Advertisement

Cellular and Molecular Life Sciences

, Volume 68, Issue 10, pp 1681–1702 | Cite as

Epigenetic aberrations during oncogenesis

  • Maria Hatziapostolou
  • Dimitrios IliopoulosEmail author
Review

Abstract

The aberrant epigenetic landscape of a cancer cell is characterized by global genomic hypomethylation, CpG island promoter hypermethylation of tumor suppressor genes, and changes in histone modification patterns, as well as altered expression profiles of chromatin-modifying enzymes. Recent advances in the field of epigenetics have revealed that microRNAs’ expression is also under epigenetic regulation and that certain microRNAs control elements of the epigenetic machinery. The reversibility of epigenetic marks catalyzed the development of epigenetic-altering drugs. However, a better understanding of the intertwined relationship between genetics, epigenetics and microRNAs is necessary in order to resolve how gene expression aberrations that contribute to tumorigenesis can be therapeutically corrected.

Keywords

Epigenetics Networks Methylation Histones MicroRNAs Oncogenic transformation 

References

  1. 1.
    Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153PubMedCrossRefGoogle Scholar
  2. 2.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692PubMedCrossRefGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedCrossRefGoogle Scholar
  4. 4.
    Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33PubMedCrossRefGoogle Scholar
  5. 5.
    de la Chapelle A (2004) Genetic predisposition to colorectal cancer. Nat Rev Cancer 4(10):769–780CrossRefGoogle Scholar
  6. 6.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159PubMedCrossRefGoogle Scholar
  7. 7.
    Tysnes BB (2010) Tumor-initiating and -propagating cells: cells that we would like to identify and control. Neoplasia 12(7):506–515PubMedGoogle Scholar
  8. 8.
    Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6(2):107–116PubMedCrossRefGoogle Scholar
  9. 9.
    Houghton J, Morozov A, Smirnova I, Wang TC (2007) Stem cells and cancer. Semin Cancer Biol 17(3):191–203PubMedCrossRefGoogle Scholar
  10. 10.
    Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21PubMedCrossRefGoogle Scholar
  11. 11.
    Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 21(15):4183–4195PubMedCrossRefGoogle Scholar
  12. 12.
    Prendergast GC, Ziff EB (1991) Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251(4990):186–189PubMedCrossRefGoogle Scholar
  13. 13.
    Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389PubMedCrossRefGoogle Scholar
  14. 14.
    Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476PubMedCrossRefGoogle Scholar
  15. 15.
    Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92PubMedCrossRefGoogle Scholar
  16. 16.
    Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 48(5):1159–1161PubMedGoogle Scholar
  17. 17.
    Rodriguez J, Frigola J, Vendrell E, Risques RA, Fraga MF, Morales C, Moreno V, Esteller M, Capella G, Ribas M, Peinado MA (2006) Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res 66(17):8462–9468PubMedCrossRefGoogle Scholar
  18. 18.
    Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300(5618):455PubMedCrossRefGoogle Scholar
  19. 19.
    Yeh A, Wei M, Golub SB, Yamashiro DJ, Murty VV, Tycko B (2002) Chromosome arm 16q in Wilms tumors: unbalanced chromosomal translocations, loss of heterozygosity, and assessment of the CTCF gene. Genes Chromosomes Cancer 35(2):156–163PubMedCrossRefGoogle Scholar
  20. 20.
    Karpf AR, Matsui S (2005) Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res 65(19):8635–8639PubMedCrossRefGoogle Scholar
  21. 21.
    Xu GL, Bestor TH, Bourc’his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402(6758):187–191PubMedCrossRefGoogle Scholar
  22. 22.
    Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A (2008) Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27(3):404–408PubMedCrossRefGoogle Scholar
  23. 23.
    Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775(1):138–162PubMedGoogle Scholar
  24. 24.
    Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Sultmann H, Lyko F (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67(4):1419–1423PubMedCrossRefGoogle Scholar
  25. 25.
    Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, Wu Y, He X, Powe NR, Feinberg AP (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299(5613):1753–1755PubMedCrossRefGoogle Scholar
  26. 26.
    Feinberg AP (1999) Mendel stayed home. Genomic imprinting, environmental disease susceptibility. National Institute of Environmental Health Sciences, Duke University Medical Center, Durham, NC, USA, 8–10 October 1998. Trends Genet 15(2):46PubMedCrossRefGoogle Scholar
  27. 27.
    Mohandas T, Sparkes RS, Shapiro LJ (1981) Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211(4480):393–396PubMedCrossRefGoogle Scholar
  28. 28.
    Esteller M (2006) The necessity of a human epigenome project. Carcinogenesis 27(6):1121–1125PubMedCrossRefGoogle Scholar
  29. 29.
    Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP (1991) Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48(5):880–888PubMedGoogle Scholar
  30. 30.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054PubMedCrossRefGoogle Scholar
  31. 31.
    Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298PubMedCrossRefGoogle Scholar
  32. 32.
    Long C, Yin B, Lu Q, Zhou X, Hu J, Yang Y, Yu F, Yuan Y (2007) Promoter hypermethylation of the RUNX3 gene in esophageal squamous cell carcinoma. Cancer Invest 25(8):685–690PubMedCrossRefGoogle Scholar
  33. 33.
    Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, Sakai H, Ren CY, Yuasa Y, Herman JG, Baylin SB (2003) GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 23(23):8429–8439PubMedCrossRefGoogle Scholar
  34. 34.
    Dobrovic A, Simpfendorfer D (1997) Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 57(16):3347–3350PubMedGoogle Scholar
  35. 35.
    Issa JP, Vertino PM, Wu J, Sazawal S, Celano P, Nelkin BD, Hamilton SR, Baylin SB (1993) Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst 85(15):1235–1240PubMedCrossRefGoogle Scholar
  36. 36.
    Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300(5618):489–492PubMedCrossRefGoogle Scholar
  37. 37.
    Linhart HG, Lin H, Yamada Y, Moran E, Steine EJ, Gokhale S, Lo G, Cantu E, Ehrich M, He T, Meissner A, Jaenisch R (2007) Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev 21(23):3110–3122PubMedCrossRefGoogle Scholar
  38. 38.
    Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416(6880):552–556PubMedCrossRefGoogle Scholar
  39. 39.
    Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25(3):269–277PubMedCrossRefGoogle Scholar
  40. 40.
    Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T (2001) Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 20(10):2536–2544PubMedCrossRefGoogle Scholar
  41. 41.
    Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295(5557):1079–1082PubMedCrossRefGoogle Scholar
  42. 42.
    Bestor TH (2003) Unanswered questions about the role of promoter methylation in carcinogenesis. Ann N Y Acad Sci 983:22–27PubMedCrossRefGoogle Scholar
  43. 43.
    Veigl ML, Kasturi L, Olechnowicz J, Ma AH, Lutterbaugh JD, Periyasamy S, Li GM, Drummond J, Modrich PL, Sedwick WD, Markowitz SD (1998) Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci USA 95(15):8698–8702PubMedCrossRefGoogle Scholar
  44. 44.
    Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947PubMedCrossRefGoogle Scholar
  45. 45.
    Alvarez-Nunez F, Bussaglia E, Mauricio D, Ybarra J, Vilar M, Lerma E, de Leiva A, Matias-Guiu X (2006) PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid 16(1):17–23PubMedCrossRefGoogle Scholar
  46. 46.
    Costello JF, Berger MS, Huang HS, Cavenee WK (1996) Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res 56(10):2405–2410PubMedGoogle Scholar
  47. 47.
    Lee MN, Tseng RC, Hsu HS, Chen JY, Tzao C, Ho WL, Wang YC (2007) Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 13(3):832–838PubMedCrossRefGoogle Scholar
  48. 48.
    Chiang JW, Karlan BY, Cass L, Baldwin RL (2006) BRCA1 promoter methylation predicts adverse ovarian cancer prognosis. Gynecol Oncol 101(3):403–410PubMedCrossRefGoogle Scholar
  49. 49.
    Virmani AK, Rathi A, Sathyanarayana UG, Padar A, Huang CX, Cunnigham HT, Farinas AJ, Milchgrub S, Euhus DM, Gilcrease M, Herman J, Minna JD, Gazdar AF (2001) Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res 7(7):1998–2004PubMedGoogle Scholar
  50. 50.
    Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Gonzalez S, Tarafa G, Sidransky D, Meltzer SJ, Baylin SB, Herman JG (2000) Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res 60(16):4366–4371PubMedGoogle Scholar
  51. 51.
    Garcia MJ, Castrillo JM, Granizo JJ, Cazorla A, Rivas C (2002) Clinicopathological correlation, p16-p15 methylation status and outcome predictors in anaplastic large cell lymphoma. Br J Haematol 119(3):877–878PubMedCrossRefGoogle Scholar
  52. 52.
    Ng MH, Chung YF, Lo KW, Wickham NW, Lee JC, Huang DP (1997) Frequent hypermethylation of p16 and p15 genes in multiple myeloma. Blood 89(7):2500–2506PubMedGoogle Scholar
  53. 53.
    Esteller M, Catasus L, Matias-Guiu X, Mutter GL, Prat J, Baylin SB, Herman JG (1999) hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am J Pathol 155(5):1767–1772PubMedCrossRefGoogle Scholar
  54. 54.
    Li LC, Chui R, Nakajima K, Oh BR, Au HC, Dahiya R (2000) Frequent methylation of estrogen receptor in prostate cancer: correlation with tumor progression. Cancer Res 60(3):702–706PubMedGoogle Scholar
  55. 55.
    Ozdag H, Batley SJ, Forsti A, Iyer NG, Daigo Y, Boutell J, Arends MJ, Ponder BA, Kouzarides T, Caldas C (2002) Mutation analysis of CBP and PCAF reveals rare inactivating mutations in cancer cell lines but not in primary tumours. Br J Cancer 87(10):1162–1165PubMedCrossRefGoogle Scholar
  56. 56.
    Muraoka M, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Shitara N, Chong JM, Iwama T, Miyaki M (1996) p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12(7):1565–1569PubMedGoogle Scholar
  57. 57.
    Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32(3):959–976PubMedCrossRefGoogle Scholar
  58. 58.
    Iyer NG, Ozdag H, Caldas C (2004) p300/CBP and cancer. Oncogene 23(24):4225–4231PubMedCrossRefGoogle Scholar
  59. 59.
    Kishimoto M, Kohno T, Okudela K, Otsuka A, Sasaki H, Tanabe C, Sakiyama T, Hirama C, Kitabayashi I, Minna JD, Takenoshita S, Yokota J (2005) Mutations and deletions of the CBP gene in human lung cancer. Clin Cancer Res 11(2 Pt 1):512–519PubMedGoogle Scholar
  60. 60.
    Fog CK, Jensen KT, Lund AH (2007) Chromatin-modifying proteins in cancer. APMIS 115(10):1060–1089PubMedCrossRefGoogle Scholar
  61. 61.
    Rozman M, Camos M, Colomer D, Villamor N, Esteve J, Costa D, Carrio A, Aymerich M, Aguilar JL, Domingo A, Sole F, Gomis F, Florensa L, Montserrat E, Campo E (2004) Type I MOZ/CBP (MYST3/CREBBP) is the most common chimeric transcript in acute myeloid leukemia with t(8;16)(p11;p13) translocation. Genes Chromosomes Cancer 40(2):140–145PubMedCrossRefGoogle Scholar
  62. 62.
    Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR, Cross NC, Glass CK, Cleary ML, Gilliland DG (2003) MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3(3):259–271PubMedCrossRefGoogle Scholar
  63. 63.
    Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, Kim DY (2001) Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res 92(12):1300–1304PubMedGoogle Scholar
  64. 64.
    Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59(2):177–189PubMedCrossRefGoogle Scholar
  65. 65.
    Ishihama K, Yamakawa M, Semba S, Takeda H, Kawata S, Kimura S, Kimura W (2007) Expression of HDAC1 and CBP/p300 in human colorectal carcinomas. J Clin Pathol 60(11):1205–1210PubMedCrossRefGoogle Scholar
  66. 66.
    Song J, Noh JH, Lee JH, Eun JW, Ahn YM, Kim SY, Lee SH, Park WS, Yoo NJ, Lee JY, Nam SW (2005) Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 113(4):264–268PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang Z, Yamashita H, Toyama T, Sugiura H, Omoto Y, Ando Y, Mita K, Hamaguchi M, Hayashi S, Iwase H (2004) HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res 10(20):6962–6968PubMedCrossRefGoogle Scholar
  68. 68.
    Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T (2004) Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int J Cancer 112(1):26–32PubMedCrossRefGoogle Scholar
  69. 69.
    De Nigris F, Cerutti J, Morelli C, Califano D, Chiariotti L, Viglietto G, Santelli G, Fusco A (2002) Isolation of a SIR-like gene, SIR-T8, that is overexpressed in thyroid carcinoma cell lines and tissues. Br J Cancer 87(12):1479PubMedCrossRefGoogle Scholar
  70. 70.
    Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Lazar MA, Minucci S, Pelicci PG (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391(6669):815–818PubMedCrossRefGoogle Scholar
  71. 71.
    Jones LK, Saha V (2002) Chromatin modification, leukaemia and implications for therapy. Br J Haematol 118(3):714–727PubMedCrossRefGoogle Scholar
  72. 72.
    Masutani M, Nakagama H, Sugimura T (2003) Poly(ADP-ribose) and carcinogenesis. Genes Chromosomes Cancer 38(4):339–348PubMedCrossRefGoogle Scholar
  73. 73.
    Cao WH, Wang X, Frappart L, Rigal D, Wang ZQ, Shen Y, Tong WM (2007) Analysis of genetic variants of the poly(ADP-ribose) polymerase-1 gene in breast cancer in French patients. Mutat Res 632(1–2):20–28PubMedGoogle Scholar
  74. 74.
    Shimizu S, Nomura F, Tomonaga T, Sunaga M, Noda M, Ebara M, Saisho H (2004) Expression of poly(ADP-ribose) polymerase in human hepatocellular carcinoma and analysis of biopsy specimens obtained under sonographic guidance. Oncol Rep 12(4):821–825PubMedGoogle Scholar
  75. 75.
    Ratnam K, Low JA (2007) Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 13(5):1383–1388PubMedCrossRefGoogle Scholar
  76. 76.
    Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, Davies H, Edkins S, Hardy C, Latimer C, Teague J, Andrews J, Barthorpe S, Beare D, Buck G, Campbell PJ, Forbes S, Jia M, Jones D, Knott H, Kok CY, Lau KW, Leroy C, Lin ML, McBride DJ, Maddison M, Maguire S, McLay K, Menzies A, Mironenko T, Mulderrig L, Mudie L, O’Meara S, Pleasance E, Rajasingham A, Shepherd R, Smith R, Stebbings L, Stephens P, Tang G, Tarpey PS, Turrell K, Dykema KJ, Khoo SK, Petillo D, Wondergem B, Anema J, Kahnoski RJ, Teh BT, Stratton MR, Futreal PA (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363PubMedCrossRefGoogle Scholar
  77. 77.
    Coles AH, Jones SN (2009) The ING gene family in the regulation of cell growth and tumorigenesis. J Cell Physiol 218(1):45–57PubMedCrossRefGoogle Scholar
  78. 78.
    Wang GG, Song J, Wang Z, Dormann HL, Casadio F, Li H, Luo JL, Patel DJ, Allis CD (2009) Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459(7248):847–851PubMedCrossRefGoogle Scholar
  79. 79.
    Andrews PG, Lake BB, Popadiuk C, Kao KR (2007) Requirement of Pygopus 2 in breast cancer. Int J Oncol 30(2):357–363PubMedGoogle Scholar
  80. 80.
    Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, Liang J, Sun L, Yang X, Shi L, Li R, Li Y, Zhang Y, Li Q, Yi X, Shang Y (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138(4):660–672PubMedCrossRefGoogle Scholar
  81. 81.
    Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y (2007) PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 25(6):801–812PubMedCrossRefGoogle Scholar
  82. 82.
    Scibetta AG, Santangelo S, Coleman J, Hall D, Chaplin T, Copier J, Catchpole S, Burchell J, Taylor-Papadimitriou J (2007) Functional analysis of the transcription repressor PLU-1/JARID1B. Mol Cell Biol 27(20):7220–7235PubMedCrossRefGoogle Scholar
  83. 83.
    Tzatsos A, Pfau R, Kampranis SC, Tsichlis PN (2009) Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus. Proc Natl Acad Sci USA 106(8):2641–2646PubMedCrossRefGoogle Scholar
  84. 84.
    Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647(1–2):21–29PubMedGoogle Scholar
  85. 85.
    Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, Yap D, Humphries RK, Griffith OL, Shah S, Zhu H, Kimbara M, Shashkin P, Charlot JF, Tcherpakov M, Corbett R, Tam A, Varhol R, Smailus D, Moksa M, Zhao Y, Delaney A, Qian H, Birol I, Schein J, Moore R, Holt R, Horsman DE, Connors JM, Jones S, Aparicio S, Hirst M, Gascoyne RD, Marra MA (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42(2):181–185PubMedCrossRefGoogle Scholar
  86. 86.
    Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenfuhr M, Maertens G, Banck M, Zhou MM, Walsh MJ, Peters G, Gil J (2009) Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 23(10):1177–1182PubMedCrossRefGoogle Scholar
  87. 87.
    Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J, Helin K (2009) The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 23(10):1171–1176PubMedCrossRefGoogle Scholar
  88. 88.
    van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, Edkins S, Hardy C, O’Meara S, Teague J, Butler A, Hinton J, Latimer C, Andrews J, Barthorpe S, Beare D, Buck G, Campbell PJ, Cole J, Forbes S, Jia M, Jones D, Kok CY, Leroy C, Lin ML, McBride DJ, Maddison M, Maquire S, McLay K, Menzies A, Mironenko T, Mulderrig L, Mudie L, Pleasance E, Shepherd R, Smith R, Stebbings L, Stephens P, Tang G, Tarpey PS, Turner R, Turrell K, Varian J, West S, Widaa S, Wray P, Collins VP, Ichimura K, Law S, Wong J, Yuen ST, Leung SY, Tonon G, DePinho RA, Tai YT, Anderson KC, Kahnoski RJ, Massie A, Khoo SK, Teh BT, Stratton MR, Futreal PA (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41(5):521–523PubMedCrossRefGoogle Scholar
  89. 89.
    Lim S, Metzger E, Schule R, Kirfel J, Buettner R (2010) Epigenetic regulation of cancer growth by histone demethylases. Int J Cancer (in press)Google Scholar
  90. 90.
    Wissmann M, Yin N, Muller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Gunther T, Buettner R, Metzger E, Schule R (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9(3):347–353PubMedCrossRefGoogle Scholar
  91. 91.
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260PubMedCrossRefGoogle Scholar
  92. 92.
    Vaquero A, Loyola A, Reinberg D (2003) The constantly changing face of chromatin. Sci Aging Knowledge Environ 2003(14):RE4PubMedCrossRefGoogle Scholar
  93. 93.
    Grozinger CM, Schreiber SL (2002) Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9(1):3–16PubMedCrossRefGoogle Scholar
  94. 94.
    Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116(Pt 11):2117–2124PubMedCrossRefGoogle Scholar
  95. 95.
    Chi P, Allis CD, Wang GG (2010) Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10(7):457–469PubMedCrossRefGoogle Scholar
  96. 96.
    Polytarchou C, Pfau R, Hatziapostolou M, Tsichlis PN (2008) The JmjC domain histone demethylase Ndy1 regulates redox homeostasis and protects cells from oxidative stress. Mol Cell Biol 28(24):7451–7464PubMedCrossRefGoogle Scholar
  97. 97.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705PubMedCrossRefGoogle Scholar
  98. 98.
    Vidanes GM, Bonilla CY, Toczyski DP (2005) Complicated tails: histone modifications and the DNA damage response. Cell 121(7):973–976PubMedCrossRefGoogle Scholar
  99. 99.
    Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120PubMedCrossRefGoogle Scholar
  100. 100.
    Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7(5):1395–1402PubMedGoogle Scholar
  101. 101.
    Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA, Jones PA (2004) Distinct localization of histone H3 acetylation and H3–K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci USA 101(19):7357–7362PubMedCrossRefGoogle Scholar
  102. 102.
    Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400PubMedCrossRefGoogle Scholar
  103. 103.
    Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S, Garber M, Gentles AJ, Goodstadt L, Heger A, Jurka J, Kamal M, Mauceli E, Searle SM, Sharpe T, Baker ML, Batzer MA, Benos PV, Belov K, Clamp M, Cook A, Cuff J, Das R, Davidow L, Deakin JE, Fazzari MJ, Glass JL, Grabherr M, Greally JM, Gu W, Hore TA, Huttley GA, Kleber M, Jirtle RL, Koina E, Lee JT, Mahony S, Marra MA, Miller RD, Nicholls RD, Oda M, Papenfuss AT, Parra ZE, Pollock DD, Ray DA, Schein JE, Speed TP, Thompson K, VandeBerg JL, Wade CM, Walker JA, Waters PD, Webber C, Weidman JR, Xie X, Zody MC, Graves JA, Ponting CP, Breen M, Samollow PB, Lander ES, Lindblad-Toh K (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447(7141):167–177PubMedCrossRefGoogle Scholar
  104. 104.
    Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326PubMedCrossRefGoogle Scholar
  105. 105.
    Tachibana M, Matsumura Y, Fukuda M, Kimura H, Shinkai Y (2008) G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J 27(20):2681–2690PubMedCrossRefGoogle Scholar
  106. 106.
    Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ, Cerruti L, Curtis DJ, Patel DJ, Allis CD, Cunningham JM, Jane SM (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16(3):304–311PubMedCrossRefGoogle Scholar
  107. 107.
    Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191PubMedCrossRefGoogle Scholar
  108. 108.
    Esteve PO, Chin HG, Benner J, Feehery GR, Samaranayake M, Horwitz GA, Jacobsen SE, Pradhan S (2009) Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci USA 106(13):5076–5081PubMedCrossRefGoogle Scholar
  109. 109.
    Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41(1):125–129PubMedCrossRefGoogle Scholar
  110. 110.
    Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278(6):4035–4040PubMedCrossRefGoogle Scholar
  111. 111.
    Fraga MF, Esteller M (2005) Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4(10):1377–1381PubMedCrossRefGoogle Scholar
  112. 112.
    Tryndyak VP, Kovalchuk O, Pogribny IP (2006) Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4–20h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther 5(1):65–70PubMedCrossRefGoogle Scholar
  113. 113.
    Pogribny IP, Ross SA, Wise C, Pogribna M, Jones EA, Tryndyak VP, James SJ, Dragan YP, Poirier LA (2006) Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat Res 593(1–2):80–87PubMedGoogle Scholar
  114. 114.
    Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266PubMedCrossRefGoogle Scholar
  115. 115.
    Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer; the polycomb connection. Cell 118(4):409–418PubMedCrossRefGoogle Scholar
  116. 116.
    Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428PubMedGoogle Scholar
  117. 117.
    Jones RS (2007) Epigenetics: reversing the ‘irreversible’. Nature 450(7168):357–359PubMedCrossRefGoogle Scholar
  118. 118.
    Fahrner JA, Eguchi S, Herman JG, Baylin SB (2002) Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res 62(24):7213–7218PubMedGoogle Scholar
  119. 119.
    Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97(18):10014–10019PubMedCrossRefGoogle Scholar
  120. 120.
    Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y, Tanaka K, Torigoe K, Rauscher FJ 3rd (2003) Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev 17(15):1855–1869PubMedCrossRefGoogle Scholar
  121. 121.
    Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1):103–107PubMedCrossRefGoogle Scholar
  122. 122.
    Ozdag H, Teschendorff AE, Ahmed AA, Hyland SJ, Blenkiron C, Bobrow L, Veerakumarasivam A, Burtt G, Subkhankulova T, Arends MJ, Collins VP, Bowtell D, Kouzarides T, Brenton JD, Caldas C (2006) Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics 7:90PubMedCrossRefGoogle Scholar
  123. 123.
    Kondo Y, Shen L, Suzuki S, Kurokawa T, Masuko K, Tanaka Y, Kato H, Mizuno Y, Yokoe M, Sugauchi F, Hirashima N, Orito E, Osada H, Ueda R, Guo Y, Chen X, Issa JP, Sekido Y (2007) Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. Hepatol Res 37(11):974–983PubMedCrossRefGoogle Scholar
  124. 124.
    Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953PubMedCrossRefGoogle Scholar
  125. 125.
    Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057):436–439PubMedGoogle Scholar
  126. 126.
    Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10(3):161–172PubMedCrossRefGoogle Scholar
  127. 127.
    Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36PubMedCrossRefGoogle Scholar
  128. 128.
    Lin JC, Jeong S, Liang G, Takai D, Fatemi M, Tsai YC, Egger G, Gal-Yam EN, Jones PA (2007) Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell 12(5):432–444PubMedCrossRefGoogle Scholar
  129. 129.
    Morey L, Brenner C, Fazi F, Villa R, Gutierrez A, Buschbeck M, Nervi C, Minucci S, Fuks F, Di Croce L (2008) MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol Cell Biol 28(19):5912–5923PubMedCrossRefGoogle Scholar
  130. 130.
    Chai J, Charboneau AL, Betz BL, Weissman BE (2005) Loss of the hSNF5 gene concomitantly inactivates p21CIP/WAF1 and p16INK4a activity associated with replicative senescence in A204 rhabdoid tumor cells. Cancer Res 65(22):10192–10198PubMedCrossRefGoogle Scholar
  131. 131.
    Naidu SR, Love IM, Imbalzano AN, Grossman SR, Androphy EJ (2009) The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene 28(27):2492–2501PubMedCrossRefGoogle Scholar
  132. 132.
    Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21(12):1519–1529PubMedCrossRefGoogle Scholar
  133. 133.
    Svotelis A, Gevry N, Gaudreau L (2009) Regulation of gene expression and cellular proliferation by histone H2A.Z. Biochem Cell Biol 87(1):179–188PubMedCrossRefGoogle Scholar
  134. 134.
    Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, Ochiai T, Yoda K, Nomura F (2003) Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 63(13):3511–3516PubMedGoogle Scholar
  135. 135.
    Lee I, Ajay SS, Yook JI, Kim HS, Hong SH, Kim NH, Dhanasekaran SM, Chinnaiyan AM, Athey BD (2009) New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res 19(7):1175–1183PubMedCrossRefGoogle Scholar
  136. 136.
    Zhou X, Duan X, Qian J, Li F (2009) Abundant conserved microRNA target sites in the 5′-untranslated region and coding sequence. Genetica 137(2):159–164PubMedCrossRefGoogle Scholar
  137. 137.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  138. 138.
    Valeri N, Vannini I, Fanini F, Calore F, Adair B, Fabbri M (2009) Epigenetics, miRNAs, and human cancer: a new chapter in human gene regulation. Mamm Genome 20(9–10):573–580PubMedCrossRefGoogle Scholar
  139. 139.
    Hatfield S, Ruohola-Baker H (2008) microRNA and stem cell function. Cell Tissue Res 331(1):57–66PubMedCrossRefGoogle Scholar
  140. 140.
    Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128PubMedCrossRefGoogle Scholar
  141. 141.
    Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT, Ying SY (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14(10):2115–2124PubMedCrossRefGoogle Scholar
  142. 142.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529PubMedCrossRefGoogle Scholar
  143. 143.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9):2999–3004PubMedCrossRefGoogle Scholar
  144. 144.
    Ventura A, Jacks T (2009) MicroRNAs and cancer: short RNAs go a long way. Cell 136(4):586–591PubMedCrossRefGoogle Scholar
  145. 145.
    Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706PubMedCrossRefGoogle Scholar
  146. 146.
    Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K (2010) STAT3 Activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39(4):493–506PubMedCrossRefGoogle Scholar
  147. 147.
    Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66(3):1277–1281PubMedCrossRefGoogle Scholar
  148. 148.
    Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443PubMedCrossRefGoogle Scholar
  149. 149.
    Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S, Liu CG, Volinia S, Croce CM, Schmittgen TD, Ghoshal K, Jacob ST (2008) Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68(13):5049–5058PubMedCrossRefGoogle Scholar
  150. 150.
    Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, Casado S, Suarez-Gauthier A, Sanchez-Cespedes M, Git A, Spiteri I, Das PP, Caldas C, Miska E, Esteller M (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67(4):1424–1429PubMedCrossRefGoogle Scholar
  151. 151.
    Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L, Garate L, San Jose-Eneriz E, Abizanda G, Rodriguez-Otero P, Fortes P, Rifon J, Bandres E, Calasanz MJ, Martin V, Heiniger A, Torres A, Siebert R, Roman-Gomez J, Prosper F (2009) Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 69(10):4443–4453PubMedCrossRefGoogle Scholar
  152. 152.
    Roman-Gomez J, Agirre X, Jimenez-Velasco A, Arqueros V, Vilas-Zornoza A, Rodriguez-Otero P, Martin-Subero I, Garate L, Cordeu L, San Jose-Eneriz E, Martin V, Castillejo JA, Bandres E, Calasanz MJ, Siebert R, Heiniger A, Torres A, Prosper F (2009) Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 27(8):1316–1322PubMedCrossRefGoogle Scholar
  153. 153.
    Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, Grignani F, Nervi C (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12(5):457–466PubMedCrossRefGoogle Scholar
  154. 154.
    Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F, Kreipe H (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214(1):17–24PubMedCrossRefGoogle Scholar
  155. 155.
    Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, Gallagher WM, Eccles SA, Croce CM, Esteller M (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105(36):13556–13561PubMedCrossRefGoogle Scholar
  156. 156.
    Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, Croce CM, Guttridge DC (2008) NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14(5):369–381PubMedCrossRefGoogle Scholar
  157. 157.
    Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132PubMedCrossRefGoogle Scholar
  158. 158.
    Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N, Goggins MG, Mendell JT, Maitra A (2009) Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9(3):293–301PubMedCrossRefGoogle Scholar
  159. 159.
    Lujambio A, Esteller M (2007) CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle 6(12):1455–1459PubMedCrossRefGoogle Scholar
  160. 160.
    Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J (2010) miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 31(5):766–776PubMedCrossRefGoogle Scholar
  161. 161.
    Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379(3):726–731PubMedCrossRefGoogle Scholar
  162. 162.
    Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR, Goel A (2010) Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 70(16):6609–6618PubMedCrossRefGoogle Scholar
  163. 163.
    Hashimoto Y, Akiyama Y, Otsubo T, Shimada S, Yuasa Y (2010) Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis 31(5):777–784PubMedCrossRefGoogle Scholar
  164. 164.
    Rauhala HE, Jalava SE, Isotalo J, Bracken H, Lehmusvaara S, Tammela TL, Oja H, Visakorpi T (2010) miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int J Cancer 127(6):1363–1372PubMedCrossRefGoogle Scholar
  165. 165.
    Tsai KW, Hu LY, Wu CW, Li SC, Lai CH, Kao HW, Fang WL, Lin WC (2010) Epigenetic regulation of miR-196b expression in gastric cancer. Genes Chromosomes Cancer (in press)Google Scholar
  166. 166.
    Li A, Omura N, Hong SM, Vincent A, Walter K, Griffith M, Borges M, Goggins M (2010) Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 70(13):5226–5237PubMedCrossRefGoogle Scholar
  167. 167.
    Iliopoulos D, Polytarchou C, Hatziapostolou M, Kottakis F, Maroulakou IG, Struhl K, Tsichlis PN (2009) MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal 2(92):ra62PubMedCrossRefGoogle Scholar
  168. 168.
    Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim YH, Tsuchiya KD, Washington MK, Paraskeva C, Willson JK, Kaz AM, Kroh EM, Allen A, Fritz BR, Markowitz SD, Tewari M (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27(27):3880–3888PubMedCrossRefGoogle Scholar
  169. 169.
    Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H (2007) Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67(21):10117–10122PubMedCrossRefGoogle Scholar
  170. 170.
    Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233PubMedCrossRefGoogle Scholar
  171. 171.
    Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104(40):15805–15810PubMedCrossRefGoogle Scholar
  172. 172.
    Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA, Andreeff M, Croce CM (2009) MicroRNA 29b functions in acute myeloid leukemia. Blood 114(26):5331–5341PubMedCrossRefGoogle Scholar
  173. 173.
    Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, Palanisamy N, Maher CA, Chinnaiyan AM (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908):1695–1699PubMedCrossRefGoogle Scholar
  174. 174.
    Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W, Zhou X, Jones PA (2009) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69(6):2623–2629PubMedCrossRefGoogle Scholar
  175. 175.
    Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, Dalmay T (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580(17):4214–4217PubMedCrossRefGoogle Scholar
  176. 176.
    Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14(5):872–877PubMedCrossRefGoogle Scholar
  177. 177.
    Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15(3):259–267PubMedCrossRefGoogle Scholar
  178. 178.
    Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, Giardina C, Dahiya R (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28(14):1714–1724PubMedCrossRefGoogle Scholar
  179. 179.
    Ptashne M (2009) Binding reactions: epigenetic switches, signal transduction and cancer. Curr Biol 19(6):R234–R241PubMedCrossRefGoogle Scholar
  180. 180.
    Gal-Yam EN, Egger G, Iniguez L, Holster H, Einarsson S, Zhang X, Lin JC, Liang G, Jones PA, Tanay A (2008) Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci USA 105(35):12979–12984PubMedCrossRefGoogle Scholar
  181. 181.
    Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977PubMedCrossRefGoogle Scholar
  182. 182.
    Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809PubMedCrossRefGoogle Scholar
  183. 183.
    Deng D, Liu Z, Du Y (2010) Epigenetic alterations as cancer diagnostic, prognostic, and predictive biomarkers. Adv Genet 71:125–176PubMedCrossRefGoogle Scholar
  184. 184.
    Jeronimo C, Usadel H, Henrique R, Oliveira J, Lopes C, Nelson WG, Sidransky D (2001) Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Inst 93(22):1747–1752PubMedCrossRefGoogle Scholar
  185. 185.
    Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG, Belinsky SA (2000) Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 60(21):5954–5958PubMedGoogle Scholar
  186. 186.
    Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354PubMedCrossRefGoogle Scholar
  187. 187.
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11):3753–3756PubMedCrossRefGoogle Scholar
  188. 188.
    Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198PubMedCrossRefGoogle Scholar
  189. 189.
    Schetter AJ, Heegaard NH, Harris CC (2010) Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31(1):37–49PubMedCrossRefGoogle Scholar
  190. 190.
    Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, Croce CM, Tang ZY, Wang XW (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47(3):897–907PubMedCrossRefGoogle Scholar
  191. 191.
    Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S (2008) MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 14(9):2690–2695PubMedCrossRefGoogle Scholar
  192. 192.
    Constantinides PG, Jones PA, Gevers W (1977) Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 267(5609):364–366PubMedCrossRefGoogle Scholar
  193. 193.
    Muller CI, Ruter B, Koeffler HP, Lubbert M (2006) DNA hypermethylation of myeloid cells, a novel therapeutic target in MDS and AML. Curr Pharm Biotechnol 7(5):315–321PubMedCrossRefGoogle Scholar
  194. 194.
    Oki Y, Issa JP (2007) Treatment options in advanced myelodysplastic syndrome, with emphasis on epigenetic therapy. Int J Hematol 86(4):306–314PubMedCrossRefGoogle Scholar
  195. 195.
    Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Kohler G, Wijermans P, Jones PA, Lubbert M (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 100(8):2957–2964PubMedCrossRefGoogle Scholar
  196. 196.
    Mack GS (2006) Epigenetic cancer therapy makes headway. J Natl Cancer Inst 98(20):1443–1444PubMedGoogle Scholar
  197. 197.
    Yang AS, Estecio MR, Garcia-Manero G, Kantarjian HM, Issa JP (2003) Comment on. Chromosomal instability and tumors promoted by DNA hypomethylationand “Induction of tumors in nice by genomic hypomethylation”. Science 302(5648):1153, author reply 1153PubMedCrossRefGoogle Scholar
  198. 198.
    Cortez CC, Jones PA (2008) Chromatin, cancer and drug therapies. Mutat Res 647(1–2):44–51PubMedGoogle Scholar
  199. 199.
    Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51PubMedCrossRefGoogle Scholar
  200. 200.
    Leder A, Orkin S, Leder P (1975) Differentiation of erythroleukemic cells in the presence of inhibitors of DNA synthesis. Science 190(4217):893–894PubMedCrossRefGoogle Scholar
  201. 201.
    Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265(28):17174–17179PubMedGoogle Scholar
  202. 202.
    Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989PubMedCrossRefGoogle Scholar
  203. 203.
    Villagra A, Sotomayor EM, Seto E (2010) Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene 29(2):157–173PubMedCrossRefGoogle Scholar
  204. 204.
    Marks PA (2007) Discovery and development of SAHA as an anticancer agent. Oncogene 26(9):1351–1356PubMedCrossRefGoogle Scholar
  205. 205.
    Oki Y, Aoki E, Issa JP (2007) Decitabine—bedside to bench. Crit Rev Oncol Hematol 61(2):140–152PubMedCrossRefGoogle Scholar
  206. 206.
    Foubister V (2003) Drug reactivates genes to inhibit cancer. Drug Discov Today 8(10):430–431PubMedCrossRefGoogle Scholar
  207. 207.
    Lin X, Asgari K, Putzi MJ, Gage WR, Yu X, Cornblatt BS, Kumar A, Piantadosi S, DeWeese TL, De Marzo AM, Nelson WG (2001) Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res 61(24):8611–8616PubMedGoogle Scholar
  208. 208.
    Villar-Garea A, Fraga MF, Espada J, Esteller M (2003) Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 63(16):4984–4989PubMedGoogle Scholar
  209. 209.
    Noguchi M, Yokoyama M, Watanabe S, Uchiyama M, Nakao Y, Hara K, Iwasaka T (2006) Inhibitory effect of the tea polyphenol, (–)-epigallocatechin gallate, on growth of cervical adenocarcinoma cell lines. Cancer Lett 234(2):135–142PubMedCrossRefGoogle Scholar
  210. 210.
    Mittal A, Piyathilake C, Hara Y, Katiyar SK (2003) Exceptionally high protection of photocarcinogenesis by topical application of (–)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: relationship to inhibition of UVB-induced global DNA hypomethylation. Neoplasia 5(6):555–565PubMedGoogle Scholar
  211. 211.
    Davis AJ, Gelmon KA, Siu LL, Moore MJ, Britten CD, Mistry N, Klamut H, D’Aloisio S, MacLean M, Wainman N, Ayers D, Firby P, Besterman JM, Reid GK, Eisenhauer EA (2003) Phase I and pharmacologic study of the human DNA methyltransferase antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. Invest New Drugs 21(1):85–97PubMedCrossRefGoogle Scholar
  212. 212.
    Joung KE, Kim DK, Sheen YY (2004) Antiproliferative effect of trichostatin A and HC-toxin in T47D human breast cancer cells. Arch Pharm Res 27(6):640–645PubMedCrossRefGoogle Scholar
  213. 213.
    Reid G, Metivier R, Lin CY, Denger S, Ibberson D, Ivacevic T, Brand H, Benes V, Liu ET, Gannon F (2005) Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene 24(31):4894–4907PubMedCrossRefGoogle Scholar
  214. 214.
    Frew AJ, Johnstone RW, Bolden JE (2009) Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett 280(2):125–133PubMedCrossRefGoogle Scholar
  215. 215.
    Gimsing P (2009) Belinostat: a new broad acting antineoplastic histone deacetylase inhibitor. Expert Opin Investig Drugs 18(4):501–508PubMedCrossRefGoogle Scholar
  216. 216.
    Zhou W, Zhu WG (2009) The changing face of HDAC inhibitor depsipeptide. Curr Cancer Drug Targets 9(1):91–100PubMedCrossRefGoogle Scholar
  217. 217.
    Klisovic DD, Klisovic MI, Effron D, Liu S, Marcucci G, Katz SE (2005) Depsipeptide inhibits migration of primary and metastatic uveal melanoma cell lines in vitro: a potential strategy for uveal melanoma. Melanoma Res 15(3):147–153PubMedCrossRefGoogle Scholar
  218. 218.
    Xiao JJ, Huang Y, Dai Z, Sadee W, Chen J, Liu S, Marcucci G, Byrd J, Covey JM, Wright J, Grever M, Chan KK (2005) Chemoresistance to depsipeptide FK228 [(E)-(1S, 4S, 10S, 21R)-7-[(Z)-ethylidene]-4, 21-diisopropyl-2-oxa-12, 13-dithi a-5, 8, 20, 23-tetraazabicyclo[8, 7, 6]-tricos-16-ene-3, 6, 9, 22-pentanone] is mediated by reversible MDR1 induction in human cancer cell lines. J Pharmacol Exp Ther 314(1):467–475PubMedCrossRefGoogle Scholar
  219. 219.
    Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA (2008) Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev 34(3):206–222PubMedCrossRefGoogle Scholar
  220. 220.
    Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RK, Tan PB, Liu ET, Yu Q (2007) Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 21(9):1050–1063PubMedCrossRefGoogle Scholar
  221. 221.
    Klisovic MI, Maghraby EA, Parthun MR, Guimond M, Sklenar AR, Whitman SP, Chan KK, Murphy T, Anon J, Archer KJ, Rush LJ, Plass C, Grever MR, Byrd JC, Marcucci G (2003) Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia 17(2):350–358PubMedCrossRefGoogle Scholar
  222. 222.
    Abbosh PH, Montgomery JS, Starkey JA, Novotny M, Zuhowski EG, Egorin MJ, Moseman AP, Golas A, Brannon KM, Balch C, Huang TH, Nephew KP (2006) Dominant-negative histone H3 lysine 27 mutant derepresses silenced tumor suppressor genes and reverses the drug-resistant phenotype in cancer cells. Cancer Res 66(11):5582–5591PubMedCrossRefGoogle Scholar
  223. 223.
    Orom UA, Kauppinen S, Lund AH (2006) LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372:137–141PubMedCrossRefGoogle Scholar
  224. 224.
    Weiler J, Hunziker J, Hall J (2006) Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 13(6):496–502PubMedCrossRefGoogle Scholar
  225. 225.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689PubMedCrossRefGoogle Scholar
  226. 226.
    Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6):1005–1017PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Cancer Immunology & AIDSDana-Farber Cancer InstituteBostonUSA
  2. 2.Department of PathologyHarvard Medical SchoolBostonUSA

Personalised recommendations