Cellular and Molecular Life Sciences

, Volume 68, Issue 18, pp 3095–3107 | Cite as

Novel macrophage polarization model: from gene expression to identification of new anti-inflammatory molecules

  • Gloria Lopez-Castejón
  • Alberto Baroja-Mazo
  • Pablo Pelegrín
Research Article

Abstract

Plasticity is a well-known property of macrophages that is controlled by different changes in environmental signals. Macrophage polarization is regarded as a spectrum of activation phenotypes adjusted from one activation extreme, the classic (M1), to the other, the alternative (M2) activation. Here we show, in vitro and in vivo, that both M1 and M2 macrophage phenotypes are tightly coupled to specific patterns of gene expression. Novel M2-associated markers were characterized and identified as genes controlling the extracellular metabolism of ATP to generate pyrophosphates (PPi). Stimulation of M1 macrophages with PPi dampens both NLR and TLR signaling and thus mediates cytokine production. In this context extracellular PPi enhanced the resolution phase of a murine peritonitis model via a decrease in pro-inflammatory cytokine production. Therefore, our study reveals an additional level of plasticity modulating the resolution of inflammation.

Keywords

Alternatively activated macrophages Resolution of inflammation Toll-like receptors Nucleotide-binding domain and leucin-rich repeat receptors Extracellular pyrophosphates Ectonucleotidases Cytokines Peritonitis 

Abbreviations

ANK

Progressive ankylosis disease susceptibility gene product

ASC

Apoptotic speck-like protein with a caspase-activating recruiting domain

ENPP

Ectonucleotide pyrophosphatase/phosphodiesterase

LDH

Lactate dehydrogenase

M1

Classically activated macrophages

M2

Alternatively activated macrophages

NLR

Nucleotide-binding domain and leucin-rich repeat receptors

NTPDase-1

Ecto-diphosphohydrolase

PPi

Pyrophosphates

ROS

Reactive oxygen species

TLR

Toll-like receptors

Supplementary material

18_2010_609_MOESM1_ESM.tif (1.2 mb)
Supplemental Fig. 1. Expression of different housekeeping genes during macrophage polarization gradient. A Real-time quantitative (qRT)-PCR for the indicated house-keeping genes (GAPDH, YWHAZ, HPRT1, and SDHA) during the polarization gradient protocol. B qRT-PCR for TNF-α gene expression in M1, M1/M2, or M2 polarized macrophages normalized to the four different housekeeping genes. No significant differences were found in the fold increase/decrease trend among the different macrophage phenotypes. (TIFF 1259 kb)
18_2010_609_MOESM2_ESM.tif (1.4 mb)
Supplemental Fig. 2. Expression of the 39 analyzed genes in extreme M1 or M2 macrophages. Real-time quantitative RT-PCR for the indicated genes in extreme M1 (A) or M2 (B) polarization. M2 genes are represented in green, M1 in red, and housekeeping genes in blue. Relative expression normalized to YWHAZ was log2 transformed. (TIFF 1398 kb)
18_2010_609_MOESM3_ESM.tif (2.1 mb)
Supplemental Fig. 3. Gene expression in extreme M1 or M2 macrophages. Dot plot representing log2 transformed expression data from real-time quantitative RT-PCR normalized values for all genes included in this study (Suppl. Fig. 2). Data for each individual gene are represented in accordance with its expression in extreme M1 or M2 genes. R2 = 0.341. (TIFF 2157 kb)

References

  1. 1.
    Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964PubMedCrossRefGoogle Scholar
  2. 2.
    Mantovani A, Sica A, Locati M (2007) New vistas on macrophage differentiation and activation. Eur J Immunol 37:14–16PubMedCrossRefGoogle Scholar
  3. 3.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35PubMedCrossRefGoogle Scholar
  4. 4.
    Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483PubMedCrossRefGoogle Scholar
  5. 5.
    Stout RD, Suttles J (2004) Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 76:509–513PubMedCrossRefGoogle Scholar
  6. 6.
    Porcheray F, Viaud S, Rimaniol AC, Léone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142:481–489PubMedGoogle Scholar
  7. 7.
    Gratchev A, Kzhyshkowska J, Köthe K, Muller-Molinet I, Kannookadan S, Utikal J, Goerdt S (2006) Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals. Immunobiology 211:473–486PubMedCrossRefGoogle Scholar
  8. 8.
    Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28:2114–2127PubMedCrossRefGoogle Scholar
  9. 9.
    Gilroy D, Lawrence T, Perretti M, Rossi A (2004) Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 3:401–416PubMedCrossRefGoogle Scholar
  10. 10.
    Serhan CN, Brain SD, Buckley CD, Gilroy D, Haslett C, O’Neill LA, Perretti M, Rossi A, Wallace JL (2007) Resolution of inflammation: state of the art, definitions and terms. FASEB J 21:325–332PubMedCrossRefGoogle Scholar
  11. 11.
    Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197PubMedCrossRefGoogle Scholar
  12. 12.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265PubMedCrossRefGoogle Scholar
  13. 13.
    Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176:3877–3883PubMedGoogle Scholar
  14. 14.
    Pelegrin P, Surprenant A (2009) The P2X(7) receptor-pannexin connection to dye uptake and IL-1beta release. Purinergic Signal 5:129–137PubMedCrossRefGoogle Scholar
  15. 15.
    Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol 180:7147–7157PubMedGoogle Scholar
  16. 16.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  17. 17.
    de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454PubMedCrossRefGoogle Scholar
  18. 18.
    Saldanha AJ (2004) Java treeview–extensible visualization of microarray data. Bioinformatics 20:3246–3248PubMedCrossRefGoogle Scholar
  19. 19.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868PubMedCrossRefGoogle Scholar
  20. 20.
    Kolaczkowska E, Koziol A, Plytycz B, Arnold B (2010) Inflammatory macrophages, and not only neutrophils, die by apoptosis during acute peritonitis. Immunobiology 215:492–504PubMedCrossRefGoogle Scholar
  21. 21.
    Bystrom J, Evans I, Newson J, Stables M, Toor I, Van Rooijen N, Crawford M, Colville-Nash P, Farrow S, Gilroy DW (2008) Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 112:4117–4127PubMedCrossRefGoogle Scholar
  22. 22.
    Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309PubMedCrossRefGoogle Scholar
  23. 23.
    Sim J, Park C, Oh S, Evans RJ, North RA (2007) P2X1 and P2X4 receptor currents in mouse macrophages. Br J Pharmacol 152:1283–1290PubMedCrossRefGoogle Scholar
  24. 24.
    Ho AM, Johnson MD, Kingsley DM (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289:265–270PubMedCrossRefGoogle Scholar
  25. 25.
    Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461PubMedCrossRefGoogle Scholar
  26. 26.
    Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311PubMedGoogle Scholar
  27. 27.
    Scotton CJ, Martinez FO, Smelt MJ, Sironi M, Locati M, Mantovani A, Sozzani S (2005) Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13. J Immunol 174:834–845PubMedGoogle Scholar
  28. 28.
    Humphreys BD, Dubyak GR (1998) Modulation of P2X7 nucleotide receptor expression by pro- and anti-inflammatory stimuli in THP-1 monocytes. J Leukoc Biol 64:265–273PubMedGoogle Scholar
  29. 29.
    Taniguchi S, Sagara J (2007) Regulatory molecules involved in inflammasome formation with special reference to a key mediator protein, ASC. Semin Immunopathol 29:231–238PubMedCrossRefGoogle Scholar
  30. 30.
    Fernandes-Alnemri T, Wu J, Yu J, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri E (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604PubMedCrossRefGoogle Scholar
  31. 31.
    MacKenzie AB, Young MT, Adinolfi E, Surprenant A (2005) Pseudoapoptosis induced by brief activation of ATP-gated P2X7 receptors. J Biol Chem 280:33968–33976PubMedCrossRefGoogle Scholar
  32. 32.
    Humphreys BD, Dubyak GR (1996) Induction of the P2z/P2X7 nucleotide receptor and associated phospholipase D activity by lipopolysaccharide and IFN-gamma in the human THP-1 monocytic cell line. J Immunol 157:5627–5637PubMedGoogle Scholar
  33. 33.
    Lopez-Castejon G, Theaker J, Pelegrin P, Clifton AD, Braddock M, Surprenant A (2010) P2X7 receptor-mediated release of cathepsins from macrophages is a cytokine-independent mechanism potentially involved in joint diseases. J Immunol 185:2611–2619PubMedCrossRefGoogle Scholar
  34. 34.
    Milner JD, Orekov T, Ward JM, Cheng L, Torres-Velez F, Junttila I, Sun G, Buller M, Morris SC, Finkelman FD, Paul WE (2010) Sustained IL-4 exposure leads to a novel pathway for hemophagocytosis, inflammation and tissue macrophage accumulation. Blood 116:2476–2483PubMedCrossRefGoogle Scholar
  35. 35.
    Varin A, Mukhopadhyay S, Herbein G, Gordon S (2010) Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood 115:353–362PubMedCrossRefGoogle Scholar
  36. 36.
    Gea-Sorli S, Closa D (2009) In vitro, but not in vivo, reversibility of peritoneal macrophages activation during experimental acute pancreatitis. BMC Immunol 10:42PubMedCrossRefGoogle Scholar
  37. 37.
    Prosdocimo DA, Douglas DC, Romani A, O’Neill WC, Dubyak GR (2009) Autocrine ATP release coupled to extracellular pyrophosphate accumulation in vascular smooth muscle cells. Am J Physiol Cell Ph 296:C828–C839CrossRefGoogle Scholar
  38. 38.
    Sun SC, Ley SC (2008) New insights into NF-kappaB regulation and function. Trends Immunol 29:469–478PubMedCrossRefGoogle Scholar
  39. 39.
    Maksymowych W (2002) Bisphosphonates–anti-inflammatory properties. Curr Med Chem 1:15–28Google Scholar
  40. 40.
    Russell RG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19:733–759PubMedCrossRefGoogle Scholar
  41. 41.
    Pennanen N, Lapinjoki S, Urtti A, Mönkkönen J (1995) Effect of liposomal and free bisphosphonates on the IL-1 beta, IL-6 and TNF alpha secretion from RAW 264 cells in vitro. Pharm Res 12:916–922PubMedCrossRefGoogle Scholar
  42. 42.
    Serretti R, Core P, Muti S, Salaffi F (1993) Influence of dichloromethylene diphosphonate on reactive oxygen species production by human neutrophils. Rheumatol Int 13:135–138PubMedCrossRefGoogle Scholar
  43. 43.
    Kachur AV, Manevich Y, Biaglow JE (1997) Effect of purine nucleoside phosphates on OH-radical generation by reaction of Fe2 + with oxygen. Free Radic Res 26:399–408PubMedCrossRefGoogle Scholar
  44. 44.
    Dombrecht EJ, De Tollenaere CB, Aerts K, Cos P, Schuerwegh AJ, Bridts CH, Van Offel JF, Ebo DG, Stevens WJ, De Clerck LS (2006) Antioxidant effect of bisphosphonates and simvastatin on chondrocyte lipid peroxidation. Biochem Biophys Res Commun 348:459–464PubMedCrossRefGoogle Scholar
  45. 45.
    Gloire G, Piette J (2009) Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal 11:2209–2222PubMedCrossRefGoogle Scholar
  46. 46.
    Kabe Y, Ando K, Hirao S, Yoshida M, Handa H (2005) Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7:395–403PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Gloria Lopez-Castejón
    • 2
  • Alberto Baroja-Mazo
    • 1
  • Pablo Pelegrín
    • 1
    • 2
  1. 1.Inflammation and Experimental Surgery UnitUniversity Hospital “Virgen de la Arrixaca”-Fundación Formación Investigación Sanitaria Región Murcia (FFIS)MurciaSpain
  2. 2.Faculty of Life ScienceUniversity of ManchesterManchesterUK

Personalised recommendations