Cellular and Molecular Life Sciences

, Volume 68, Issue 19, pp 3275–3292 | Cite as

The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9

  • Maria Dolores Gutiérrez-López
  • Alvaro Gilsanz
  • María Yáñez-Mó
  • Susana Ovalle
  • Esther M. Lafuente
  • Carmen Domínguez
  • Peter N. Monk
  • Isidoro González-Alvaro
  • Francisco Sánchez-Madrid
  • Carlos CabañasEmail author
Research Article


ADAM17/TACE is a metalloproteinase responsible for the shedding of the proinflammatory cytokine TNF-α and many other cell surface proteins involved in development, cell adhesion, migration, differentiation, and proliferation. Despite the important biological function of ADAM17, the mechanisms of regulation of its metalloproteinase activity remain largely unknown. We report here that the tetraspanin CD9 and ADAM17 partially co-localize on the surface of endothelial and monocytic cells. In situ proximity ligation, co-immunoprecipitation, crosslinking, and pull-down experiments collectively demonstrate a direct association between these molecules. Functional studies reveal that treatment with CD9-specific antibodies or neoexpression of CD9 exert negative regulatory effects on ADAM17 sheddase activity. Conversely, CD9 silencing increased the activity of ADAM17 against its substrates TNF-α and ICAM-1. Taken together, our results show that CD9 associates with ADAM17 and, through this interaction, negatively regulates the sheddase activity of ADAM17.


Tetraspanins CD9 ADAM17 TACE TNF-α ICAM-1 



Bovine serum albumin




Epidermal growth factor receptor


Fetal calf serum


Fluorescein isothiocyanate


Human microvasculature endothelial cells-1


Horse radish peroxidase


Human umbilical vein endothelial cells


Peripheral blood lymphocytes


Phosphate buffered saline


Phorbol myristate acetate


Monoclonal antibody


Tumor necrosis factor alpha converting enzyme


Tris buffered saline


Tetraspanin-enriched microdomains


Tumor necrosis factor-α


Sodium dodecyl sulfate polyacrylamide gel electrophoresis



We are very grateful to Dr. M. Humphries for providing ADAM17-Fc cDNA; to Mariano Vitón and Sandra Moreno for their technical assistance, and to Dr. Ricardo Ramos-Ruiz for his assistance with the real-time PCR assays. This work was supported by grants BFU2007-66443/BMC and BFU2010-19144/BMC from Ministerio de Ciencia e Innovación, a grant from Fundación de Investigación Médica Mutua Madrileña and by RETICS Program RD08/0075-RIER (Red de Inflamación y Enfermedades Reumáticas) from Instituto de Salud Carlos III (to C.C.), a grant from Fundación de Investigación Médica Mutua Madrileña (to M.D.G.L.), and grants PI080794 from Instituto de Salud Carlos III (to M.Y-M) and SAF2007-60578 from Ministerio de Ciencia e Innovación (to E.M.L.). M.D.G.L. was supported by a contract associated to grant SAF2004-01715 from Ministerio de Ciencia e Innovación. S.O. was supported by an I3P predoctoral Fellowship from Consejo Superior de Investigaciones Científicas (CSIC) and by a contract associated to grant BFU2007-66443/BMC from Ministerio de Ciencia e Innovación. A.G. has been supported by a predoctoral Fellowship from Instituto de Salud Carlos III and by grant BFU2007-66443/BMC from Ministerio de Ciencia e Innovación.

Supplementary material

18_2011_639_MOESM1_ESM.jpg (406 kb)
Supplementary material 1 (406 kb)
18_2011_639_MOESM2_ESM.tif (2.9 mb)
Surface expression of CD9, ADAM17, and ADAM10 on PMA-treated THP-1 cells is not affected by incubation with anti-CD9 mAb. THP-1 cells were treated for 24 h with 20 ng/ml PMA in the presence or absence of anti-CD9 mAb VJ1/20 (20 µg/ml). Surface expression of CD9, ADAM17, and ADAM 10 was analyzed by flow cytometry using VJ1/20, H-170, and H300 as primary antibodies, respectively. Thin and thick solid line histograms represent surface expression of each indicated protein in the absence and presence of the anti-CD9 mAb VJ/20, respectively. Negative controls are represented by the gray-filled histograms (2969 kb)
18_2011_639_MOESM3_ESM.jpg (950 kb)
Supplementary material 3 (950 kb)


  1. 1.
    Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29(5):258–289PubMedCrossRefGoogle Scholar
  2. 2.
    Mezyk R, Bzowska M, Bereta J (2003) Structure and functions of tumor necrosis factor-alpha converting enzyme. Acta Biochim Pol 50(3):625–645PubMedGoogle Scholar
  3. 3.
    Black RA (2002) Tumor necrosis factor-alpha converting enzyme. Int J Biochem Cell Biol 34(1):1–5PubMedCrossRefGoogle Scholar
  4. 4.
    Tsakadze NL, Sithu SD, Sen U, English WR, Murphy G, D’Souza SE (2006) Tumor necrosis factor-alpha-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). J Biol Chem 281(6):3157–3164PubMedCrossRefGoogle Scholar
  5. 5.
    Garton KJ, Gough PJ, Raines EW (2006) Emerging roles for ectodomain shedding in the regulation of inflammatory responses. J Leukoc Biol 79(6):1105–1116PubMedCrossRefGoogle Scholar
  6. 6.
    Gearing AJ, Newman W (1993) Circulating adhesion molecules in disease. Immunol Today 14(10):506–512PubMedCrossRefGoogle Scholar
  7. 7.
    Jackson LF, Qiu TH, Sunnarborg SW, Chang A, Zhang C, Patterson C, Lee DC (2003) Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. EMBO J 22(11):2704–2716PubMedCrossRefGoogle Scholar
  8. 8.
    Murphy G (2009) Regulation of the proteolytic disintegrin metalloproteinases, the ‘Sheddases’. Semin Cell Dev Biol 20(2):138–145PubMedCrossRefGoogle Scholar
  9. 9.
    Miyake M, Inufusa H, Adachi M, Ishida H, Hashida H, Tokuhara T, Kakehi Y (2000) Suppression of pulmonary metastasis using adenovirally motility related protein-1 (MRP-1/CD9) gene delivery. Oncogene 19(46):5221–5226PubMedCrossRefGoogle Scholar
  10. 10.
    Miyake M, Nakano K, Itoi SI, Koh T, Taki T (1996) Motility-related protein-1 (MRP-1/CD9) reduction as a factor of poor prognosis in breast cancer. Cancer Res 56(6):1244–1249PubMedGoogle Scholar
  11. 11.
    Chen MS, Tung KS, Coonrod SA, Takahashi Y, Bigler D, Chang A, Yamashita Y, Kincade PW, Herr JC, White JM (1999) Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin alpha6beta1: implications for murine fertilization. Proc Natl Acad Sci U S A 96(21):11830–11835PubMedCrossRefGoogle Scholar
  12. 12.
    Ovalle S, Gutierrez-Lopez MD, Olmo N, Turnay J, Lizarbe MA, Majano P, Molina-Jimenez F, Lopez-Cabrera M, Yanez-Mo M, Sanchez-Madrid F, Cabanas C (2007) The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells. Int J Cancer 121(10):2140–2152PubMedCrossRefGoogle Scholar
  13. 13.
    Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19(9):434–446PubMedCrossRefGoogle Scholar
  14. 14.
    Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422PubMedCrossRefGoogle Scholar
  15. 15.
    Barreiro O, Zamai M, Yanez-Mo M, Tejera E, Lopez-Romero P, Monk PN, Gratton E, Caiolfa VR, Sanchez-Madrid F (2008) Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol 183(3):527–542PubMedCrossRefGoogle Scholar
  16. 16.
    Berditchevski F (2001) Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114(Pt 23):4143–4151PubMedGoogle Scholar
  17. 17.
    Yan Y, Shirakabe K, Werb Z (2002) The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J Cell Biol 158(2):221–226PubMedCrossRefGoogle Scholar
  18. 18.
    Takahashi Y, Bigler D, Ito Y, White JM (2001) Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 integrin-associated proteins CD9, CD81, and CD98. Mol Biol Cell 12(4):809–820PubMedGoogle Scholar
  19. 19.
    Arduise C, Abache T, Li L, Billard M, Chabanon A, Ludwig A, Mauduit P, Boucheix C, Rubinstein E, Le Naour F (2008) Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. J Immunol 181(10):7002–7013PubMedGoogle Scholar
  20. 20.
    Barreiro O, Yanez-Mo M, Sala-Valdes M, Gutierrez-Lopez MD, Ovalle S, Higginbottom A, Monk PN, Cabanas C, Sanchez-Madrid F (2005) Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105(7):2852–2861PubMedCrossRefGoogle Scholar
  21. 21.
    Gonzalez-Alvaro I, Dominguez-Jimenez C, Ortiz AM, Nunez-Gonzalez V, Roda-Navarro P, Fernandez-Ruiz E, Sancho D, Sanchez-Madrid F (2006) Interleukin-15 and interferon-gamma participate in the cross-talk between natural killer and monocytic cells required for tumour necrosis factor production. Arthritis Res Ther 8(4):R88PubMedCrossRefGoogle Scholar
  22. 22.
    Gutierrez-Lopez MD, Ovalle S, Yanez-Mo M, Sanchez-Sanchez N, Rubinstein E, Olmo N, Lizarbe MA, Sanchez-Madrid F, Cabanas C (2003) A functionally relevant conformational epitope on the CD9 tetraspanin depends on the association with activated beta1 integrin. J Biol Chem 278(1):208–218PubMedCrossRefGoogle Scholar
  23. 23.
    Arroyo AG, Sanchez-Mateos P, Campanero MR, Martin-Padura I, Dejana E, Sanchez-Madrid F (1992) Regulation of the VLA integrin-ligand interactions through the beta 1 subunit. J Cell Biol 117(3):659–670PubMedCrossRefGoogle Scholar
  24. 24.
    Yanez-Mo M, Alfranca A, Cabanas C, Marazuela M, Tejedor R, Ursa MA, Ashman LK, de Landazuri MO, Sanchez-Madrid F (1998) Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with alpha3 beta1 integrin localized at endothelial lateral junctions. J Cell Biol 141(3):791–804PubMedCrossRefGoogle Scholar
  25. 25.
    Higginbottom A, Takahashi Y, Bolling L, Coonrod SA, White JM, Partridge LJ, Monk PN (2003) Structural requirements for the inhibitory action of the CD9 large extracellular domain in sperm/oocyte binding and fusion. Biochem Biophys Res Commun 311(1):208–214PubMedCrossRefGoogle Scholar
  26. 26.
    Bax DV, Messent AJ, Tart J, van Hoang M, Kott J, Maciewicz RA, Humphries MJ (2004) Integrin alpha5beta1 and ADAM-17 interact in vitro and co-localize in migrating HeLa cells. J Biol Chem 279(21):22377–22386PubMedCrossRefGoogle Scholar
  27. 27.
    Isler P, Vey E, Zhang JH, Dayer JM (1993) Cell surface glycoproteins expressed on activated human T cells induce production of interleukin-1 beta by monocytic cells: a possible role of CD69. Eur Cytokine Netw 4(1):15–23PubMedGoogle Scholar
  28. 28.
    Kovalenko OV, Yang X, Kolesnikova TV, Hemler ME (2004) Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem J 377(Pt 2):407–417PubMedCrossRefGoogle Scholar
  29. 29.
    Le Naour F, Andre M, Boucheix C, Rubinstein E (2006) Membrane microdomains and proteomics: lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics 6(24):6447–6454PubMedCrossRefGoogle Scholar
  30. 30.
    Ouchi N, Kihara S, Yamashita S, Higashiyama S, Nakagawa T, Shimomura I, Funahashi T, Kameda-Takemura K, Kawata S, Taniguchi N, Matsuzawa Y (1997) Role of membrane-anchored heparin-binding epidermal growth factor-like growth factor and CD9 on macrophages. Biochem J 328(Pt 3):923–928PubMedGoogle Scholar
  31. 31.
    Doedens JR, Mahimkar RM, Black RA (2003) TACE/ADAM-17 enzymatic activity is increased in response to cellular stimulation. Biochem Biophys Res Commun 308(2):331–338PubMedCrossRefGoogle Scholar
  32. 32.
    Glaser KB, Pease L, Li J, Morgan DW (1999) Enhancement of the surface expression of tumor necrosis factor alpha (TNFalpha) but not the p55 TNFalpha receptor in the THP-1 monocytic cell line by matrix metalloprotease inhibitors. Biochem Pharmacol 57(3):291–302PubMedCrossRefGoogle Scholar
  33. 33.
    Becker BF, Gilles S, Sommerhoff CP, Zahler S (2002) Application of peptides containing the cleavage sequence of pro-TNFalpha in assessing TACE activity of whole cells. Biol Chem 383(11):1821–1826PubMedCrossRefGoogle Scholar
  34. 34.
    Rabie T, Strehl A, Ludwig A, Nieswandt B (2005) Evidence for a role of ADAM17 (TACE) in the regulation of platelet glycoprotein V. J Biol Chem 280(15):14462–14468PubMedCrossRefGoogle Scholar
  35. 35.
    Zhao XJ, Oliver P, Song K, Schurr J, Zhang Z, Kolls JK (2004) Chronic ethanol enhances ectodomain shedding in T cells and monocytes. Alcohol Clin Exp Res 28(9):1399–1407PubMedCrossRefGoogle Scholar
  36. 36.
    Condon TP, Flournoy S, Sawyer GJ, Baker BF, Kishimoto TK, Bennett CF (2001) ADAM17 but not ADAM10 mediates tumor necrosis factor-alpha and L-selectin shedding from leukocyte membranes. Antisense Nucleic Acid Drug Dev 11(2):107–116PubMedCrossRefGoogle Scholar
  37. 37.
    Luscinskas FW, Cybulsky MI, Kiely JM, Peckins CS, Davis VM, Gimbrone MA Jr (1991) Cytokine-activated human endothelial monolayers support enhanced neutrophil transmigration via a mechanism involving both endothelial-leukocyte adhesion molecule-1 and intercellular adhesion molecule-1. J Immunol 146(5):1617–1625PubMedGoogle Scholar
  38. 38.
    Montero JC, Yuste L, Diaz-Rodriguez E, Esparis-Ogando A, Pandiella A (2002) Mitogen-activated protein kinase-dependent and -independent routes control shedding of transmembrane growth factors through multiple secretases. Biochem J 363(Pt 2):211–221PubMedCrossRefGoogle Scholar
  39. 39.
    Reddy P, Slack JL, Davis R, Cerretti DP, Kozlosky CJ, Blanton RA, Shows D, Peschon JJ, Black RA (2000) Functional analysis of the domain structure of tumor necrosis factor-alpha converting enzyme. J Biol Chem 275(19):14608–14614PubMedCrossRefGoogle Scholar
  40. 40.
    Canault M, Tellier E, Bonardo B, Mas E, Aumailley M, Juhan-Vague I, Nalbone G, Peiretti F (2006) FHL2 interacts with both ADAM-17 and the cytoskeleton and regulates ADAM-17 localization and activity. J Cell Physiol 208(2):363–372PubMedCrossRefGoogle Scholar
  41. 41.
    Nishi E, Hiraoka Y, Yoshida K, Okawa K, Kita T (2006) Nardilysin enhances ectodomain shedding of heparin-binding epidermal growth factor-like growth factor through activation of tumor necrosis factor-alpha-converting enzyme. J Biol Chem 281(41):31164–31172PubMedCrossRefGoogle Scholar
  42. 42.
    Zheng Y, Schlondorff J, Blobel CP (2002) Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. J Biol Chem 277(45):42463–42470PubMedCrossRefGoogle Scholar
  43. 43.
    Peiretti F, Deprez-Beauclair P, Bonardo B, Aubert H, Juhan-Vague I, Nalbone G (2003) Identification of SAP97 as an intracellular binding partner of TACE. J Cell Sci 116(Pt 10):1949–1957PubMedCrossRefGoogle Scholar
  44. 44.
    Ho SH, Martin F, Higginbottom A, Partridge LJ, Parthasarathy V, Moseley GW, Lopez P, Cheng-Mayer C, Monk PN (2006) Recombinant extracellular domains of tetraspanin proteins are potent inhibitors of the infection of macrophages by human immunodeficiency virus type 1. J Virol 80(13):6487–6496PubMedCrossRefGoogle Scholar
  45. 45.
    Xu D, Sharma C, Hemler ME (2009) Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. Faseb J 23(11):3674–3681PubMedCrossRefGoogle Scholar
  46. 46.
    Charrin S, le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420(2):133–154PubMedCrossRefGoogle Scholar
  47. 47.
    Nishiuchi R, Sanzen N, Nada S, Sumida Y, Wada Y, Okada M, Takagi J, Hasegawa H, Sekiguchi K (2005) Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151. Proc Natl Acad Sci U S A 102(6):1939–1944PubMedCrossRefGoogle Scholar
  48. 48.
    Shi W, Fan H, Shum L, Derynck R (2000) The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced EGF receptor activation and cell proliferation. J Cell Biol 148(3):591–602PubMedCrossRefGoogle Scholar
  49. 49.
    Reiss K, Saftig P (2009) The “a disintegrin and metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20(2):126–137PubMedCrossRefGoogle Scholar
  50. 50.
    Ludwig A, Hundhausen C, Lambert MH, Broadway N, Andrews RC, Bickett DM, Leesnitzer MA, Becherer JD (2005) Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb Chem High Throughput Screen 8(2):161–171PubMedCrossRefGoogle Scholar
  51. 51.
    Yanez-Mo M, Barreiro O, Gonzalo P, Batista A, Megias D, Genis L, Sachs N, Sala-Valdes M, Alonso MA, Montoya MC, Sonnenberg A, Arroyo AG, Sanchez-Madrid F (2008) MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells. Blood 112(8):3217–3226PubMedCrossRefGoogle Scholar
  52. 52.
    Lafleur MA, Xu D, Hemler ME (2009) Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol Biol Cell 20(7):2030–2040PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Maria Dolores Gutiérrez-López
    • 1
    • 7
  • Alvaro Gilsanz
    • 1
  • María Yáñez-Mó
    • 2
  • Susana Ovalle
    • 1
  • Esther M. Lafuente
    • 4
  • Carmen Domínguez
    • 5
  • Peter N. Monk
    • 6
  • Isidoro González-Alvaro
    • 5
  • Francisco Sánchez-Madrid
    • 2
    • 3
  • Carlos Cabañas
    • 1
    • 4
    Email author
  1. 1.Centro de Biología Molecular Severo Ochoa (CSIC-UAM)MadridSpain
  2. 2.Servicio de InmunologíaHospital Universitario de La Princesa, Instituto de Investigacion Sanitaria PrincesaMadridSpain
  3. 3.Departamento de Biología Vascular e InflamaciónCNICMadridSpain
  4. 4.Departamento de Microbiología I (Inmunología)Facultad de Medicina, UCMMadridSpain
  5. 5.Servicio de ReumatologíaHospital Universitario de La PrincesaMadridSpain
  6. 6.University of Sheffield Medical SchoolSheffieldUnited Kingdom
  7. 7.Departamento de Farmacología, Facultad de MedicinaUniversidad ComplutenseMadridSpain

Personalised recommendations