Cellular and Molecular Life Sciences

, Volume 68, Issue 9, pp 1569–1579 | Cite as

Teratogenic effects of thalidomide: molecular mechanisms

  • Takumi Ito
  • Hideki Ando
  • Hiroshi HandaEmail author


Fifty years ago, prescription of the sedative thalidomide caused a worldwide epidemic of multiple birth defects. The drug is now used in the treatment of leprosy and multiple myeloma. However, its use is limited due to its potent teratogenic activity. The mechanism by which thalidomide causes limb malformations and other developmental defects is a long-standing question. Multiple hypotheses exist to explain the molecular mechanism of thalidomide action. Among them, theories involving oxidative stress and anti-angiogenesis have been widely supported. Nevertheless, until recently, the direct target of thalidomide remained elusive. We identified a thalidomide-binding protein, cereblon (CRBN), as a primary target for thalidomide teratogenicity. Our data suggest that thalidomide initiates its teratogenic effects by binding to CRBN and inhibiting its ubiquitin ligase activity. In this review, we summarize the biology of thalidomide, focusing on the molecular mechanisms of its teratogenic effects. In addition, we discuss the questions still to be addressed.


Thalidomide Teratogenicity Oxidative stress Anti-angiogenesis Cereblon Fibroblast growth factor 8 



We thank Drs. Yuki Yamaguchi, Toshihiko Ogura and Takayuki Suzuki for aiding us in our research. Our research was supported by the Global COE (Center of Excellence) Program from the Japan Ministry of Education, Culture, Sports, Science, and Technology; and by a grant for Research and Development Projects in Cooperation with Academic Institutions from the New Energy and Technology Development Organization; and by Special Coordination Funds for Promoting Science and Technology from the Japan Science and Technology Agency (JST).


  1. 1.
    Franks ME, Macpherson GR, Figg WD (2004) Thalidomide. Lancet 363:1802–1811PubMedCrossRefGoogle Scholar
  2. 2.
    Bartlett JB, Dredge K, Dalgleish AG (2004) The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 4:314–322PubMedCrossRefGoogle Scholar
  3. 3.
    Melchert M, List A (2007) The thalidomide saga. Int J Biochem Cell Biol 39:1489–1499PubMedCrossRefGoogle Scholar
  4. 4.
    Knobloch J, Ruther U (2008) Shedding light on an old mystery: thalidomide suppresses survival pathways to induce limb defects. Cell Cycle 7:1121–1127PubMedCrossRefGoogle Scholar
  5. 5.
    Vargesson N (2009) Thalidomide-induced limb defects: resolving a 50-year-old puzzle. Bioessays 31:1327–1336PubMedCrossRefGoogle Scholar
  6. 6.
    McBride WG (1977) Thalidomide embryopathy. Teratology 16:79–82PubMedCrossRefGoogle Scholar
  7. 7.
    Lenz W (1988) A short history of thalidomide embryopathy. Teratology 38:203–215PubMedCrossRefGoogle Scholar
  8. 8.
    Sheskin J (1965) Thalidomide in the treatment of lepra reactions. Clin Pharmacol Ther 6:303–306PubMedGoogle Scholar
  9. 9.
    Gutierrez-Rodriguez O (1984) Thalidomide. A promising new treatment for rheumatoid arthritis. Arthritis Rheum 27:1118–1121PubMedCrossRefGoogle Scholar
  10. 10.
    Hamza MH (1986) Treatment of Behcet’s disease with thalidomide. Clin Rheumatol 5:365–371PubMedCrossRefGoogle Scholar
  11. 11.
    McCarthy DM, Kanfer EJ, Barrett AJ (1989) Thalidomide for the therapy of graft-versus-host disease following allogeneic bone marrow transplantation. Biomed Pharmacother 43:693–697PubMedCrossRefGoogle Scholar
  12. 12.
    Vogelsang GB, Farmer ER, Hess AD, Altamonte V, Beschorner WE, Jabs DA, Corio RL, Levin LS, Colvin OM, Wingard JR, Santos GW (1992) Thalidomide for the treatment of chronic graft-versus-host disease. N Engl J Med 326:1055–1058PubMedCrossRefGoogle Scholar
  13. 13.
    Atra E, Sato EI (1993) Treatment of the cutaneous lesions of systemic lupus erythematosus with thalidomide. Clin Exp Rheumatol 11:487–493PubMedGoogle Scholar
  14. 14.
    Makonkawkeyoon S, Limson-Pobre RN, Moreira AL, Schauf V, Kaplan G (1993) Thalidomide inhibits the replication of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 90:5974–5978PubMedCrossRefGoogle Scholar
  15. 15.
    Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G (1991) Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173:699–703PubMedCrossRefGoogle Scholar
  16. 16.
    Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA, Kaplan G (1993) Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 177:1675–1680PubMedCrossRefGoogle Scholar
  17. 17.
    D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085PubMedCrossRefGoogle Scholar
  18. 18.
    Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, Zeddis J, Barlogie B (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341:1565–1571PubMedCrossRefGoogle Scholar
  19. 19.
    Zeldis JB, Williams BA, Thomas SD, Elsayed ME (1999) S.T.E.P.S.: a comprehensive program for controlling and monitoring access to thalidomide. Clin Ther 21:319–330PubMedCrossRefGoogle Scholar
  20. 20.
    Castilla EE, Ashton-Prolla P, Barreda-Mejia E, Brunoni D, Cavalcanti DP, Correa-Neto J, Delgadillo JL, Dutra MG, Felix T, Giraldo A, Juarez N, Lopez-Camelo JS, Nazer J, Orioli IM, Paz JE, Pessoto MA, Pina-Neto JM, Quadrelli R, Rittler M, Rueda S, Saltos M, Sanchez O, Schuler L (1996) Thalidomide, a current teratogen in South America. Teratology 54:273–277PubMedCrossRefGoogle Scholar
  21. 21.
    Schuler-Faccini L, Soares RC, de Sousa AC, Maximino C, Luna E, Schwartz IV, Waldman C, Castilla EE (2007) New cases of thalidomide embryopathy in Brazil. Birth Defects Res A Clin Mol Teratol 79:671–672PubMedCrossRefGoogle Scholar
  22. 22.
    Hansen JM, Harris C (2004) A novel hypothesis for thalidomide-induced limb teratogenesis: redox misregulation of the NF-kappaB pathway. Antioxid Redox Signal 6:1–14PubMedCrossRefGoogle Scholar
  23. 23.
    Parman T, Wiley MJ, Wells PG (1999) Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med 5:582–585PubMedCrossRefGoogle Scholar
  24. 24.
    Therapontos C, Erskine L, Gardner ER, Figg WD, Vargesson N (2009) Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc Natl Acad Sci USA 106:8573–8578PubMedCrossRefGoogle Scholar
  25. 25.
    Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350PubMedCrossRefGoogle Scholar
  26. 26.
    Eriksson T, Bjorkman S, Roth B, Hoglund P (2000) Intravenous formulations of the enantiomers of thalidomide: pharmacokinetic and initial pharmacodynamic characterization in man. J Pharm Pharmacol 52:807–817PubMedCrossRefGoogle Scholar
  27. 27.
    Braun AG, Harding FA, Weinreb SL (1986) Teratogen metabolism: thalidomide activation is mediated by cytochrome P-450. Toxicol Appl Pharmacol 82:175–179PubMedCrossRefGoogle Scholar
  28. 28.
    Ando Y, Fuse E, Figg WD (2002) Thalidomide metabolism by the CYP2C subfamily. Clin Cancer Res 8:1964–1973PubMedGoogle Scholar
  29. 29.
    Chen TL, Vogelsang GB, Petty BG, Brundrett RB, Noe DA, Santos GW, Colvin OM (1989) Plasma pharmacokinetics and urinary excretion of thalidomide after oral dosing in healthy male volunteers. Drug Metab Dispos 17:402–405PubMedGoogle Scholar
  30. 30.
    Chung F, Lu J, Palmer BD, Kestell P, Browett P, Baguley BC, Tingle M, Ching LM (2004) Thalidomide pharmacokinetics and metabolite formation in mice, rabbits, and multiple myeloma patients. Clin Cancer Res 10:5949–5956PubMedCrossRefGoogle Scholar
  31. 31.
    Miller MT, Stromland K (1999) Teratogen update: thalidomide: a review, with a focus on ocular findings and new potential uses. Teratology 60:306–321PubMedCrossRefGoogle Scholar
  32. 32.
    Mellin GW, Katzenstein M (1962) The saga of thalidomide. Neuropathy to embryopathy, with case reports of congenital anomalies. N Engl J Med 267:1184–1192PubMedCrossRefGoogle Scholar
  33. 33.
    Spouge D, Baird PA (1986) Imperforate anus in 700,000 consecutive liveborn infants. Am J Med Genet Suppl 2:151–161PubMedCrossRefGoogle Scholar
  34. 34.
    Davis MC, Dahn RD, Shubin NH (2007) An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature 447:473–476PubMedCrossRefGoogle Scholar
  35. 35.
    Tanaka M, Munsterberg A, Anderson WG, Prescott AR, Hazon N, Tickle C (2002) Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature 416:527–531PubMedCrossRefGoogle Scholar
  36. 36.
    Moon AM, Capecchi MR (2000) Fgf8 is required for outgrowth and patterning of the limbs. Nat Genet 26:455–459PubMedCrossRefGoogle Scholar
  37. 37.
    Lewandoski M, Sun X, Martin GR (2000) Fgf8 signalling from the AER is essential for normal limb development. Nat Genet 26:460–463PubMedCrossRefGoogle Scholar
  38. 38.
    Hansen JM, Gong SG, Philbert M, Harris C (2002) Misregulation of gene expression in the redox-sensitive NF-kappab-dependent limb outgrowth pathway by thalidomide. Dev Dyn 225:186–194PubMedCrossRefGoogle Scholar
  39. 39.
    Brent RL (1964) Drug testing in animals for teratogenic effects. Thalidomide in the pregnant rat. J Pediatr 64:762–770PubMedCrossRefGoogle Scholar
  40. 40.
    Kenyon BM, Browne F, D’Amato RJ (1997) Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 64:971–978PubMedCrossRefGoogle Scholar
  41. 41.
    Fratta ID, Sigg EB, Maiorana K (1965) Teratogenic effects of thalidomide in rabbits, rats, hamsters, and mice. Toxicol Appl Pharmacol 7:268–286PubMedCrossRefGoogle Scholar
  42. 42.
    Stephens TD (1988) Proposed mechanisms of action in thalidomide embryopathy. Teratology 38:229–239PubMedCrossRefGoogle Scholar
  43. 43.
    Stephens TD, Fillmore BJ (2000) Hypothesis: thalidomide embryopathy-proposed mechanism of action. Teratology 61:189–195PubMedCrossRefGoogle Scholar
  44. 44.
    Stephens TD, Bunde CJ, Fillmore BJ (2000) Mechanism of action in thalidomide teratogenesis. Biochem Pharmacol 59:1489–1499PubMedCrossRefGoogle Scholar
  45. 45.
    Parman T, Chen G, Wells PG (1998) Free radical intermediates of phenytoin and related teratogens. Prostaglandin H synthase-catalyzed bioactivation, electron paramagnetic resonance spectrometry, and photochemical product analysis. J Biol Chem 273:25079–25088PubMedCrossRefGoogle Scholar
  46. 46.
    Wells PG, Winn LM (1996) Biochemical toxicology of chemical teratogenesis. Crit Rev Biochem Mol Biol 31:1–40PubMedCrossRefGoogle Scholar
  47. 47.
    Ohuchi H, Nakagawa T, Yamamoto A, Araga A, Ohata T, Ishimaru Y, Yoshioka H, Kuwana T, Nohno T, Yamasaki M, Itoh N, Noji S (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124:2235–2244PubMedGoogle Scholar
  48. 48.
    Knobloch J, Shaughnessy JD Jr, Ruther U (2007) Thalidomide induces limb deformities by perturbing the Bmp/Dkk1/Wnt signaling pathway. FASEB J 21:1410–1421PubMedCrossRefGoogle Scholar
  49. 49.
    Knobloch J, Schmitz I, Gotz K, Schulze-Osthoff K, Ruther U (2008) Thalidomide induces limb anomalies by PTEN stabilization, Akt suppression, and stimulation of caspase-dependent cell death. Mol Cell Biol 28:529–538PubMedCrossRefGoogle Scholar
  50. 50.
    Pizette S, Niswander L (1999) BMPs negatively regulate structure and function of the limb apical ectodermal ridge. Development 126:883–894PubMedGoogle Scholar
  51. 51.
    Scherz PJ, Harfe BD, McMahon AP, Tabin CJ (2004) The limb bud Shh-Fgf feedback loop is terminated by expansion of former ZPA cells. Science 305:396–399PubMedCrossRefGoogle Scholar
  52. 52.
    Leslie NR, Downes CP (2004) PTEN function: how normal cells control it and tumour cells lose it. Biochem J 382:1–11PubMedCrossRefGoogle Scholar
  53. 53.
    Pajni-Underwood S, Wilson CP, Elder C, Mishina Y, Lewandoski M (2007) BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling. Development 134:2359–2368PubMedCrossRefGoogle Scholar
  54. 54.
    Andela VB, Sheu TJ, Puzas EJ, Schwarz EM, O’Keefe RJ, Rosier RN (2002) Malignant reversion of a human osteosarcoma cell line, Saos-2, by inhibition of NFkappaB. Biochem Biophys Res Commun 297:237–241PubMedCrossRefGoogle Scholar
  55. 55.
    Grotewold L, Ruther U (2002) The Wnt antagonist Dickkopf-1 is regulated by Bmp signaling and c-Jun and modulates programmed cell death. EMBO J 21:966–975PubMedCrossRefGoogle Scholar
  56. 56.
    Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79:173–189PubMedCrossRefGoogle Scholar
  57. 57.
    Sauer H, Gunther J, Hescheler J, Wartenberg M (2000) Thalidomide inhibits angiogenesis in embryoid bodies by the generation of hydroxyl radicals. Am J Pathol 156:151–158PubMedCrossRefGoogle Scholar
  58. 58.
    Yabu T, Tomimoto H, Taguchi Y, Yamaoka S, Igarashi Y, Okazaki T (2005) Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. Blood 106:125–134PubMedCrossRefGoogle Scholar
  59. 59.
    Bauer KS, Dixon SC, Figg WD (1998) Inhibition of angiogenesis by thalidomide requires metabolic activation, which is species-dependent. Biochem Pharmacol 55:1827–1834PubMedCrossRefGoogle Scholar
  60. 60.
    Lu J, Palmer BD, Kestell P, Browett P, Baguley BC, Muller G, Ching LM (2003) Thalidomide metabolites in mice and patients with multiple myeloma. Clin Cancer Res 9:1680–1688PubMedGoogle Scholar
  61. 61.
    Ng SS, Gutschow M, Weiss M, Hauschildt S, Teubert U, Hecker TK, Luzzio FA, Kruger EA, Eger K, Figg WD (2003) Antiangiogenic activity of N-substituted and tetrafluorinated thalidomide analogues. Cancer Res 63:3189–3194PubMedGoogle Scholar
  62. 62.
    Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310PubMedCrossRefGoogle Scholar
  63. 63.
    Grandel H, Schulte-Merker S (1998) The development of the paired fins in the zebrafish (Danio rerio). Mech Dev 79:99–120PubMedCrossRefGoogle Scholar
  64. 64.
    Lebrin F, Srun S, Raymond K, Martin S, van den Brink S, Freitas C, Breant C, Mathivet T, Larrivee B, Thomas JL, Arthur HM, Westermann CJ, Disch F, Mager JJ, Snijder RJ, Eichmann A, Mummery CL (2010) Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med 16:420–428PubMedCrossRefGoogle Scholar
  65. 65.
    Sakamoto S, Kabe Y, Hatakeyama M, Yamaguchi Y, Handa H (2009) Development and application of high-performance affinity beads: toward chemical biology and drug discovery. Chem Rec 9:66–85PubMedCrossRefGoogle Scholar
  66. 66.
    Shimizu N, Sugimoto K, Tang J, Nishi T, Sato I, Hiramoto M, Aizawa S, Hatakeyama M, Ohba R, Hatori H, Yoshikawa T, Suzuki F, Oomori A, Tanaka H, Kawaguchi H, Watanabe H, Handa H (2000) High-performance affinity beads for identifying drug receptors. Nat Biotechnol 18:877–881PubMedCrossRefGoogle Scholar
  67. 67.
    Nishio K, Masaike Y, Ikeda M, Narimatsu H, Gokon N, Tsubouchi S, Hatakeyama M, Sakamoto S, Hanyu N, Sandhu A, Kawaguchi H, Abe M, Handa H (2008) Development of novel magnetic nano-carriers for high-performance affinity purification. Colloids Surf B Biointerfaces 64:162–169PubMedCrossRefGoogle Scholar
  68. 68.
    Higgins JJ, Pucilowska J, Lombardi RQ, Rooney JP (2004) A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation. Neurology 63:1927–1931PubMedGoogle Scholar
  69. 69.
    Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N (2006) Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443:590–593PubMedGoogle Scholar
  70. 70.
    Jo S, Lee KH, Song S, Jung YK, Park CS (2005) Identification and functional characterization of cereblon as a binding protein for large-conductance calcium-activated potassium channel in rat brain. J Neurochem 94:1212–1224PubMedCrossRefGoogle Scholar
  71. 71.
    Hohberger B, Enz R (2009) Cereblon is expressed in the retina and binds to voltage-gated chloride channels. FEBS Lett 583:633–637PubMedCrossRefGoogle Scholar
  72. 72.
    Wittschieben BO, Wood RD (2003) DDB complexities. DNA Repair (Amst) 2:1065–1069CrossRefGoogle Scholar
  73. 73.
    Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20PubMedCrossRefGoogle Scholar
  74. 74.
    Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y (2003) The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357–367PubMedCrossRefGoogle Scholar
  75. 75.
    Lee J, Zhou P (2007) DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 26:775–780PubMedCrossRefGoogle Scholar
  76. 76.
    Pickart CM (2004) Back to the future with ubiquitin. Cell 116:181–190PubMedCrossRefGoogle Scholar
  77. 77.
    Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Hanaoka F (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB–ubiquitin ligase complex. Cell 121:387–400PubMedCrossRefGoogle Scholar
  78. 78.
    Groisman R, Kuraoka I, Chevallier O, Gaye N, Magnaldo T, Tanaka K, Kisselev AF, Harel-Bellan A, Nakatani Y (2006) CSA-dependent degradation of CSB by the ubiquitin–proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev 20:1429–1434PubMedCrossRefGoogle Scholar
  79. 79.
    Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367PubMedCrossRefGoogle Scholar
  80. 80.
    Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220PubMedCrossRefGoogle Scholar
  81. 81.
    Lee KJ, Lee KM, Jo S, Kang KW, Park CS (2010) Induction of cereblon by NF-E2-related factor 2 in neuroblastoma cells exposed to hypoxia-reoxygenation. Biochem Biophys Res Commun 399:711–715PubMedCrossRefGoogle Scholar
  82. 82.
    Kang KW, Lee SJ, Kim SG (2005) Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal 7:1664–1673PubMedCrossRefGoogle Scholar
  83. 83.
    Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067PubMedCrossRefGoogle Scholar
  84. 84.
    Field HA, Dong PD, Beis D, Stainier DY (2003) Formation of the digestive system in zebrafish. II. Pancreas morphogenesis. Dev Biol 261:197–208PubMedCrossRefGoogle Scholar
  85. 85.
    Knobloch J, Reimann K, Klotz LO, Ruther U (2008) Thalidomide resistance is based on the capacity of the glutathione-dependent antioxidant defense. Mol Pharm 5:1138–1144PubMedCrossRefGoogle Scholar
  86. 86.
    Janer G, Verhoef A, Gilsing HD, Piersma AH (2008) Use of the rat postimplantation embryo culture to assess the embryotoxic potency within a chemical category and to identify toxic metabolites. Toxicol In Vitro 22:1797–1805PubMedCrossRefGoogle Scholar
  87. 87.
    Uga H, Kuramori C, Ohta A, Tsuboi Y, Tanaka H, Hatakeyama M, Yamaguchi Y, Takahashi T, Kizaki M, Handa H (2006) A new mechanism of methotrexate action revealed by target screening with affinity beads. Mol Pharmacol 70:1832–1839PubMedCrossRefGoogle Scholar
  88. 88.
    List A, Kurtin S, Roe DJ, Buresh A, Mahadevan D, Fuchs D, Rimsza L, Heaton R, Knight R, Zeldis JB (2005) Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 352:549–557PubMedCrossRefGoogle Scholar
  89. 89.
    Andritsos LA, Johnson AJ, Lozanski G, Blum W, Kefauver C, Awan F, Smith LL, Lapalombella R, May SE, Raymond CA, Wang DS, Knight RD, Ruppert AS, Lehman A, Jarjoura D, Chen CS, Byrd JC (2008) Higher doses of lenalidomide are associated with unacceptable toxicity including life-threatening tumor flare in patients with chronic lymphocytic leukemia. J Clin Oncol 26:2519–2525PubMedCrossRefGoogle Scholar
  90. 90.
    Chanan-Khan A, Miller KC, Musial L, Lawrence D, Padmanabhan S, Takeshita K, Porter CW, Goodrich DW, Bernstein ZP, Wallace P, Spaner D, Mohr A, Byrne C, Hernandez-Ilizaliturri F, Chrystal C, Starostik P, Czuczman MS (2006) Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study. J Clin Oncol 24:5343–5349PubMedCrossRefGoogle Scholar
  91. 91.
    Chanan-Khan AA, Cheson BD (2008) Lenalidomide for the treatment of B-cell malignancies. J Clin Oncol 26:1544–1552PubMedCrossRefGoogle Scholar
  92. 92.
    Xu Y, Li J, Ferguson GD, Mercurio F, Khambatta G, Morrison L, Lopez-Girona A, Corral LG, Webb DR, Bennett BL, Xie W (2009) Immunomodulatory drugs reorganize cytoskeleton by modulating Rho GTPases. Blood 114:338–345PubMedCrossRefGoogle Scholar
  93. 93.
    Aragon-Ching JB, Li H, Gardner ER, Figg WD (2007) Thalidomide analogues as anticancer drugs. Recent Pat Anticancer Drug Discov 2:167–174PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Solutions Research LaboratoryTokyo Institute of TechnologyYokohamaJapan
  2. 2.Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations