AJ, Lehrer RI (2001) Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol 70:461–464PubMedGoogle Scholar
  8. 8.
    Tran D, Tran PA, Tang YQ, Yuan J, Cole T, Selsted ME (2002) Homodimeric theta-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J Biol Chem 277:3079–3084PubMedCrossRefGoogle Scholar
  9. 9.
    Nguyen TX, Cole AM, Lehrer RI (2003) Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides 24:1647–1654PubMedCrossRefGoogle Scholar
  10. 10.
    Yang C, Boone L, Nguyen TX, Rudolph D, Limpakarnjanarat K, Mastro TD, Tappero J, Cole AM, Lal RB (2005) theta-Defensin pseudogenes in HIV-1-exposed, persistently seronegative female sex-workers from Thailand. Infect Genet Evol 5:11–15PubMedCrossRefGoogle Scholar
  11. 11.
    Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G, Zack JA, Waring AJ, Yang OO, Lehrer RI (2002) Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc Natl Acad Sci USA 99:1813–1818PubMedCrossRefGoogle Scholar
  12. 12.
    Cole AL, Herasimtschuk A, Gupta P, Waring AJ, Lehrer RI, Cole AM (2007) The retrocyclin analogue RC-101 prevents human immunodeficiency virus type 1 infection of a model human cervicovaginal tissue construct. Immunology 121:140–145PubMedCrossRefGoogle Scholar
  13. 13.
    Cole AM, Patton DL, Rohan LC, Cole AL, Cosgrove-Sweeney Y, Rogers NA, Ratner D, Sassi AB, Lackman-Smith C, Tarwater P, Ramratnam B, Ruchala P, Lehrer RI, Waring AJ, Gupta P (2010) The formulated microbicide RC-101 was safe and antivirally active following intravaginal application in pigtailed macaques. PLoS ONE 5:e15111PubMedCrossRefGoogle Scholar
  14. 14.
    Silva PI, Daffre S, Bulet P (2000) Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem 275:33464–33470PubMedCrossRefGoogle Scholar
  15. 15.
    Storici P, Zanetti M (1993) A novel cDNA sequence encoding a pig leukocyte antimicrobial peptide with a cathelin-like pro-sequence. Biochem Biophys Res Commun 196:1363–1368PubMedCrossRefGoogle Scholar
  16. 16.
    Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, Niwa M, Takao T, Shimonishi Y (1988) Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem 263:16709–16713PubMedGoogle Scholar
  17. 17.
    Moreira CK, Rodrigues FG, Ghosh A, de Varotti FP, Miranda A, Daffre S, Jacobs-Lorena M, Moreira LA (2007) Effect of the antimicrobial peptide gomesin against different life stages of Plasmodium spp. Exp Parasitol 116:346–353PubMedCrossRefGoogle Scholar
  18. 18.
    Rodrigues EG, Dobroff AS, Cavarsan CF, Paschoalin T, Nimrichter L, Mortara RA, Santos EL, Fázio MA, Miranda A, Daffre S, Travassos LR (2008) Effective topical treatment of subcutaneous murine B16F10-Nex2 melanoma by the antimicrobial peptide gomesin. Neoplasia 10:61–68PubMedCrossRefGoogle Scholar
  19. 19.
    Rodrigues EG, Dobroff AS, Taborda CP, Travassos LR (2009) Antifungal and antitumor models of bioactive protective peptides. An Acad Bras Cienc 81:503–520PubMedCrossRefGoogle Scholar
  20. 20.
    Cole AM, Waring AJ (2002) The role of defensins in lung biology and therapy. Am J Repir Med 1:249–259Google Scholar
  21. 21.
    Tam JP, Lu YA, Yang JL (2000) Marked increase in membranolytic selectivity of novel cyclic tachyplesins constrained with an antiparallel two-beta strand cystine knot framework. Biochem Biophys Res Commun 267:783–790PubMedCrossRefGoogle Scholar
  22. 22.
    Masuda M, Nakashima H, Ueda T, Naba H, Ikoma R, Otaka A, Terakawa Y, Tamamura H, Ibuka T, Murakami T (1992) A novel anti-HIV synthetic peptide, T-22 ([Tyr5, 12, Lys7]-polyphemusin II). Biochem Biophys Res Commun 189:845–850PubMedCrossRefGoogle Scholar
  23. 23.
    Nakashima H, Masuda M, Murakami T, Koyanagi Y, Matsumoto A, Fujii N, Yamamoto N (1992) Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5, 12, Lys-7]polyphemusin II): a possible inhibitor of virus-cell fusion. Antimicrob Agents Chemother 36:1249–1255PubMedGoogle Scholar
  24. 24.
    Tamamura H, Arakaki R, Funakoshi H, Imai M, Otaka A, Ibuka T, Nakashima H, Murakami T, Waki M, Matsumoto A, Yamamoto N, Fujii N (1998) Effective lowly cytotoxic analogs of an HIV-cell fusion inhibitor, T22 ([Tyr5, 12, Lys7]-polyphemusin II). Bioorg Med Chem 6:231–238PubMedCrossRefGoogle Scholar
  25. 25.
    Tamamura H, Waki M, Imai M, Otaka A, Ibuka T, Waki K, Miyamoto K, Matsumoto A, Murakami T, Nakashima H, Yamamoto N, Fujii N (1998) Downsizing of an HIV-cell fusion inhibitor, T22 ([Tyr5, 12, Lys7]-polyphemusin II), with the maintenance of anti-HIV activity and solution structure. Bioorg Med Chem 6:473–479PubMedCrossRefGoogle Scholar
  26. 26.
    Tamamura H, Imai M, Ishihara T, Masuda M, Funakoshi H, Oyake H, Murakami T, Arakaki R, Nakashima H, Otaka A, Ibuka T, Waki M, Matsumoto A, Yamamoto N, Fujii N (1998) Pharmacophore identification of a chemokine receptor (CXCR4) antagonist, T22 ([Tyr(5, 12), Lys7]-polyphemusin II), which specifically blocks T cell-line-tropic HIV-1 infection. Bioorg Med Chem 6:1033–1041PubMedCrossRefGoogle Scholar
  27. 27.
    Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S, Göransson U, Trabi M, Wang CK, Kinghorn AB, Robbrecht E, Craik DJ (2008) Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20:2471–2483PubMedCrossRefGoogle Scholar
  28. 28.
    Trabi M, Craik DJ (2002) Circular proteins—no end in sight. Trends Biochem Sci 27:132–138PubMedCrossRefGoogle Scholar
  29. 29.
    Colgrave ML, Craik DJ (2004) Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 43:5965–5975PubMedCrossRefGoogle Scholar
  30. 30.
    Craik DJ, Mylne JS, Daly NL (2010) Cyclotides: macrocyclic peptides with applications in drug design and agriculture. Cell Mol Life Sci 67:9–16PubMedCrossRefGoogle Scholar
  31. 31.
    Owen SM, Rudolph DL, Wang W, Cole AM, Waring AJ, Lal RB, Lehrer RI (2004) RC-101, a retrocyclin-1 analogue with enhanced activity against primary HIV type 1 isolates. AIDS Res Hum Retroviruses 20:1157–1165PubMedCrossRefGoogle Scholar
  32. 32.
    Schmid M, Fellermann K, Wehkamp J, Herrlinger K, Stange EF (2004) The role of defensins in the pathogenesis of chronic-inflammatory bowel disease. Z Gastroenterol 42:333–338PubMedCrossRefGoogle Scholar
  33. 33.
    Fellermann K, Stange DE, Schaeffeler E, Schmalzl H, Wehkamp J, Bevins CL, Reinisch W, Teml A, Schwab M, Lichter P, Radlwimmer B, Stange EF (2006) A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 79:439–448PubMedCrossRefGoogle Scholar
  34. 34.
    Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DYM (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347:1151–1160PubMedCrossRefGoogle Scholar
  35. 35.
    Valore EV, Wiley DJ, Ganz T (2006) Reversible deficiency of antimicrobial polypeptides in bacterial vaginosis. Infect Immun 74:5693–5702PubMedCrossRefGoogle Scholar
  36. 36.
    Cole AM (2006) Innate host defense of human vaginal and cervical mucosae. Curr Top Microbiol Immunol 306:199–230PubMedCrossRefGoogle Scholar
  37. 37.
    Owen SM, Rudolph D, Wang W, Cole AM, Sherman MA, Waring AJ, Lehrer RI, Lal RB (2004) A theta-defensin composed exclusively of D-amino acids is active against HIV-1. J Pept Res 63:469–476PubMedCrossRefGoogle Scholar
  38. 38.
    Cole AL, Yang OO, Warren AD, Waring AJ, Lehrer RI, Cole AM (2006) HIV-1 adapts to a retrocyclin with cationic amino acid substitutions that reduce fusion efficiency of gp41. J Immunol 176:6900–6905PubMedGoogle Scholar
  39. 39.
    Cole AM, Wang W, Waring AJ, Lehrer RI (2004) Retrocyclins: using past as prologue. Curr Protein Pept Sci 5:373–381PubMedCrossRefGoogle Scholar
  40. 40.
    Venkataraman N, Cole AL, Ruchala P, Waring AJ, Lehrer RI, Stuchlik O, Pohl J, Cole AM (2009) Reawakening retrocyclins: ancestral human defensins active against HIV-1. PLoS Biol 7:e95PubMedCrossRefGoogle Scholar
  41. 41.
    Münk C, Wei G, Yang OO, Waring AJ, Wang W, Hong T, Lehrer RI, Landau NR, Cole AM (2003) The theta-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res Hum Retroviruses 19:875–881PubMedCrossRefGoogle Scholar
  42. 42.
    Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI (2003) Retrocyclin, an antiretroviral theta-defensin, is a lectin. J Immunol 170:4708–4716PubMedGoogle Scholar
  43. 43.
    Wang W, Owen SM, Rudolph DL, Cole AM, Hong T, Waring AJ, Lal RB, Lehrer RI (2004) Activity of alpha- and theta-defensins against primary isolates of HIV-1. J Immunol 173:515–520PubMedGoogle Scholar
  44. 44.
    Nakashima H, Yamamoto N, Masuda M, Fujii N (1993) Defensins inhibit HIV replication in vitro. AIDS 7:1129PubMedCrossRefGoogle Scholar
  45. 45.
    Monell CR, Strand M (1994) Structural and functional similarities between synthetic HIV gp41 peptides and defensins. Clin Immunol Immunopathol 71:315–324PubMedCrossRefGoogle Scholar
  46. 46.
    Daly NL, Chen YK, Rosengren KJ, Marx UC, Phillips ML, Waring AJ, Wang W, Lehrer RI, Craik DJ (2007) Retrocyclin-2: structural analysis of a potent anti-HIV theta-defensin. Biochemistry 46:9920–9928PubMedCrossRefGoogle Scholar
  47. 47.
    Daly NL, Chen YK, Rosengren KJ, Marx UC, Phillips ML, Waring AJ, Wang W, Lehrer RI, Craik DJ (2009) Retrocyclin-2: a potent anti-HIV theta-defensin that forms a cyclic cystine ladder structural motif. Adv Exp Med Biol 611:577–578PubMedCrossRefGoogle Scholar
  48. 48.
    Gallo SA, Wang W, Rawat SS, Jung G, Waring AJ, Cole AM, Lu H, Yan X, Daly NL, Craik DJ, Jiang S, Lehrer RI, Blumenthal R (2006) Theta-defensins prevent HIV-1 Env-mediated fusion by binding gp41 and blocking 6-helix bundle formation. J Biol Chem 281:18787–18792PubMedCrossRefGoogle Scholar
  49. 49.
    Cook DG, Fantini J, Spitalnik SL, Gonzalez-Scarano F (1994) Binding of human immunodeficiency virus type I (HIV-1) gp120 to galactosylceramide (GalCer): relationship to the V3 loop. Virology 201:206–214PubMedCrossRefGoogle Scholar
  50. 50.
    Delézay O, Koch N, Yahi N, Hammache D, Tourres C, Tamalet C, Fantini J (1997) Co-expression of CXCR4/fusin and galactosylceramide in the human intestinal epithelial cell line HT-29. AIDS 11:1311–1318PubMedCrossRefGoogle Scholar
  51. 51.
    Leikina E, Delanoe-Ayari H, Melikov K, Cho MS, Chen A, Waring AJ, Wang W, Xie Y, Loo JA, Lehrer RI, Chernomordik LV (2005) Carbohydrate-binding molecules inhibit viral fusion and entry by crosslinking membrane glycoproteins. Nat Immunol 6:995–1001PubMedCrossRefGoogle Scholar
  52. 52.
    Yasin B, Wang W, Pang M, Cheshenko N, Hong T, Waring AJ, Herold BC, Wagar EA, Lehrer RI (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol 78:5147–5156PubMedCrossRefGoogle Scholar
  53. 53.
    Fuhrman CA, Warren AD, Waring AJ, Dutz SM, Sharma S, Lehrer RI, Cole AL, Cole AM (2007) Retrocyclin RC-101 overcomes cationic mutations on the heptad repeat 2 region of HIV-1 gp41. FEBS J 274:6477–6487PubMedGoogle Scholar
  54. 54.
    Chang TL, Klotman ME (2004) Defensins: natural anti-HIV peptides. AIDS Rev 6:161–168PubMedGoogle Scholar
  55. 55.
    Botarelli P, Houlden BA, Haigwood NL, Servis C, Montagna D, Abrignani S (1991) N-glycosylation of HIV-gp120 may constrain recognition by T lymphocytes. J Immunol 147:3128–3132PubMedGoogle Scholar
  56. 56.
    Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10:179–186PubMedCrossRefGoogle Scholar
  57. 57.
    Gunn JS (2001) Bacterial modification of LPS and resistance to antimicrobial peptides. J Endotoxin Res 7:57–62PubMedGoogle Scholar
  58. 58.
    Ernst RK, Guina T, Miller SI (2001) Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect 3:1327–1334PubMedCrossRefGoogle Scholar
  59. 59.
    Baldwin CE, Sanders RW, Deng Y, Jurriaans S, Lange JM, Lu M, Berkhout B (2004) Emergence of a drug-dependent human immunodeficiency virus type 1 variant during therapy with the T20 fusion inhibitor. J Virol 78:12428–12437PubMedCrossRefGoogle Scholar
  60. 60.
    Rimsky LT, Shugars DC, Matthews TJ (1998) Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J Virol 72:986–993PubMedGoogle Scholar
  61. 61.
    Nameki D, Kodama E, Ikeuchi M, Mabuchi N, Otaka A, Tamamura H, Ohno M, Fujii N, Matsuoka M (2005) Mutations conferring resistance to human immunodeficiency virus type 1 fusion inhibitors are restricted by gp41 and Rev-responsive element functions. J Virol 79:764–770PubMedCrossRefGoogle Scholar
  62. 62.
    Pang W, Tam S-C, Zheng Y-T (2009) Current peptide HIV type-1 fusion inhibitors. Antivir Chem Chemother 20:1–18PubMedCrossRefGoogle Scholar
  63. 63.
    Trkola A, Kuhmann SE, Strizki JM, Maxwell E, Ketas T, Morgan T, Pugach P, Xu S, Wojcik L, Tagat J, Palani A, Shapiro S, Clader JW, McCombie S, Reyes GR, Baroudy BM, Moore JP (2002) HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc Natl Acad Sci USA 99:395–400PubMedCrossRefGoogle Scholar
  64. 64.
    Grouard G, Clark EA (1997) Role of dendritic and follicular dendritic cells in HIV infection and pathogenesis. Curr Opin Immunol 9:563–567PubMedCrossRefGoogle Scholar
  65. 65.
    Steinman RM, Inaba K (1999) Myeloid dendritic cells. J Leukoc Biol 66:205–208PubMedGoogle Scholar
  66. 66.
    Rohan LC, Sassi AB (2009) Vaginal drug delivery systems for HIV prevention. AAPS J 11:78–87PubMedCrossRefGoogle Scholar
  67. 67.
    Karim QA, Karim SSA, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, Kharsany ABM, Sibeko S, Mlisana KP, Omar Z, Gengiah TN, Maarschalk S, Arulappan N, Mlotshwa M, Morris L, Taylor D, Group C0T (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329:1168–1174CrossRefGoogle Scholar
  68. 68.
    Rusconi S, Moonis M, Merrill DP, Pallai PV, Neidhardt EA, Singh SK, Willis KJ, Osburne MS, Profy AT, Jenson JC, Hirsch MS (1996) Naphthalene sulfonate polymers with CD4-blocking and anti-human immunodeficiency virus type 1 activities. Antimicrob Agents Chemother 40:234–236PubMedGoogle Scholar
  69. 69.
    O’Loughlin J, Millwood IY, McDonald HM, Price CF, Kaldor JM, Paull JRA (2010) Safety, tolerability, and pharmacokinetics of SPL7013 gel (VivaGel): a dose ranging, phase I study. Sex Transm Dis 37:100–104PubMedCrossRefGoogle Scholar
  70. 70.
    Mollendorf CEV, Damme LV, Moyes JA, Rees VH, Callahan MM, Mauck CK, Puren AJ, Tweedy K, Taylor D (2010) Results of a safety and feasibility study of the diaphragm used with ACIDFORM Gel or K-Y Jelly. Contraception 81:232–239CrossRefGoogle Scholar
  71. 71.
    Piret J, Roy S, Gagnon M, Landry S, Désormeaux A, Omar RF, Bergeron MG (2002) Comparative study of mechanisms of herpes simplex virus inactivation by sodium lauryl sulfate and n-lauroylsarcosine. Antimicrob Agents Chemother 46:2933–2942PubMedCrossRefGoogle Scholar
  72. 72.
    Friend DR (2010) Pharmaceutical development of microbicide drug products. Pharm Dev Technol 15:562–581PubMedCrossRefGoogle Scholar
  73. 73.
    Klasse PJ, Shattock R, Moore JP (2008) Antiretroviral drug-based microbicides to prevent HIV-1 sexual transmission. Annu Rev Med 59:455–471PubMedCrossRefGoogle Scholar
  74. 74.
    Lederman MM, Offord RE, Hartley O (2006) Microbicides and other topical strategies to prevent vaginal transmission of HIV. Nat Rev Immunol 6:371–382PubMedCrossRefGoogle Scholar
  75. 75.
    Grant RM, Hamer D, Hope T, Johnston R, Lange J, Lederman MM, Lieberman J, Miller CJ, Moore JP, Mosier DE, Richman DD, Schooley RT, Springer MS, Veazey RS, Wainberg MA (2008) Whither or wither microbicides? Science 321:532–534PubMedCrossRefGoogle Scholar
  76. 76.
    Lindholm P, Göransson U, Johansson S, Claeson P, Gullbo J, Larsson R, Bohlin L, Backlund A (2002) Cyclotides: a novel type of cytotoxic agents. Mol Cancer Ther 1:365–369PubMedCrossRefGoogle Scholar
  77. 77.
    Chen J, Xu X-M, Underhill CB, Yang S, Wang L, Chen Y, Hong S, Creswell K, Zhang L (2005) Tachyplesin activates the classic complement pathway to kill tumor cells. Cancer Res 65:4614–4622PubMedCrossRefGoogle Scholar
  78. 78.
    Morimoto M, Mori H, Otake T, Ueba N, Kunita N, Niwa M, Murakami T, Iwanaga S (1991) Inhibitory effect of tachyplesin I on the proliferation of human immunodeficiency virus in vitro. Chemotherapy 37:206–211PubMedCrossRefGoogle Scholar
  79. 79.
    Ouyang G-L, Li Q-F, Peng X-X, Liu Q-R, Hong S-G (2002) Effects of tachyplesin on proliferation and differentiation of human hepatocellular carcinoma SMMC-7721 cells. World J Gastroenterol 8:1053–1058PubMedGoogle Scholar
  80. 80.
    Xu Y, Tamamura H, Arakaki R, Nakashima H, Zhang X, Fujii N, Uchiyama T, Hattori T (1999) Marked increase in anti-HIV activity, as well as inhibitory activity against HIV entry mediated by CXCR4, linked to enhancement of the binding ability of tachyplesin analogs to CXCR4. AIDS Res Hum Retroviruses 15:419–427PubMedCrossRefGoogle Scholar
  81. 81.
    Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327:231–236PubMedCrossRefGoogle Scholar
  82. 82.
    Qu XD, Harwig SS, Shafer WM, Lehrer RI (1997) Protegrin structure and activity against Neisseria gonorrhoeae. Infect Immun 65:636–639PubMedGoogle Scholar
  83. 83.
    Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC, Loury DJ, Fiddes JC (1997) Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41:1738–1742PubMedGoogle Scholar
  84. 84.
    Miyakawa Y, Ratnakar P, Rao AG, Costello ML, Mathieu-Costello O, Lehrer RI, Catanzaro A (1996) In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis. Infect Immun 64:926–932PubMedGoogle Scholar
  85. 85.
    Wohlford-Lenane C, Meyerholz D, Perlman S, Zhou H, Tran D, Selsted M, McCray P (2009) Rhesus theta-defensin prevents death in a mouse model of SARS coronavirus pulmonary disease. J Virol 83:11385–11390PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • W. Todd Penberthy
    • 1
  • Soumya Chari
    • 1
  • Amy L. Cole
    • 1
  • Alexander M. Cole
    • 1
  1. 1.Department of Molecular Biology and Microbiology, Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoUSA

Personalised recommendations