Cellular and Molecular Life Sciences

, Volume 68, Issue 10, pp 1719–1736 | Cite as

What’s the hype about CDK5RAP2?

  • Nadine Kraemer
  • Lina Issa
  • Stefanie C. R. Hauck
  • Shyamala Mani
  • Olaf Ninnemann
  • Angela M. Kaindl


Cyclin dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) has gained attention in the last years following the discovery, in 2005, that recessive mutations cause primary autosomal recessive microcephaly. This disease is seen as an isolated developmental defect of the brain, particularly of the cerebral cortex, and was thus historically also referred to as microcephalia vera. Unraveling the pathomechanisms leading to this human disease is fascinating scientists because it can convey insight into basic mechanisms of physiologic brain development (particularly of cortex formation). It also finds itself in the spotlight because of its implication in trends in mammalian evolution with a massive increase in the size of the cerebral cortex in primates. Here, we provide a timely overview of the current knowledge on the function of CDK5RAP2 and mechanisms that might lead to disease in humans when the function of this protein is disturbed.


Microcephaly MCPH CDK5RAP2 CDK5 Centrosome Spindle Cell cycle Mental retardation 

Supplementary material

18_2011_635_MOESM1_ESM.ppt (134 kb)
Supplementary material 1 (PPT 134 kb)
18_2011_635_MOESM2_ESM.doc (28 kb)
Supplementary material 2 (DOC 28 kb)
18_2011_635_MOESM3_ESM.doc (20 kb)
Supplementary material 3 (DOC 19 kb)


  1. 1.
    Nagase T, Kikuno R, Nakayama M, Hirosawa M, Ohara O (2000) Prediction of the coding sequences of unidentified human genes. XVIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 7(4):273–281PubMedCrossRefGoogle Scholar
  2. 2.
    Ching YP, Qi Z, Wang JH (2000) Cloning of three novel neuronal Cdk5 activator binding proteins. Gene 242(1–2):285–294PubMedCrossRefGoogle Scholar
  3. 3.
    Wang X, Ching YP, Lam WH, Qi Z, Zhang M, Wang JH (2000) Identification of a common protein association region in the neuronal Cdk5 activator. J Biol Chem 275(41):31763–31769. doi:10.1074/jbc.M004358200 PubMedCrossRefGoogle Scholar
  4. 4.
    Chin KT, Ohki SY, Tang D, Cheng HC, Wang JH, Zhang M (1999) Identification and structure characterization of a Cdk inhibitory peptide derived from neuronal-specific Cdk5 activator. J Biol Chem 274(11):7120–7127PubMedCrossRefGoogle Scholar
  5. 5.
    Fong KW, Choi YK, Rattner JB, Qi RZ (2008) CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex. Mol Biol Cell 19(1):115–125PubMedCrossRefGoogle Scholar
  6. 6.
    Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R (2001) Novel meiosis-specific isoform of mammalian SMC1. Mol Cell Biol 21(20):6984–6998PubMedCrossRefGoogle Scholar
  7. 7.
    Evans PD, Vallender EJ, Lahn BT (2006) Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ. Gene 375:75–79PubMedCrossRefGoogle Scholar
  8. 8.
    Hirano T (2005) SMC proteins and chromosome mechanics: from bacteria to humans. Philos Trans R Soc Lond B Biol Sci 360(1455):507–514PubMedCrossRefGoogle Scholar
  9. 9.
    Fong KW, Hau SY, Kho YS, Jia Y, He L, Qi RZ (2009) Interaction of CDK5RAP2 with EB1 to track growing microtubule tips and to regulate microtubule dynamics. Mol Biol Cell. doi:10.1091/mbc.E09-01-0009
  10. 10.
    Wang Z, Wu T, Shi L, Zhang L, Zheng W, Qu JY, Niu R, Qi RZ (2010) A conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J Biol Chem. doi:10.1074/jbc.M110.105965
  11. 11.
    Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252(5010):1162–1164CrossRefGoogle Scholar
  12. 12.
    Hirano T (2002) The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev 16(4):399–414. doi:10.1101/gad.955102 PubMedCrossRefGoogle Scholar
  13. 13.
    Lizarraga SB, Margossian SP, Harris MH, Campagna DR, Han AP, Blevins S, Mudbhary R, Barker JE, Walsh CA, Fleming MD (2010) Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development 137(11):1907–1917. doi:10.1242/dev.040410 PubMedCrossRefGoogle Scholar
  14. 14.
    Buchman JJ, Tseng HC, Zhou Y, Frank CL, Xie Z, Tsai LH (2010) Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 66(3):386–402. doi:10.1016/j.neuron.2010.03.036 PubMedCrossRefGoogle Scholar
  15. 15.
    Jiang H, Luo S, Li H (2005) Cdk5 activator-binding protein C53 regulates apoptosis induced by genotoxic stress via modulating the G2/M DNA damage checkpoint. J Biol Chem 280(21):20651–20659. doi:10.1074/jbc.M413431200 PubMedCrossRefGoogle Scholar
  16. 16.
    Jiang H, Wu J, He C, Yang W, Li H (2009) Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation. Cell Res 19(4):458–468. doi:10.1038/cr.2009.14 PubMedCrossRefGoogle Scholar
  17. 17.
    Bond J, Roberts E, Springell K, Lizarraga SB, Scott S, Higgins J, Hampshire DJ, Morrison EE, Leal GF, Silva EO, Costa SM, Baralle D, Raponi M, Karbani G, Rashid Y, Jafri H, Bennett C, Corry P, Walsh CA, Woods CG (2005) A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet 37(4):353–355PubMedCrossRefGoogle Scholar
  18. 18.
    Graser S, Stierhof YD, Nigg EA (2007) Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J Cell Sci 120(Pt 24):4321–4331PubMedCrossRefGoogle Scholar
  19. 19.
    Barrera JA, Kao LR, Hammer RE, Seemann J, Fuchs JL, Megraw TL (2010) CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev Cell 18(6):913–926. doi:10.1016/j.devcel.2010.05.017 PubMedCrossRefGoogle Scholar
  20. 20.
    Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622. doi:10.1038/45159 PubMedCrossRefGoogle Scholar
  21. 21.
    Cicero S, Herrup K (2005) Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest and differentiation. J Neurosci 25(42):9658–9668. doi:10.1523/JNEUROSCI.1773-05.2005 PubMedCrossRefGoogle Scholar
  22. 22.
    Dhariwala FA, Rajadhyaksha MS (2008) An unusual member of the Cdk family: Cdk5. Cell Mol Neurobiol 28(3):351–369. doi:10.1007/s10571-007-9242-1 PubMedCrossRefGoogle Scholar
  23. 23.
    Hahn CM, Kleinholz H, Koester MP, Grieser S, Thelen K, Pollerberg GE (2005) Role of cyclin-dependent kinase 5 and its activator P35 in local axon and growth cone stabilization. Neuroscience 134(2):449–465. doi:10.1016/j.neuroscience.2005.04.020 PubMedCrossRefGoogle Scholar
  24. 24.
    Pareek TK, Keller J, Kesavapany S, Pant HC, Iadarola MJ, Brady RO, Kulkarni AB (2006) Cyclin-dependent kinase 5 activity regulates pain signaling. Proc Natl Acad Sci USA 103(3):791–796. doi:10.1073/pnas.0510405103 PubMedCrossRefGoogle Scholar
  25. 25.
    Rakic S, Yanagawa Y, Obata K, Faux C, Parnavelas JG, Nikolic M (2009) Cortical interneurons require p35/Cdk5 for their migration and laminar organization. Cereb Cortex 19(8):1857–1869. doi:10.1093/cercor/bhn213 PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang J, Cicero SA, Wang L, Romito-Digiacomo RR, Yang Y, Herrup K (2008) Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons. Proc Natl Acad Sci USA 105(25):8772–8777PubMedCrossRefGoogle Scholar
  27. 27.
    Moynihan L, Jackson AP, Roberts E, Karbani G, Lewis I, Corry P, Turner G, Mueller RF, Lench NJ, Woods CG (2000) A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34. Am J Hum Genet 66(2):724–727PubMedCrossRefGoogle Scholar
  28. 28.
    Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, Roberts E, Hampshire DJ, Crow YJ, Mighell AJ, Karbani G, Jafri H, Rashid Y, Mueller RF, Markham AF, Woods CG (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 71(1):136–142. doi:10.1086/341283 PubMedCrossRefGoogle Scholar
  29. 29.
    Jackson AP, McHale DP, Campbell DA, Jafri H, Rashid Y, Mannan J, Karbani G, Corry P, Levene MI, Mueller RF, Markham AF, Lench NJ, Woods CG (1998) Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am J Hum Genet 63(2):541–546. doi:10.1086/301966 PubMedCrossRefGoogle Scholar
  30. 30.
    Roberts E, Jackson AP, Carradice AC, Deeble VJ, Mannan J, Rashid Y, Jafri H, McHale DP, Markham AF, Lench NJ, Woods CG (1999) The second locus for autosomal recessive primary microcephaly (MCPH2) maps to chromosome 19q13.1–13.2. Eur J Hum Genet 7(7):815–820. doi:10.1038/sj.ejhg.5200385 PubMedCrossRefGoogle Scholar
  31. 31.
    Nicholas AK, Khurshid M, Desir J, Carvalho OP, Cox JJ, Thornton G, Kausar R, Ansar M, Ahmad W, Verloes A, Passemard S, Misson JP, Lindsay S, Gergely F, Dobyns WB, Roberts E, Abramowicz M, Woods CG (2010) WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat Genet 42(11):1010–1014. doi:10.1038/ng.682 PubMedCrossRefGoogle Scholar
  32. 32.
    Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, Topcu M, McDonald MT, Barry BJ, Felie JM, Sunu C, Dobyns WB, Folkerth RD, Barkovich AJ, Walsh CA (2010) Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet 42(11):1015–1020. doi:10.1038/ng.683 PubMedCrossRefGoogle Scholar
  33. 33.
    Jamieson CR, Govaerts C, Abramowicz MJ (1999) Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15. Am J Hum Genet 65(5):1465–1469. doi:10.1086/302640 PubMedCrossRefGoogle Scholar
  34. 34.
    Guernsey DL, Jiang H, Hussin J, Arnold M, Bouyakdan K, Perry S, Babineau-Sturk T, Beis J, Dumas N, Evans SC, Ferguson M, Matsuoka M, Macgillivray C, Nightingale M, Patry L, Rideout AL, Thomas A, Orr A, Hoffmann I, Michaud JL, Awadalla P, Meek DC, Ludman M, Samuels ME (2010) Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am J Hum Genet 87(1):40–51. doi:10.1016/j.ajhg.2010.06.003 PubMedCrossRefGoogle Scholar
  35. 35.
    Pattison L, Crow YJ, Deeble VJ, Jackson AP, Jafri H, Rashid Y, Roberts E, Woods CG (2000) A fifth locus for primary autosomal recessive microcephaly maps to chromosome 1q31. Am J Hum Genet 67(6):1578–1580. doi:10.1086/316910 PubMedCrossRefGoogle Scholar
  36. 36.
    Shen J, Eyaid W, Mochida GH, Al-Moayyad F, Bodell A, Woods CG, Walsh CA (2005) ASPM mutations identified in patients with primary microcephaly and seizures. J Med Genet 42(9):725–729. doi:10.1136/jmg.2004.027706 PubMedCrossRefGoogle Scholar
  37. 37.
    Leal GF, Roberts E, Silva EO, Costa SM, Hampshire DJ, Woods CG (2003) A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q12.2. J Med Genet 40(7):540–542PubMedCrossRefGoogle Scholar
  38. 38.
    Kumar A, Girimaji SC, Duvvari MR, Blanton SH (2009) Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am J Hum Genet 84(2):286–290. doi:10.1016/j.ajhg.2009.01.017 PubMedCrossRefGoogle Scholar
  39. 39.
    Passemard S, Titomanlio L, Elmaleh M, Afenjar A, Alessandri JL, Andria G, de Villemeur TB, Boespflug-Tanguy O, Burglen L, Del Giudice E, Guimiot F, Hyon C, Isidor B, Megarbane A, Moog U, Odent S, Hernandez K, Pouvreau N, Scala I, Schaer M, Gressens P, Gerard B, Verloes A (2009) Expanding the clinical and neuroradiologic phenotype of primary microcephaly due to ASPM mutations. Neurology 73(12):962–969. doi:10.1212/WNL.0b013e3181b8799a PubMedCrossRefGoogle Scholar
  40. 40.
    Woods CG, Bond J, Enard W (2005) Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet 76(5):717–728PubMedCrossRefGoogle Scholar
  41. 41.
    Kaindl AM, Passemard S, Kumar P, Kraemer N, Issa L, Zwirner A, Gerard B, Verloes A, Mani S, Gressens P (2009) Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol. doi:10.1016/j.pneurobio.2009.11.002
  42. 42.
    Bamatter F, Rabinowicz T (1969) Study of a familial case of microcephaly and micrencephaly. Clinical and anatomo-pathologic considerations on a preliminary basis. J Genet Hum 17(3):247–274PubMedGoogle Scholar
  43. 43.
    Robain O, Lyon G (1972) Familial microcephalies due to cerebral malformation. Anatomical and clinical study. Acta Neuropathol 20(2):96–109PubMedCrossRefGoogle Scholar
  44. 44.
    Lucas EP, Raff JW (2007) Maintaining the proper connection between the centrioles and the pericentriolar matrix requires Drosophila centrosomin. J Cell Biol 178(5):725–732. doi:10.1083/jcb.200704081 PubMedCrossRefGoogle Scholar
  45. 45.
    Megraw TL, Li K, Kao LR, Kaufman TC (1999) The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 126(13):2829–2839PubMedGoogle Scholar
  46. 46.
    Doxsey S, Zimmerman W, Mikule K (2005) Centrosome control of the cell cycle. Trends Cell Biol 15(6):303–311. doi:10.1016/j.tcb.2005.04.008 PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang J, Megraw TL (2007) Proper recruitment of gamma-tubulin and D-TACC/Msps to embryonic Drosophila centrosomes requires Centrosomin Motif 1. Mol Biol Cell 18(10):4037–4049. doi:10.1091/mbc.E07-05-0474 PubMedCrossRefGoogle Scholar
  48. 48.
    Megraw TL, Kao LR, Kaufman TC (2001) Zygotic development without functional mitotic centrosomes. Curr Biol 11(2):116–120. doi:S0960-9822(01)00017-3 PubMedCrossRefGoogle Scholar
  49. 49.
    Mahoney NM, Goshima G, Douglass AD, Vale RD (2006) Making microtubules and mitotic spindles in cells without functional centrosomes. Curr Biol 16(6):564–569. doi:10.1016/j.cub.2006.01.053 PubMedCrossRefGoogle Scholar
  50. 50.
    Rieder CL, Faruki S, Khodjakov A (2001) The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol 11(10):413–419. doi:S0962-8924(01)02085-2 PubMedCrossRefGoogle Scholar
  51. 51.
    Lee S, Rhee K (2010) CEP215 is involved in the dynein-dependent accumulation of pericentriolar matrix proteins for spindle pole formation. Cell Cycle 9(4):774–783. doi:10667 PubMedCrossRefGoogle Scholar
  52. 52.
    Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14(1):25–34. doi:S0955067401002903 PubMedCrossRefGoogle Scholar
  53. 53.
    Luders J, Stearns T (2007) Microtubule-organizing centres: a re-evaluation. Nat Rev Mol Cell Biol 8(2):161–167PubMedCrossRefGoogle Scholar
  54. 54.
    Ou Y, Rattner JB (2004) The centrosome in higher organisms: structure, composition, and duplication. Int Rev Cytol 238:119–182PubMedCrossRefGoogle Scholar
  55. 55.
    Zimmerman WC, Sillibourne J, Rosa J, Doxsey SJ (2004) Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol Biol Cell 15(8):3642–3657. doi:10.1091/mbc.E03-11-0796 PubMedCrossRefGoogle Scholar
  56. 56.
    Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S (2007) Loss of centrosome integrity induces p38–p53-p21-dependent G1–S arrest. Nat Cell Biol 9(2):160–170PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang X, Liu D, Lv S, Wang H, Zhong X, Liu B, Wang B, Liao J, Li J, Pfeifer GP, Xu X (2009) CDK5RAP2 is required for spindle checkpoint function. Cell Cycle 8(8):1206–1216PubMedCrossRefGoogle Scholar
  58. 58.
    Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8(5):379–393PubMedCrossRefGoogle Scholar
  59. 59.
    Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6(5):369–381PubMedCrossRefGoogle Scholar
  60. 60.
    McGrogan BT, Gilmartin B, Carney DN, McCann A (2008) Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 1785(2):96–132PubMedGoogle Scholar
  61. 61.
    Galjart N (2005) CLIPs and CLASPs and cellular dynamics. Nat Rev Mol Cell Biol 6(6):487–498PubMedCrossRefGoogle Scholar
  62. 62.
    Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9(4):309–322PubMedCrossRefGoogle Scholar
  63. 63.
    Feng Y, Walsh CA (2004) Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44(2):279–293. doi:10.1016/j.neuron.2004.09.023 PubMedCrossRefGoogle Scholar
  64. 64.
    Fish JL, Kosodo Y, Enard W, Paabo S, Huttner WB (2006) Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci USA 103(27):10438–10443. doi:10.1073/pnas.0604066103 PubMedCrossRefGoogle Scholar
  65. 65.
    Sanada K, Tsai LH (2005) G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122(1):119–131. doi:10.1016/j.cell.2005.05.009 PubMedCrossRefGoogle Scholar
  66. 66.
    Jessberger S, Aigner S, Clemenson GD Jr, Toni N, Lie DC, Karalay O, Overall R, Kempermann G, Gage FH (2008) Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus. PLoS Biol 6(11):e272PubMedCrossRefGoogle Scholar
  67. 67.
    Causeret F, Jacobs T, Terao M, Heath O, Hoshino M, Nikolic M (2007) Neurabin-I is phosphorylated by Cdk5: implications for neuronal morphogenesis and cortical migration. Mol Biol Cell 18(11):4327–4342PubMedCrossRefGoogle Scholar
  68. 68.
    Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2(10):749–759PubMedCrossRefGoogle Scholar
  69. 69.
    Choe EA, Liao L, Zhou JY, Cheng D, Duong DM, Jin P, Tsai LH, Peng J (2007) Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1. J Neurosci 27(35):9503–9512. doi:10.1523/JNEUROSCI.1408-07.2007 PubMedCrossRefGoogle Scholar
  70. 70.
    Gupta A, Tsai LH (2003) Cyclin-dependent kinase 5 and neuronal migration in the neocortex. Neurosignals 12(4–5):173–179. doi:10.1159/000074618 PubMedCrossRefGoogle Scholar
  71. 71.
    Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna PantHC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93(20):11173–11178PubMedCrossRefGoogle Scholar
  72. 72.
    Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18(1):29–42. doi:S0896-6273(01)80044-1 PubMedCrossRefGoogle Scholar
  73. 73.
    Gupta A, Sanada K, Miyamoto DT, Rovelstad S, Nadarajah B, Pearlman AL, Brunstrom J, Tsai LH (2003) Layering defect in p35 deficiency is linked to improper neuronal–glial interaction in radial migration. Nat Neurosci 6(12):1284–1291. doi:10.1038/nn1151 PubMedCrossRefGoogle Scholar
  74. 74.
    Kwon YT, Tsai LH (1998) A novel disruption of cortical development in p35(−/−) mice distinct from reeler. J Comp Neurol 395(4):510–522. doi:10.1002/(SICI)1096-9861(19980615)395:4<510:AID-CNE7>3.0.CO;2-4 PubMedCrossRefGoogle Scholar
  75. 75.
    McEvilly RJ, de Diaz MO, Schonemann MD, Hooshmand F, Rosenfeld MG (2002) Transcriptional regulation of cortical neuron migration by POU domain factors. Science 295(5559):1528–1532PubMedCrossRefGoogle Scholar
  76. 76.
    Chang Y, Ostling P, Akerfelt M, Trouillet D, Rallu M, Gitton Y, El Fatimy R, Fardeau V, Le Crom S, Morange M, Sistonen L, Mezger V (2006) Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev 20(7):836–847PubMedCrossRefGoogle Scholar
  77. 77.
    Ohshima T, Gilmore EC, Longenecker G, Jacobowitz DM, Brady RO, Herrup K, Kulkarni AB (1999) Migration defects of cdk5(−/−) neurons in the developing cerebellum is cell autonomous. J Neurosci 19(14):6017–6026PubMedGoogle Scholar
  78. 78.
    Ali F, Meier R (2008) Positive selection in ASPM is correlated with cerebral cortex evolution across primates but not with whole-brain size. Mol Biol Evol 25(11):2247–2250. doi:10.1093/molbev/msn184 PubMedCrossRefGoogle Scholar
  79. 79.
    Balter M (2005) Evolution. Are human brains still evolving? Brain genes show signs of selection. Science 309(5741):1662–1663. doi:10.1126/science.309.5741.1662 PubMedCrossRefGoogle Scholar
  80. 80.
    Balter M (2006) Bruce Lahn profile. Links between brain genes, evolution, and cognition challenged. Science 314(5807):1872. doi:10.1126/science.314.5807.1872 PubMedCrossRefGoogle Scholar
  81. 81.
    Balter M (2006) Bruce Lahn profile. Brain man makes waves with claims of recent human evolution. Science 314(5807):1871–1873. doi:10.1126/science.314.5807.1871 PubMedCrossRefGoogle Scholar
  82. 82.
    Bond J, Woods CG (2006) Cytoskeletal genes regulating brain size. Curr Opin Cell Biol 18(1):95–101. doi:10.1016/j.ceb.2005.11.004 PubMedCrossRefGoogle Scholar
  83. 83.
    Cotoi S, Incze A, Georgescu C, Carasca E (1980) Pacing below the ventricular rate in terminating ventricular tachycardia and flutter. Am Heart J 100(5):763–764PubMedCrossRefGoogle Scholar
  84. 84.
    Currat M, Excoffier L, Maddison W, Otto SP, Ray N, Whitlock MC, Yeaman S (2006) Comment on “Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens” and “Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans”. Science 313(5784):172. doi:10.1126/science.1122712 author reply 172PubMedCrossRefGoogle Scholar
  85. 85.
    Evans PD, Anderson JR, Vallender EJ, Choi SS, Lahn BT (2004) Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size. Hum Mol Genet 13(11):1139–1145. doi:10.1093/hmg/ddh126 PubMedCrossRefGoogle Scholar
  86. 86.
    Evans PD, Anderson JR, Vallender EJ, Gilbert SL, Malcom CM, Dorus S, Lahn BT (2004) Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum Mol Genet 13(5):489–494. doi:10.1093/hmg/ddh055 PubMedCrossRefGoogle Scholar
  87. 87.
    Evans PD, Gilbert SL, Mekel-Bobrov N, Vallender EJ, Anderson JR, Vaez-Azizi LM, Tishkoff SA, Hudson RR, Lahn BT (2005) Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309(5741):1717–1720. doi:10.1126/science.1113722 PubMedCrossRefGoogle Scholar
  88. 88.
    Frost P (2008) The spread of alphabetical writing may have favored the latest variant of the ASPM gene. Med Hypotheses 70(1):17–20. doi:10.1016/j.mehy.2007.04.039 PubMedCrossRefGoogle Scholar
  89. 89.
    Kouprina N, Pavlicek A, Mochida GH, Solomon G, Gersch W, Yoon YH, Collura R, Ruvolo M, Barrett JC, Woods CG, Walsh CA, Jurka J, Larionov V (2004) Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion. PLoS Biol 2(5):E126. doi:10.1371/journal.pbio.0020126 PubMedCrossRefGoogle Scholar
  90. 90.
    Mekel-Bobrov N, Gilbert SL, Evans PD, Vallender EJ, Anderson JR, Hudson RR, Tishkoff SA, Lahn BT (2005) Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science 309(5741):1720–1722. doi:10.1126/science.1116815 PubMedCrossRefGoogle Scholar
  91. 91.
    Ponting C, Jackson AP (2005) Evolution of primary microcephaly genes and the enlargement of primate brains. Curr Opin Genet Dev 15(3):241–248. doi:10.1016/j.gde.2005.04.009 PubMedCrossRefGoogle Scholar
  92. 92.
    Ponting CP (2006) A novel domain suggests a ciliary function for ASPM, a brain size determining gene. Bioinformatics 22(9):1031–1035. doi:10.1093/bioinformatics/btl022 PubMedCrossRefGoogle Scholar
  93. 93.
    Richards GD (2006) Genetic, physiologic and ecogeographic factors contributing to variation in Homo sapiens: Homo floresiensis reconsidered. J Evol Biol 19(6):1744–1767. doi:10.1111/j.1420-9101.2006.01179.x PubMedCrossRefGoogle Scholar
  94. 94.
    Stern R, Woods CG (2006) Evolutionary genetics: is brain evolution still continuing in modern humans? Eur J Hum Genet 14(7):799–800. doi:10.1038/sj.ejhg.5201624 PubMedCrossRefGoogle Scholar
  95. 95.
    Wang JK, Li Y, Su B (2008) A common SNP of MCPH1 is associated with cranial volume variation in Chinese population. Hum Mol Genet 17(9):1329–1335. doi:10.1093/hmg/ddn021 PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang J (2003) Evolution of the human ASPM gene, a major determinant of brain size. Genetics 165(4):2063–2070PubMedGoogle Scholar
  97. 97.
    Wang YQ, Su B (2004) Molecular evolution of microcephalin, a gene determining human brain size. Hum Mol Genet 13(11):1131–1137. doi:10.1093/hmg/ddh127 PubMedCrossRefGoogle Scholar
  98. 98.
    Gilbert SL, Dobyns WB, Lahn BT (2005) Genetic links between brain development and brain evolution. Nat Rev Genet 6(7):581–590PubMedCrossRefGoogle Scholar
  99. 99.
    Rimol LM, Agartz I, Djurovic S, Brown AA, Roddey JC, Kahler AK, Mattingsdal M, Athanasiu L, Joyner AH, Schork NJ, Halgren E, Sundet K, Melle I, Dale AM, Andreassen OA (2010) Sex-dependent association of common variants of microcephaly genes with brain structure. Proc Natl Acad Sci USA 107(1):384–388. doi:10.1073/pnas.0908454107 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Nadine Kraemer
    • 1
    • 2
  • Lina Issa
    • 1
    • 2
  • Stefanie C. R. Hauck
    • 1
    • 2
  • Shyamala Mani
    • 3
  • Olaf Ninnemann
    • 2
  • Angela M. Kaindl
    • 1
    • 2
    • 4
  1. 1.Department of Pediatric NeurologyCharité, Universitätsmedizin BerlinBerlinGermany
  2. 2.Institute of Neuroanatomy and Cell Biology, Center for AnatomyCharité, Universitätsmedizin BerlinBerlinGermany
  3. 3.Center for NeuroscienceIndian Institute of ScienceBangaloreIndia
  4. 4.Institute of Neuroanatomy and Cell Biology and Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Center for AnatomyCharité, Universitätsmedizin BerlinBerlinGermany

Personalised recommendations