Cellular and Molecular Life Sciences

, Volume 69, Issue 8, pp 1305–1317 | Cite as

Loss of huntingtin-associated protein 1 impairs insulin secretion from pancreatic β-cells

  • Austin Cape
  • Xingxing Chen
  • Chuan-En Wang
  • Ashley O’Neill
  • Yung-Feng Lin
  • Jun He
  • Xing-Shun Xu
  • Hong Yi
  • He Li
  • Shihua LiEmail author
  • Xiao-Jiang LiEmail author
Research article


Hap1 was originally identified as a neuronal protein that interacts with huntingtin, the Huntington’s disease (HD) protein. Later studies revealed that Hap1 participates in intracellular trafficking in neuronal cells and that this trafficking function can be adversely affected by mutant huntingtin. Hap1 is also present in pancreatic β-cells and other endocrine cells; however, the role of Hap1 in these endocrine cells remains unknown. Using the Cre-loxP system, we generated conditional Hap1 knockout mice to selectively deplete the expression of Hap1 in mouse pancreatic β-cells. Mutant mice with Hap1 deficiency in pancreatic β-cells had impaired glucose tolerance and decreased insulin release in response to intraperitoneally injected glucose. Using cultured pancreatic β-cell lines and isolated mouse pancreatic islets, we confirmed that decreasing Hap1 could reduce glucose-mediated insulin release. Electron microscopy suggested that there was a reduced number of insulin-containing vesicles docked at the plasma membrane of pancreatic islets in Hap1 mutant mice following intraperitoneal glucose injection. Glucose treatment decreased the phosphorylation of Hap1A in cultured β-cells and in mouse pancreatic tissues. Moreover, this glucose treatment increased Hap1’s association with kinesin light chain and dynactin p150, both of which are involved in microtubule-dependent trafficking. These studies suggest that Hap1 is important for insulin release from β-cells via dephosphorylation that can regulate its intracellular trafficking function.


Huntingtin Trafficking Insulin Pancreas Phosphorylation 



This work was supported by NIH Grants NS036232 (X.J.L.) and NS045016 (S.H.L.). We thank Cheryl T. Strauss for her critical reading of the manuscript.

Conflict of interest

The authors report no conflicts of interest.


  1. 1.
    Li XJ, Li SH, Sharp AH, Nucifora FC Jr, Schilling G, Lanahan A, Worley P, Snyder SH, Ross CA (1995) A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378:398–402PubMedCrossRefGoogle Scholar
  2. 2.
    Gutekunst CA, Li SH, Yi H, Ferrante RJ, Li XJ, Hersch SM (1998) The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human. J Neurosci 18:7674–7686PubMedGoogle Scholar
  3. 3.
    Dragatsis I, Dietrich P, Zeitlin S (2000) Expression of the Huntingtin-associated protein 1 gene in the developing and adult mouse. Neurosci Lett 282:37–40PubMedCrossRefGoogle Scholar
  4. 4.
    Fujinaga R, Kawano J, Matsuzaki Y, Kamei K, Yanai A, Sheng Z, Tanaka M, Nakahama K, Nagano M, Shinoda K (2004) Neuroanatomical distribution of Huntingtin-associated protein 1-mRNA in the male mouse brain. J Comp Neurol 478:88–109PubMedCrossRefGoogle Scholar
  5. 5.
    Li SH, Li H, Torre ER, Li XJ (2000) Expression of huntingtin-associated protein-1 in neuronal cells implicates a role in neuritic growth. Mol Cell Neurosci 16:168–183PubMedCrossRefGoogle Scholar
  6. 6.
    Li SH, Yu ZX, Li CL, Nguyen HP, Zhou YX, Deng C, Li XJ (2003) Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington’s disease. J Neurosci 23:6956–6964PubMedGoogle Scholar
  7. 7.
    Lin YF, Xu X, Cape A, Li S, Li XJ (2010) Huntingtin associated protein-1 deficiency in orexin-producing neurons impairs neuronal process extension and leads to abnormal behavior in mice. J Biol Chem 285:15941–15949PubMedCrossRefGoogle Scholar
  8. 8.
    Chan EY, Nasir J, Gutekunst CA, Coleman S, Maclean A, Maas A, Metzler M, Gertsenstein M, Ross CA, Nagy A, Hayden MR (2002) Targeted disruption of Huntingtin-associated protein-1 (Hap1) results in postnatal death due to depressed feeding behavior. Hum Mol Genet 11:945–959PubMedCrossRefGoogle Scholar
  9. 9.
    Li XJ, Li SH (2005) HAP1 and intracellular trafficking. Trends Pharmacol Sci 26:1–3PubMedCrossRefGoogle Scholar
  10. 10.
    Borrell-Pages M, Zala D, Humbert S, Saudou F (2006) Huntington’s disease: from huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci 63:2642–2660PubMedCrossRefGoogle Scholar
  11. 11.
    Rong J, Li SH, Li XJ (2007) Regulation of intracellular HAP1 trafficking. J Neurosci Res 85:3025–3029PubMedCrossRefGoogle Scholar
  12. 12.
    Ross JL, Ali MY, Warshaw DM (2008) Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol 20:41–47PubMedCrossRefGoogle Scholar
  13. 13.
    Gennerich A, Vale RD (2009) Walking the walk: how kinesin and dynein coordinate their steps. Curr Opin Cell Biol 21:59–67PubMedCrossRefGoogle Scholar
  14. 14.
    Engelender S, Sharp AH, Colomer V, Tokito MK, Lanahan A, Worley P, Holzbaur EL, Ross CA (1997) Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum Mol Genet 6:2205–2212PubMedCrossRefGoogle Scholar
  15. 15.
    Li SH, Gutekunst CA, Hersch SM, Li XJ (1998) Interaction of huntingtin-associated protein with dynactin P150Glued. J Neurosci 18:1261–1269PubMedGoogle Scholar
  16. 16.
    McGuire JR, Rong J, Li SH, Li XJ (2006) Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J Biol Chem 281:3552–3559PubMedCrossRefGoogle Scholar
  17. 17.
    Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1, 4, 5) triphosphate receptor type 1. Neuron 39:227–239PubMedCrossRefGoogle Scholar
  18. 18.
    Kittler JT, Thomas P, Tretter V, Bogdanov YD, Haucke V, Smart TG, Moss SJ (2004) Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc Natl Acad Sci USA 101:12736–12741PubMedCrossRefGoogle Scholar
  19. 19.
    Rong J, McGuire JR, Fang ZH, Sheng G, Shin JY, Li SH, Li XJ (2006) Regulation of intracellular trafficking of huntingtin-associated protein-1 is critical for TrkA protein levels and neurite outgrowth. J Neurosci 26:6019–6030PubMedCrossRefGoogle Scholar
  20. 20.
    Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, MacDonald ME, Lessmann V, Humbert S, Saudou F (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127–138PubMedCrossRefGoogle Scholar
  21. 21.
    Wu LL, Fan Y, Li S, Li XJ, Zhou XF (2010) Huntingtin-associated protein-1 interacts with pro-brain-derived neurotrophic factor and mediates its transport and release. J Biol Chem 285:5614–5623PubMedCrossRefGoogle Scholar
  22. 22.
    Twelvetrees AE, Yuen EY, Arancibia-Carcamo IL, MacAskill AF, Rostaing P, Lumb MJ, Humbert S, Triller A, Saudou F, Yan Z, Kittler JT (2010) Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 65:53–65PubMedCrossRefGoogle Scholar
  23. 23.
    Liao M, Shen J, Zhang Y, Li SH, Li XJ, Li H (2005) Immunohistochemical localization of huntingtin-associated protein 1 in endocrine system of the rat. J Histochem Cytochem 53:1517–1524PubMedCrossRefGoogle Scholar
  24. 24.
    Liao M, Chen X, Han J, Yang S, Peng T, Li H (2010) Selective expression of Huntingtin-associated protein 1 in {beta}-cells of the rat pancreatic islets. J Histochem Cytochem 58:255–263PubMedCrossRefGoogle Scholar
  25. 25.
    Hurlbert MS, Zhou W, Wasmeier C, Kaddis FG, Hutton JC, Freed CR (1999) Mice transgenic for an expanded CAG repeat in the Huntington’s disease gene develop diabetes. Diabetes 48:649–651PubMedCrossRefGoogle Scholar
  26. 26.
    Bjorkqvist M, Fex M, Renstrom E, Wierup N, Petersen A, Gil J, Bacos K, Popovic N, Li JY, Sundler F, Brundin P, Mulder H (2005) The R6/2 transgenic mouse model of Huntington’s disease develops diabetes due to deficient beta-cell mass and exocytosis. Hum Mol Genet 14:565–574PubMedCrossRefGoogle Scholar
  27. 27.
    Smith R, Bacos K, Fedele V, Soulet D, Walz HA, Obermuller S, Lindqvist A, Bjorkqvist M, Klein P, Onnerfjord P, Brundin P, Mulder H, Li JY (2009) Mutant huntingtin interacts with {beta}-tubulin and disrupts vesicular transport and insulin secretion. Hum Mol Genet 18:3942–3954PubMedCrossRefGoogle Scholar
  28. 28.
    Podolsky S, Leopold NA, Sax DS (1972) Increased frequency of diabetes mellitus in patients with Huntington’s chorea. Lancet 1:1356–1358PubMedCrossRefGoogle Scholar
  29. 29.
    Podolsky S, Leopold NA (1977) Abnormal glucose tolerance and arginine tolerance tests in Huntington’s disease. Gerontology 23:55–63PubMedCrossRefGoogle Scholar
  30. 30.
    Schubotz R, Hausmann L, Kaffarnik H, Zehner J, Oepen H (1976) Fatty acid patterns and glucose tolerance in Huntington’s chorea (author’s transl). Res Exp Med (Berl) 167:203–215CrossRefGoogle Scholar
  31. 31.
    Farrer LA (1985) Diabetes mellitus in Huntington disease. Clin Genet 27:62–67PubMedCrossRefGoogle Scholar
  32. 32.
    Kremer HP, Roos RA, Frolich M, Radder JK, Nieuwenhuijzen Kruseman AC, Van der Velde A, Buruma OJ (1989) Endocrine functions in Huntington’s disease. A two-and-a-half years follow-up study. J Neurol Sci 90:335–344PubMedCrossRefGoogle Scholar
  33. 33.
    Cantley J, Selman C, Shukla D, Abramov AY, Forstreuter F, Esteban MA, Claret M, Lingard SJ, Clements M, Harten SK, Asare-Anane H, Batterham RL, Herrera PL, Persaud SJ, Duchen MR, Maxwell PH, Withers DJ (2009) Deletion of the von Hippel-Lindau gene in pancreatic beta cells impairs glucose homeostasis in mice. J Clin Invest 119:125–135PubMedGoogle Scholar
  34. 34.
    Huising MO, van der Meulen T, Vaughan JM, Matsumoto M, Donaldson CJ, Park H, Billestrup N, Vale WW (2010) CRFR1 is expressed on pancreatic beta cells, promotes beta cell proliferation, and potentiates insulin secretion in a glucose-dependent manner. Proc Natl Acad Sci USA 107:912–917PubMedCrossRefGoogle Scholar
  35. 35.
    Brown JE, Onyango DJ, Ramanjaneya M, Conner AC, Patel ST, Dunmore SJ, Randeva HS (2010) Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic beta-cells. J Mol Endocrinol 44:171–178PubMedCrossRefGoogle Scholar
  36. 36.
    Sheng G, Chang GQ, Lin JY, Yu ZX, Fang ZH, Rong J, Lipton SA, Li SH, Tong G, Leibowitz SF, Li XJ (2006) Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior. Nat Med 12:526–533PubMedCrossRefGoogle Scholar
  37. 37.
    Speidel D, Salehi A, Obermueller S, Lundquist I, Brose N, Renstrom E, Rorsman P (2008) CAPS1 and CAPS2 regulate stability and recruitment of insulin granules in mouse pancreatic beta cells. Cell Metab 7:57–67PubMedCrossRefGoogle Scholar
  38. 38.
    Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, Shelton KD, Lindner J, Cherrington AD, Magnuson MA (1999) Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274:305–315PubMedCrossRefGoogle Scholar
  39. 39.
    Harslund J, Nielsen OL, Brunner N, Offenberg H (2007) Gender-dependent physiological implications of combined PAI-1 and TIMP-1 gene deficiency characterized in a mouse model. Am J Physiol Regul Integr Comp Physiol 293:R1630–R1639PubMedCrossRefGoogle Scholar
  40. 40.
    Lilla V, Webb G, Rickenbach K, Maturana A, Steiner DF, Halban PA, Irminger JC (2003) Differential gene expression in well-regulated and dysregulated pancreatic beta-cell (MIN6) sublines. Endocrinology 144:1368–1379PubMedCrossRefGoogle Scholar
  41. 41.
    Dalle S, Longuet C, Costes S, Broca C, Faruque O, Fontes G, Hani EH, Bataille D (2004) Glucagon promotes cAMP-response element-binding protein phosphorylation via activation of ERK1/2 in MIN6 cell line and isolated islets of Langerhans. J Biol Chem 279:20345–20355PubMedCrossRefGoogle Scholar
  42. 42.
    Li SH, Gutekunst CA, Hersch SM, Li XJ (1998) Association of HAP1 isoforms with a unique cytoplasmic structure. J Neurochem 71:2178–2185PubMedCrossRefGoogle Scholar
  43. 43.
    Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632PubMedGoogle Scholar
  44. 44.
    Wasmeier C, Hutton JC (1999) Secretagogue-dependent phosphorylation of phogrin, an insulin granule membrane protein tyrosine phosphatase homologue. Biochem J 341:563–569PubMedCrossRefGoogle Scholar
  45. 45.
    Wang S, Hsu SC (2006) The molecular mechanisms of the mammalian exocyst complex in exocytosis. Biochem Soc Trans 34:687–690PubMedCrossRefGoogle Scholar
  46. 46.
    Park JJ, Loh YP (2008) How peptide hormone vesicles are transported to the secretion site for exocytosis. Mol Endocrinol 22:2583–2595PubMedCrossRefGoogle Scholar
  47. 47.
    Mears D (2004) Regulation of insulin secretion in islets of Langerhans by Ca(2+)channels. J Membr Biol 200:57–66PubMedCrossRefGoogle Scholar
  48. 48.
    Varadi A, Ainscow EK, Allan VJ, Rutter GA (2002) Involvement of conventional kinesin in glucose-stimulated secretory granule movements and exocytosis in clonal pancreatic beta-cells. J Cell Sci 115:4177–4189PubMedCrossRefGoogle Scholar
  49. 49.
    Varadi A, Tsuboi T, Johnson-Cadwell LI, Allan VJ, Rutter GA (2003) Kinesin I and cytoplasmic dynein orchestrate glucose-stimulated insulin-containing vesicle movements in clonal MIN6 beta-cells. Biochem Biophys Res Commun 311:272–282PubMedCrossRefGoogle Scholar
  50. 50.
    Del Prato S, Tiengo A (2001) The importance of first-phase insulin secretion: implications for the therapy of type 2 diabetes mellitus. Diabetes Metab Res Rev 17:164–174PubMedCrossRefGoogle Scholar
  51. 51.
    Keogh HJ, Johnson RH, Nanda RN, Sulaiman WR (1976) Altered growth hormone release in Huntington’s chorea. J Neurol Neurosurg Psychiatry 39:244–248PubMedCrossRefGoogle Scholar
  52. 52.
    Lavin PJ, Bone I, Sheridan P (1981) Studies of hypothalamic function in Huntington’s chorea. J Neurol Neurosurg Psychiatry 44:414–418PubMedCrossRefGoogle Scholar
  53. 53.
    Saleh N, Moutereau S, Durr A, Krystkowiak P, Azulay JP, Tranchant C, Broussolle E, Morin F, Bachoud-Levi AC, Maison P (2009) Neuroendocrine disturbances in Huntington’s disease. PLoS One 4:e4962PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Austin Cape
    • 1
  • Xingxing Chen
    • 2
  • Chuan-En Wang
    • 1
  • Ashley O’Neill
    • 1
  • Yung-Feng Lin
    • 1
  • Jun He
    • 2
  • Xing-Shun Xu
    • 1
  • Hong Yi
    • 3
  • He Li
    • 2
  • Shihua Li
    • 1
    Email author
  • Xiao-Jiang Li
    • 1
    Email author
  1. 1.Department of Human GeneticsEmory University School of MedicineAtlantaUSA
  2. 2.Division of Histology and Embryology, Department of Anatomy, Tongji Medical CollegeHuazhong University of Science TechnologyWuhanChina
  3. 3.A Core Facility of Emory UniversityAtlantaUSA

Personalised recommendations